Girraween High School

2020

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

Total Marks: 100

Section 1 (Pages 2-4) 10 Marks

- Attempt Q1 - Q10
- Allow about 15 minutes for this section

General Instructions

- Reading time: 5 minutes
- Working time: 3 Hours
- Write using a black or blue pen
- Board approved calculators may be used
- Laminated reference sheets are provided
- Answer multiple choice questions by completely colouring in the appropriate circle on your multiple choice answer sheet on the front page of your answer booklet.
- In questions 11-16 start all questions on a separate page in your answer booklet and show all relevant mathematical reasoning and/or calculations.

Section 2 (Pages 5-11) 90 marks

- Attempt Q11 - Q16
- Allow about 2 hours and 45 minutes for this section

Section 1 (10 marks)

Attempt Questions 1-10

Allow about 15 minutes for this section

Question 1

$\int x^{3} \cos x \cdot d x=$
(A) $-x^{3} \sin x+3 \int x^{2} \sin x \cdot d x$
(B) $-x^{3} \sin x-3 \int x^{2} \sin x \cdot d x$
(C) $x^{3} \sin x-3 \int x^{2} \sin x . d x$
(D) $x^{3} \sin x+3 \int x^{2} \sin x . d x$

Question 2

$\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} \cdot d x=$
(A) $\frac{1}{2} \ln \left(1-e^{2 x}\right)+C$
(B) $\sin ^{-1}\left(e^{x}\right)+C$
(C) $\tan ^{-1}\left(e^{x}\right)+C$
(D) $\cos ^{-1}\left(e^{x}\right)+C$

Question 3

$2 e^{\frac{5 \pi i}{6}}=$
(A) $\sqrt{3}-i$
(B) $\sqrt{3}+i$
(C) $-\sqrt{3}-i$
(D) $-\sqrt{3}+i$

Question 4

Which of the following diagrams shows $\operatorname{Arg}(z-1+2 i)=-\frac{\pi}{3}$?

(C)

(B)

(D)

$\forall \exists \in$

Question 5

The contrapositive of "If it barks it's a dog" is
(A) "If it doesn't bark it isn't a dog"
(B) "If it's a dog it will bark"
(C) "If it doesn't bark it's a dog"
(D) "If it isn't a dog it doesn't bark"

Question 6

Which of the following is true?
(A) $\forall a \in Z^{+} \ni b \in Z^{+}: b=a^{3}$
(B) $\forall a \in Z^{+} \ni b \in Z^{+}: b=\sqrt[3]{a}$
(C) $\forall a \in Z^{+} \ni b \in Z^{+}: a=b^{3}$
(D) $\forall a \ni b \in Z^{+}: b=a^{3}$

Question 7

If a and b are entirely imaginary then which of the following is true
(A) $a^{2}+b^{2} \geq 2 a b$
(B) $a^{2}+b^{2} \leq 2 a b$
(C) $a^{2}+b^{2}=2 a b$
(D) Any of the above can happen.

Question 8

A particle moves in a straight line. At one point, $x=6, v=8$ and $a=18$. An equation of motion for the particle could be
(A) $v^{2}=\frac{x^{3}}{3}-8$
(B) $v^{2}=x^{2}+28$
(C) $v=x+2$
(D) $v^{2}=3 x^{2}$

Question 9

A particle moves with simple harmonic motion so that $v^{2}=27-18 x-9 x^{2}$. The period and amplitude of the motion are
(A) Period $=\frac{\pi \sqrt{2}}{3}$ seconds, amplitude $=3 \mathrm{~m}$
(B) Period $=\frac{2 \pi}{3}$ seconds, amplitude $=2 m$
(C) Period $=\frac{3 \pi}{2}$ seconds, amplitude $=3 m$
(D) Period $=\frac{\pi \sqrt{2}}{3}$ seconds, amplitude $=2 m$

Question 10

The cartesian equation of the line $\underline{i}+2 \underline{j}-\underline{k}+\lambda(2 \underline{i}+3 \underline{j}+4 \underline{k})$
is
(A) $\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+1}{4}$
(B) $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+1}{4}$
(C) $x-2=\frac{y-2}{3}=z+4$
(D) $x+2=\frac{y+2}{3}=z+4$

Examination continues on the following page

Section II (90 marks)

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section

Start the answers to each question on a separate page in your answer booklet.
In Questions 11-16 your responses should include all relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks)
Marks
(a) If $z=1-i \sqrt{3}$
(i) Express z in modulus/argument form
(ii) Find z^{3} and show that it is real.
(b) If O is the origin, $\overrightarrow{O A}=2+i$ and $\overrightarrow{O C}=1+2 i$ (see diagram)

(i) Find B so that $O A B C$ is a rhombus.
(ii) By finding $\frac{\overrightarrow{O B}}{\overrightarrow{O A}}$, show that $\tan \angle A O B=\frac{1}{3}$
(iii) HENCE show that $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{4}$

Question 11 (continued)

Marks

(c) (i) By letting $(x+i y)^{2}=3-4 i$, find $\sqrt{3-4 i}$
(ii) Hence solve the equation $z^{2}+(4-i) z+(3-i)=0$

2

Question 12 (15 marks)
Marks
(a) (i) Express $\frac{-13 x-10}{(x+1)^{2}(x-2)}$ in the form $\frac{A}{(x+1)^{2}}+\frac{B}{(x+1)}+\frac{C}{(x-2)}$

3
(ii) Hence find $\int \frac{-13 x-10}{(x+1)^{2}(x-2)} \cdot d x$

1
(b) Find $\int \frac{1}{\sin x-\cos x-1} \cdot d x$
(c) Find $\int e^{x} \cos x . d x$
(d) (i) Show that $\frac{d}{d x} \cot x=-\operatorname{cosec}^{2} x$

Let $I_{n}=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot ^{n} x . d x$
(ii) Show that $I_{n}=\frac{1}{n-1}-I_{n-2}$
(iii) Hence find I_{6}
(iv) Given that $I_{n} \rightarrow 0$ as $n \rightarrow \infty$, find $\lim _{n \rightarrow \infty} 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots$ 1

Examination continues on the following page

p6
(a) Prove by contraposition that if $n^{2}+6 n$ is even, then n is even.
(b) Prove by contradiction that $\log _{3} 11$ is irrational.

3
(c) Prove by induction that $3^{n} \geq n^{2}$ for all positive integers $n \geq 1$

3
(d) Prove for all integers x, y that if $10 x+y$ is divisible by $17,3 y-4 x$ is also divisible by 17 .
(e) (i) Prove $a^{2}+b^{2} \geq 2 a b$ for all $a, b \in R$

1
(ii) Hence or otherwise prove $a^{4}+b^{4}+c^{4}+d^{4} \geq 4 a b c d$ for all $a, b, c, d \in R$
(iii) Hence or otherwise prove $\frac{w+x+y+z}{4} \geq \sqrt[4]{w x y z}$ for all $w, x, y, z>0$.

Question 14 (15 marks)
(a) If $\underline{p}=\underline{i}+2 \underline{j}-\underline{k}$ and $\underline{q}=2 \underline{i}-\underline{j}+\underline{k}$
(i) Find $\underline{p} \cdot \underline{q}$
(ii) Find the angle between \underline{p} and \underline{q}.
(iii) Find $\operatorname{Proj}_{\underline{p}} \underline{q}$ 1

Question 14 (continued)

(b) (i) Show that the point $\left(\begin{array}{c}12 \\ -6 \\ 6\end{array}\right)$ lies on the sphere
(ii) Show that the line $\left(\begin{array}{c}12 \\ -6 \\ 6\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 3 \\ -4\end{array}\right)$ forms a diameter of the sphere
$(x-10)^{2}+(y+12)^{2}+(z-14)^{2}=104$ and find the other point at which the line intersects with the sphere.
(iii) Show that the line $\left(\begin{array}{c}-8 \\ 12 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}\mathbf{6} \\ -\mathbf{8} \\ \mathbf{5}\end{array}\right)$ is skew to the line $\left(\begin{array}{c}12 \\ -6 \\ 6\end{array}\right)+\lambda\left(\begin{array}{c}\mathbf{1} \\ \mathbf{3} \\ -4\end{array}\right)$
(iv) Find the points of intersection of $\left(\begin{array}{c}-8 \\ 12 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}6 \\ -8 \\ 5\end{array}\right)$ and the sphere
$(x-10)^{2}+(y+12)^{2}+(z-14)^{2}=104$.
(v) Show that the line $\left(\begin{array}{c}-8 \\ 12 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}\mathbf{6} \\ -\mathbf{8} \\ \mathbf{5}\end{array}\right)$ passes directly above the centre of
the sphere $(x-10)^{2}+(y+12)^{2}+(z-14)^{2}=104$ and find the point at which this happens.

Examination continues on the following page

Question 15 (15 marks)

(a) The depth of the water at a wharf is regulated by the tide and can be modelled using simple harmonic motion. If at low tide at 7:00a.m. the depth is 5 m and at high tide at $1: 30 \mathrm{p} . \mathrm{m}$. the depth is 13 m
(i) Letting the time be measured in hours and $t=0$ hours to be 7:00a.m. write a rule for the depth (x) in terms of time (t).
(ii) A certain boat can only reach the wharf when the depth is greater than 8 m . What are the times this can happen between 7:00a.m. and the next low tide?
(b) A 5 kg projectile is launched at a speed of $600 \mathrm{~m} / \mathrm{s}$ at an angle of $30^{\circ} \mathrm{up}$ from the horizontal. It experiences gravity of 50 Newtons and air resistance opposite to its direction of motion of $\frac{5}{6} v$ Newtons.
(i) Show that $\ddot{x}=-\frac{1}{6} \dot{x}$ and $\ddot{y}=-10-\frac{1}{6} \dot{y}$ where x is horizontal displacement $\quad 1$ and y is vertical displacement.
(ii) Show that the initial velocities in the horizontal and vertical directions are
(iii) Show that $\dot{x}=300 \sqrt{3} e^{-\frac{t}{6}}$ and $x=1800 \sqrt{3}\left(1-e^{-\frac{t}{6}}\right)$
(iv) Find the maximum possible horizontal range of the projectile the range it can never quite reach).
(v) Show that $\dot{y}=360 e^{-\frac{t}{6}}-60$ and $y=-2160 e^{-\frac{t}{6}}-60 t+2160$.
(vi) Find the maximum height of the projectile.

Question 16 (15 marks)

(a) A projectile is launched vertically upwards from the ground at a speed of $U \mathrm{~m} / \mathrm{s}$. It experiences acceleration due to gravity of $g \mathrm{~m} / \mathrm{s}^{2}$ and acceleration due to air resistance of $k v^{2} \mathrm{~m} / \mathrm{s}^{2}$.
(i) If x is the vertical height of the projectile above the ground, show that $x=\frac{1}{2 k} \ln \left(\frac{g+k U^{2}}{g+k v^{2}}\right)$.
(ii) Show that the maximum height reached is $\frac{1}{2 k} \ln \left(1+\frac{k U^{2}}{g}\right)$ metres.
(iii) The projectile starts to fall from its maximum height. It continues to experience acceleration due to gravity of $g \mathrm{~m} / \mathrm{s}^{2}$ and air resistance against its motion of $k v^{2} \mathrm{~m} / \mathrm{s}^{2}$. Letting down be positive, and the point where the projectile reaches its maximum height be $x=0$, find the terminal velocity of the projectile in terms of k and g and show that $x=\frac{1}{2 k} \ln \left(\frac{g}{g-k v^{2}}\right)$.
(iv) Letting T be the terminal velocity, W be the impact velocity (the speed at which the projectile hits the ground) and keeping U as the initial launch velocity, show that $\frac{1}{U^{2}}+\frac{1}{T^{2}}=\frac{1}{W^{2}}$.

Question 16 continues on the following page

(b) (i) Solve $z^{5}-1=0$.

1
(ii) If w is the root of $z^{5}-1=0$ with the smallest positive argument, show that $w^{2}+\frac{1}{w^{2}}+w+\frac{1}{w}=-1$.
(iii) Hence show that $x=\cos \frac{2 \pi}{5}$ is a root of the equation $4 x^{2}+2 x-1=0$. $\quad 1$
(iv) Hence find the exact value of $\cos \frac{2 \pi}{5}$. 1

END OF EXAMINATION!!!

Solutions: Y/2 Trial Exam Ext 22020 p.l New Syllabas.

Multiple Cloice:

$$
Q \cdot(1) C(2) B(3) D(4) A(5) D(6) A(7) B(8) A(9) B(10) B
$$

(1) $\int x^{3} \cos x \cdot d x \quad \begin{aligned} u & =x^{3} \quad v \\ & =\sin x \\ u^{\prime} & =3 x^{2} \quad v^{\prime}=\cos x\end{aligned}$

$$
\begin{equation*}
=x^{3} \sin x-3 \int x^{2} \sin x \cdot d x \tag{c}
\end{equation*}
$$

(2) $\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x$

$$
=\sin ^{-1}\left(e^{i x}\right)+C
$$

$\left[B y \int \frac{f^{\prime}(x)}{\sqrt{1-\left[f(x)^{2}\right.}} d x=\sin ^{-1}(f(x))+c\right]$.
(3) $2 e^{\frac{5 \pi i}{6}}$

$$
\begin{equation*}
=2 \times\left[\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right] \tag{D}
\end{equation*}
$$

(by Euler's theorem)
$=2\left[-\frac{\sqrt{3}}{2}+\frac{i}{2}\right]$
$=-\sqrt{3}+i$
(4) A
(S) " (f it isn't a dog it doesn't bark '(D)
(6)(A) "For all positive intogers a there is a positive integer b such that $b=a a^{3}$ [Note: $(B) \&(C)$ said that the cubercost of evey positive integer was also a positive integor \& (D) didn't say a was on integes.
(7)(B) If $a=x i, 6=y i$

$$
\begin{aligned}
& x, y \text { real then } \\
& a^{2}+b^{2}=(x i)^{2}+(y i)^{2}=-\left(x^{2}+y^{2}\right) \\
& \text { \& } 2 a b=-2 x y . \\
& \text { As } x^{2}+y^{2} \geqslant 2 x y, x, y \text { real } \\
& -\left(x^{2}+y^{2}\right) \leqslant-2 x y \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (8) Using } a=\frac{d}{d x}\left[\frac{1}{2} v^{2}\right] \\
& \text { in (A) })^{\frac{1}{2}=\frac{x^{3}}{3}-8} \begin{array}{c}
\frac{1}{2} v^{2}=\frac{x^{3}}{4}-4
\end{array} \\
& \frac{1}{2} v^{2}=\frac{x^{3}}{6}-4
\end{aligned}
$$

$$
\begin{aligned}
& \ln (B)_{a}=x \& \text { would }=6 \text {, not } 18 \\
& \ln (C)_{a}=x+2 \& \text { would }=8 \text { not } 18 \\
& \ln (D) v^{2} \neq 3 x^{2}\left(8^{2} \neq 3 \times 6^{2}\right) \text {. }
\end{aligned}
$$

$$
\begin{align*}
& \text { (9) } v^{2}=27-18 x-9 x^{2} \\
& \text { Amplitude: } x^{2}=0 \\
& x^{2}+2 x-3=0 \\
& (x+3)(x-1) \text { Amplitude }=2=-3 \text { orl. } \tag{B}\\
& \text { Poriod: } v^{2}=27-18 x-9 x^{2} \\
& a=\frac{d}{d x}\left[\frac{1}{2} v^{2}\right]=-4(x-1) . \\
& \text { (i0) As } x=2 \lambda+1, \lambda=\frac{x-1}{2} \\
& \begin{array}{l}
\text { As } y=3 \lambda+2, \lambda-y=2 \\
A_{s} z=4 \lambda-1, \lambda=3+1
\end{array} \\
& \begin{array}{l}
\text { A } z=4 \lambda-1, \lambda=\frac{3}{2}+1 \\
x-1=4-2=z+1
\end{array} \tag{8}\\
& \therefore \frac{x-1}{2}=\frac{y-2}{3}=\frac{z+1}{4}
\end{align*}
$$

Solutions: Y/2 Trial: pu 2

$$
\begin{aligned}
Q .(i 1)(a)\left(\frac{z}{z}\right. & =1-i \sqrt{3} \\
& =2 \operatorname{cis}\left(-\frac{\pi}{3}\right)
\end{aligned}
$$

$(\bar{u}) z^{3}=2^{3} \operatorname{cis}\left(-\frac{3 \pi}{3}\right)\left(B_{y}\right.$ DeMairce $)$

$$
=8 \operatorname{cis}(-\pi)
$$

$$
=-8 \text {, which is real. }
$$

(b)

(i) $8 \equiv 3+3 i$

$$
\begin{aligned}
&(\bar{u}) \frac{\overrightarrow{O B}}{\overrightarrow{O A}}=\frac{3+3 i}{2+i} \times(2-i) \\
&=\frac{9+3 i}{5} \\
& \begin{aligned}
\operatorname{Arg}\left(\frac{O B}{O A}\right) & =\tan \angle A O B=\frac{(3)}{\left(\frac{9}{3}\right)} \\
& =\frac{1}{3}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iii) Arg } \overrightarrow{O A}=\tan \angle A O x=\frac{1}{2} \\
& \therefore A A \operatorname{Ag}(\overrightarrow{O B})=\tan \angle B O x=\frac{1}{1}=1 . \\
& \therefore \angle A O x+\angle A O B=\angle B O x \\
& \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& (c)(i)(x+i y)^{2}=3-4 i, x, y \text { real } \\
& \left(x^{2}-y^{2}\right)+2 i x y=3-4 i .
\end{aligned}
$$

$\therefore x^{2}-y^{2}=3$ equating reds (1)
$2 x y=-4$ equating imaginaries.

$$
y=-\frac{2}{x}
$$

$(11)(c)(i)$ (continued):
Sub. (z) in (1):

$$
x^{2}-\left(-\frac{2}{x}\right)^{2}=3
$$

$x^{4}-3 x^{2}-4=0$

$$
\left(x^{2}-4\right)\left(x^{2}+1\right)=0
$$

$$
x= \pm 2, C x \neq \pm i \text { as } x \text { is neal }] .
$$

$$
\text { As } y=-\frac{2}{x}, y=\mp 1
$$

$$
\therefore \sqrt{3-4 i}= \pm(2-i) .
$$

(ii)Solving $z^{2}+(4-i) z+(3-i)=0$ Noting $\Delta=6^{2}-4 a c$

$$
\begin{aligned}
&=(4-i)^{2}-4 \times 1 \times(3-i) \\
&=3-4 i \\
& z=\frac{-(4-i) \pm \sqrt{\Delta}}{2 \times 1} \text { (Quadratic) } \\
& \text { formula]. }
\end{aligned}
$$

$$
\begin{aligned}
& A_{\sqrt{ }}^{\Delta}= \pm(2-i)[\text { from }(i)] \\
& z=\frac{-(4-i) \pm(2-i)}{2}
\end{aligned}
$$

$$
z=-1 \text { or } z=-3+i
$$

CNote that as the co-efficients in the original quadratic equation asen't real, complex solutions DON'T have to be conjugates of each other].

Solutions: Yiz Trial: p. 3

$$
\begin{aligned}
& \text { Q. }(12)(a)(i) \frac{13 x-10}{(x+1)^{2}(x-2)}=\frac{A}{(x+1)^{2}}+\frac{8}{(x+1)}+\frac{C}{(x-2)} \\
& \therefore-13 x-10=A(x-2)+B(x+1)(x-2)+C(x+1)^{2}(1) \\
& \text { Sub. } x=2 \text { in }(1): \\
& -13 \times 2-10=C(2+1)^{2} \Rightarrow C=-4 . \\
& \text { sub. } x=-1 \text { in }(1)! \\
& -13 x-1-10=A(-1-2) \Rightarrow A=-1 . \\
& \text { Sub. } x=0, A=-1, C=-4 \text { in }(1): \\
& -10 \\
& =4=-2 x-1-28-4 \\
& \therefore A=-1, B=4 \& C=-4 \& \frac{13 x-10}{(x+1)^{2}(x-2)}=\frac{-1}{(x+1)^{2}}+\frac{4}{(x+1)}-\frac{4}{(x-2)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \int \frac{-13 x-10}{(x+1)^{2}(x-2)} \cdot d x \\
& =\int \frac{1}{(x+1)^{2}}+\frac{4}{(x+1)}-\frac{4}{(x-2)} \cdot d x \\
& =\frac{1}{x+1}+4 \ln (x+1)-4 \ln (x-2)+C .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) } \int \frac{1}{\sin x-\cos x-1} \cdot d x \quad \begin{array}{l}
\text { Letting } t= \\
=\tan \left(\frac{x}{2}\right) \\
=\int \frac{1}{\frac{2 t}{1+t^{2}}-\frac{-\left(1-t^{2}\right)}{1+1}-1}=\frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right) \\
\end{array}=\frac{2}{1+t^{2}} \cdot d t \int \therefore d x=\frac{d x}{d t} \cdot d t=\frac{2}{1+t^{2}} \cdot d t
\end{aligned}
$$

$$
=\int \frac{1}{2 t-2} \cdot d t
$$

Note also

$$
=\frac{1}{2} \int \frac{2}{2 t-2} \cdot d t
$$

$\frac{1}{2} \ln (2 t-2)+c$ is also correct as

$$
=\frac{1}{2} \int_{1}^{1} \frac{1}{t-1} \cdot d t
$$

it only differ from $\frac{1}{2} \ln (t-1)$ by $\frac{1}{2} \ln 2$
which is pat of the constant C.

$$
=\frac{1}{2} \ln (t-1)+C
$$

Yiz $4 U$ Trial
Q.(12) $\operatorname{c}) \int \begin{array}{r}e^{x} \cos x \cdot d x \quad u\end{array} \quad \begin{array}{r}e^{x} \quad v=\sin x \\ u^{\prime}=e^{x} \quad v^{\prime}=\cos x\end{array}$

Letting $I=\int e^{x} \cos x \cdot d x$

$$
I=e^{x} \sin x-\int e^{x} \sin x \cdot d x \text { (1) }
$$

Taking $\int e^{x} \sin x . d x$ out of $(1): \begin{aligned} & u=e^{x} \quad v \\ & u^{\prime}=-\cos x \\ & u^{x} \quad v^{\prime}=\sin x\end{aligned}$

$$
\begin{aligned}
& =-e^{x} \cos x+\int e^{x} \cos x \cdot d x \\
& \therefore e^{x} \sin x \cdot d x=-e^{x} \cos x+I(2)
\end{aligned}
$$

Sub (2) in (1):

$$
\begin{aligned}
& I=e^{x} \sin x-\left[-e^{x} \cos x+I\right] \\
& 2 I=e^{x}[\sin x+\cos x] \\
& \therefore I=\int e^{x} \cos x \cdot d x=\frac{1}{2} e^{x}[\sin x+\cos x]+C \\
&(d)(i) \frac{d}{d x}[\cot x] \\
&=\frac{d}{d x}[(\cos x] \\
&=\frac{-\sin x+\sin x-\cos x+\cos x[B y q u o t i o x t \text { rule }]}{\sin ^{2} x} \\
&=\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x} \\
&=\frac{1}{\sin ^{2} x} \\
&=-\frac{\operatorname{cosec}^{2} x .}{}
\end{aligned}
$$

$\mathrm{PTO} \rightarrow$
$Y 1240$ Trial. 5
Q.(I2)(d) (ü)Let $I_{n}=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot ^{n} x \cdot d x$

$$
\begin{aligned}
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot ^{n-2} x \cdot \cot ^{2} x \cdot d x \\
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \cot ^{n-2} x\left(\operatorname{cosec}^{2} x-1\right) \cdot d x \\
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \cot ^{n-2} x \cdot-\operatorname{cosec}^{2} x d x-\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot ^{n-2} x \cdot d x \\
I_{n} & =-\left[\frac{\cot ^{n-1} x}{n-1}\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}-I_{n-2} \\
I_{n} & =\left[\frac{0-1}{n-1}\right]_{n-2} \quad \cos \cot \frac{\pi}{2}=0, \cot \frac{\pi}{4}=1 \cdot \cdot \cot ^{n-1}\left(\frac{\pi}{4}\right)=1^{n-1}=1 \\
& =\frac{1}{n-1}-I_{n-2}
\end{aligned}
$$

(iii) Finding I_{6}.

$$
\begin{aligned}
& I_{0}=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot x \cdot d x \\
&=\int_{\frac{\pi}{2}}^{4} 1 \cdot d x \\
&=\frac{\pi}{4} \\
& I_{2}=1-I_{0} \\
&=1-\frac{\pi}{4} \\
& \begin{aligned}
I_{4} & =\frac{1}{3}-I_{2} \\
& =\frac{1}{3}-\left(1-\frac{\pi}{4}\right) \\
& =\frac{1}{3}-1+\frac{\pi}{4} \\
& =\frac{2}{3}+\frac{\pi}{4} \\
I_{6} & =\frac{1}{5}-\frac{I}{4} \\
& =\frac{13}{3}+\frac{2}{3}-\frac{\pi}{4}
\end{aligned} \\
&=\frac{\pi}{4}
\end{aligned}
$$

(iv) Using $I_{4}=\frac{1}{3}-1+\frac{\pi}{4}$

$$
\begin{gathered}
I_{6}=\frac{1}{5}-\frac{1}{3}+1-\frac{\pi}{4} \\
I_{8}=\frac{1}{7}-\frac{1}{5}+\frac{1}{3}-1+\frac{\pi}{4} \\
I_{10}=\frac{1}{9}-\frac{1}{7}+\frac{1}{5}-\frac{1}{3}+1-\frac{\pi}{4} \\
I_{2 n+2}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots+\frac{1}{2 n+1}-\frac{\pi}{4} \\
A_{s} I_{n} \rightarrow 0 \text { as } n \rightarrow \infty \\
\lim _{n \rightarrow \infty}\left(1-\frac{1}{3}+\frac{1}{5}-\cdots+\frac{1}{2 n+1}-\frac{\pi}{4}\right)=0 \\
\therefore \operatorname{limit}_{n \rightarrow \infty}\left(1-\frac{1}{3}+\frac{1}{5}-\cdots+\frac{1}{2 n+1}\right)=\frac{\pi}{4} .
\end{gathered}
$$

12 4U Trial p. 6
Q. (13) (a) Contrapositive of "if $n^{2}+6 n$ is even, is even" is
"If n is odd, $n^{2}+6 n$ is odd"
Letting n be odd ie. $n=2 k-1$, kan integer.

$$
\begin{aligned}
& \therefore n^{2}+6 n \\
= & (2 k-1)^{2}+6(2 k-1) \\
= & 4 k^{2}+8 k-5 \\
= & 2\left[2 k^{2}+4 k-2\right]-1
\end{aligned}
$$

which is odd as $2\left(2 k^{2}+4 h-2\right)$ is even.
(b) Let $\log _{3} 11$ be rational
ie. $\log _{3} h=\frac{p}{q}, p, q$ integers.

$$
\begin{aligned}
& 3^{\frac{p}{q}}=11 \\
& 3^{p}=11 q
\end{aligned}
$$

which is not possible as both 3 llll are prime
\&am whole number can only have / set of
prime factors [fundamental theorem of arithmetic]
$\because \log _{3} / l$ is irrational.
(i) Step i: Show true for $n=1$.

$$
\begin{aligned}
\text { LASS } & \text { RMS! } \\
=3! & =12 \\
=3 & =1 .
\end{aligned}
$$

LAS $>$ RMS
True for $n=1$.
Step 2: Assume true for $n=h$
ie. $3^{k}>k^{2}$, kan integer $\geqslant 1$.
Step 3: Prove true for $n=h+1$
i.e. $3^{k+1} \geqslant(k+1)^{2}$, kan integer $\geqslant 1$.

CHS:

$$
\begin{aligned}
& 3 k+1 \quad \text { LAS: } \\
= & 3 \times 3 \\
\geqslant & 3 b^{2}[b y \text { assumption }] \\
> & 1+1)^{2}
\end{aligned}
$$

$\geq(k+1)^{2}$ [by (2) below]
\therefore If it is the for $n=h$ it will be true for $n=k+1$
true for $n=n+1$ for $n=2$ it will be
trice for $n=2+1=3$ \& so on for all positive integers, in It was also shown to bethe for $n=1$ in step
$\therefore 3 \geqslant n^{2}$ for all positive integesn.
Showing $3 k^{2} \geqslant(k+1)^{2}$
Solve $3 h^{2}-(h+1)^{2} \geqslant 0$
$2 h^{2}-2 k-1 \geqslant 0$
For $2 k^{2}-2 k-1=0, k=\frac{1+\sqrt{3}}{2}$ Cor $\left.\frac{1-\sqrt{3}}{2} \quad 3 h^{2} \geqslant(h+1)^{2}\right) k \geqslant 2$.

Yin 40 Trial p. 7

$$
\begin{aligned}
& \text { Q. (13)(d) Let } 10 x+y=17 k, k \text { an integer } \\
& \quad \therefore \quad y \\
& \therefore \quad 3 y-4 x=17 k-10 x \text { (1) } \\
& =3(17 k-10 x)-4 x \\
& =51 k-30 x-4 x \\
& =51 k-34 x \\
& =17(3-2 x) \\
& =17 L, L=3-2 x \text {, an integer as } x \text { is an integer. } \\
& \therefore 3 y-4 x \text { is also divisible by } 17 \text {. }
\end{aligned}
$$

(e)(i) If a, b real,

$$
\left(a^{2}-b\right)^{2} \geqslant 0
$$

$$
a^{2}+b^{2}-2 a b \geqslant 0
$$

$$
\begin{equation*}
a^{2}+b^{2} \geqslant 2 a b \tag{i}
\end{equation*}
$$

(ii) Using (i) above,

$$
\begin{aligned}
a^{4}+b^{4} & \geqslant 2 a^{2} b^{2} \quad d c^{4}+d d^{4} \geqslant 2 c^{2} d^{2} \\
\therefore a^{4}+b^{4}+c^{4}+d^{4} & \geqslant 2\left(a^{2} b^{2}+c^{2} d^{2}\right) \\
& \left.\geqslant 2(2 a b c d) \text { (asa } a^{2}+c^{2} d^{2} \geqslant 2 a b c d b y(c)\right] \\
& =4 a b c d .
\end{aligned}
$$

(iii) Letting $w=a^{4}, x=b^{4}, y=c^{4} \& z=d^{4}$,

$$
\begin{aligned}
& w+x+y+z \geqslant 4 \sqrt[4]{w} \times \sqrt[4]{x} \times \sqrt[4]{y} \times \sqrt[4]{z} \div 4 \\
& \frac{w+x+y+z}{4} \geqslant \sqrt[4]{w x y z}
\end{aligned}
$$

Y12 4V Trial p. 8

$$
\begin{aligned}
Q .(14)(a) & (i) p \cdot q \\
= & (i+2 j-k) \cdot(2 i-j+b) \\
= & 2-2-1 \\
= & -1 .
\end{aligned}
$$

$$
\begin{aligned}
(\vec{u}) \cos \angle P O Q & =\frac{R \cdot q}{|f||q|} \\
& =\frac{-1}{\sqrt{6} \times \sqrt{6}} \\
& =\frac{-1}{6} \\
\angle P O Q & =99^{\circ} \frac{3}{36} \text { [nearest minute]. }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\operatorname{Proj}_{R} q & =\frac{p-q}{|p|^{2}} R \\
& =-\frac{1}{6}(i+2 i-\underline{k}) .
\end{aligned}
$$

(b) (i) $(12-10)^{2}+(-6+12)^{2}+(6-14)^{2}=104$.
(ii) The line $\left(\begin{array}{c}12 \\ 6 \\ 6\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 3 \\ -4\end{array}\right)$ forms a diameter if it passes through the CENTRE of the splore (the point $\left(\begin{array}{c}10 \\ -14 \\ 14\end{array}\right)$
Showing this, $\left(\begin{array}{c}12 \\ -6 \\ 6\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 3 \\ -4\end{array}\right)=\left(\begin{array}{c}10 \\ -12 \\ 14\end{array}\right)$

$$
\begin{aligned}
12+\lambda & =10 \Rightarrow \lambda=-2 \\
-6+3 \lambda & =-12 \Rightarrow \lambda=-2 \\
6-4 \lambda & =14 \Rightarrow \lambda=-2 .
\end{aligned}
$$

Line passes through centre. By symneryy, the point of intersection. will be $\left(\begin{array}{c}8 \\ -18 \\ 22\end{array}\right)$
(iud) Cheating to see if line arrester

$$
\begin{array}{r}
\left(\begin{array}{c}
12 \\
6 \\
6
\end{array}\right)+\lambda_{1}\left(\begin{array}{c}
1 \\
3 \\
-4
\end{array}\right)=\left(\begin{array}{c}
-8 \\
12 \\
2
\end{array}\right)+\lambda_{2}\left(\begin{array}{c}
6 \\
-8 \\
5
\end{array}\right) \begin{array}{l}
12+\lambda_{1}=-8+6 \lambda_{2} \Rightarrow \lambda_{1}-6 \lambda_{2}=-20(1) \\
-6+3 \lambda_{1}=12-8 \lambda_{2} \Rightarrow 3 \lambda_{1}+8 \lambda_{2}=18(2) \\
6-4 \lambda_{1}=12+5 \lambda_{2}=-2 \lambda_{1}-5 \lambda_{2}=-4
\end{array} \\
0-4 \lambda_{1}+5 \lambda_{2}=4(3)
\end{array}
$$

Yiz 40 Trial p. 9

$$
\begin{aligned}
& \text { Using (1) \&(2) } \\
& \text { (1) } \times 3=(3) \\
& 3 \lambda_{1}+8 \lambda_{2}=18 \quad(2) \\
& 3 \lambda_{1}-18 \lambda_{2}=-60^{(3)} \\
& 26 \lambda_{2}=78 \\
& \lambda_{2}=3 \text {. } \\
& \text { Sub. } \lambda_{2}=3 \text { in } \frac{\lambda_{2}}{(1)} \\
& \lambda_{1}-18=-20 \\
& \lambda_{1}=-2 \text {. } \\
& \text { Su6. } \lambda_{1}=-2, \lambda_{2}=3,2(3) \\
& \text { to see if it woiks: } \\
& 4 x-2+5 \times 3=7 \neq 4 \text {. } \\
& \rightarrow \text { Lines don } z^{\prime} \text { intersect. } \\
& \text { If you used (i) e(3) } \\
& \text { (i) } \times 4=(5) \\
& \begin{aligned}
& 4 \lambda_{1}+5 \lambda_{2}=4(3) \\
& \frac{4 \lambda_{1}-24 \lambda_{2}}{}=-80(5) \\
& 29 \lambda_{2}=8+
\end{aligned} \\
& \lambda_{2}=\frac{84}{29}=2 \frac{26}{29} \\
& \text { Ju6. } \lambda_{2}=2 \frac{26}{29} \text { in(1). } \\
& x_{1}-6 \times 2 \frac{26}{29}=-20 \\
& \lambda_{1}=-2 \frac{18}{29} \\
& \text { Sub. } \lambda_{1}=-2 \frac{18}{29}, \lambda_{2}=2 \frac{26}{29} \\
& \text { in (2); } 3 x-2 \frac{18}{29}+8 \times 2 \frac{26}{29}=15 \frac{9}{29}+18 \\
& \rightarrow \text { Lines don } t \text { intarect. } \\
& \text { If you used (} 2 \text {) \& (3) } \\
& (2) \times 4=16)(3) \times 3=(7) \\
& 12 \lambda_{1}+32 \lambda_{2}=72(6)- \\
& 12 \lambda_{1}+\frac{15 \lambda_{2}}{17 \lambda_{2}}=12(7) \\
& \lambda_{2}=\frac{60}{17}=3 \frac{9}{17} \\
& \text { Sub. } \lambda_{2}=-3 \frac{9}{17} \text { in (3) } \\
& 4 \lambda_{1}+5 \times 3 \frac{7}{17}=4 \\
& \lambda_{1}=-\frac{53}{17}=-3 \frac{7}{17} \\
& \text { Su6. } \lambda_{1}=-3 \frac{7}{17}, \lambda_{2}=3 \frac{9}{17} \text { in (1) } \\
& \text { to see if it wods: } \\
& -3 \frac{7}{17}-6 \times 3 \frac{9}{17} \\
& =-24 \frac{10}{17} \neq-20 \\
& \rightarrow \operatorname{Lines}_{\text {interset }} \operatorname{lon}^{2} \\
& \text { intersect. }
\end{aligned}
$$

By obsevation, as $\left(\begin{array}{c}6 \\ -8 \\ 5\end{array}\right) \neq \lambda\left(\begin{array}{c}1 \\ 3 \\ -4\end{array}\right)$, direction vectors acen $\geqslant 1 /$.
\rightarrow Lines don $\frac{t}{}$ interset \& aren 411 . They are skevt.
(iv)

$$
\begin{array}{cl}
(-8+6 \lambda-10)^{2}+(12-8 \lambda+12)^{2}+(2+5 \lambda-14)^{2} & =104 \\
36(\lambda-3)^{2}+64(3-\lambda)^{2}+(5 \lambda-12)^{2} & =104 \\
\left.100(\lambda-3)^{2}+15 \lambda-12\right)^{2} & =104 \\
125 \lambda^{2}-720 \lambda+1044 & =104 \\
25 \lambda^{2}-144 \lambda+188 & =0 \\
\lambda=\frac{144 \pm \sqrt{(-144)^{2}-4 \times 25 \times 188}}{2 \times 25} & \\
\lambda=\frac{94}{25} \text { or } \lambda=2 .
\end{array}
$$

Points of intesection of line \& sphere

$$
=\left(\begin{array}{c}
-8 \\
12 \\
2
\end{array}\right)+\frac{94}{25}\left(\begin{array}{c}
6 \\
-8 \\
5
\end{array}\right)=\left(\begin{array}{c}
14 \frac{14}{25} \\
-18 \frac{2}{25} \\
20 \frac{4}{5}
\end{array}\right) \text { or }=\left(\begin{array}{c}
-8 \\
12 \\
2
\end{array}\right)+2\left(\begin{array}{c}
6 \\
-8 \\
5
\end{array}\right)=\left(\begin{array}{c}
4 \\
-4 \\
12
\end{array}\right)
$$

$(v)\left(\begin{array}{c}8 \\ 12 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}-8 \\ -8 \\ 5\end{array}\right)$ passes through $\left.\left(\begin{array}{c}10 \\ -12 \\ z\end{array}\right) \begin{array}{c}6 \lambda-8=10 \Rightarrow \lambda=3 \\ \text { (heni }-8 \lambda+12=-12-1\end{array}\right)$
So if $\lambda=3, z$ co-ordinat $e=2+5 \times 3=17$.
Point above centre of sphere line passe through is $\left(\begin{array}{c}10 \\ -12 \\ 17\end{array}\right)$

12 Ext 2 Paper p. 10
Q. $(15)(a) \rightarrow$ Stats at BOTTOM so - cos

$$
\begin{aligned}
(i) \rightarrow \text { Period }=\frac{2 \pi}{n} & =\frac{13}{-x} \text { hours. } \\
\therefore=\frac{\pi}{\pi} & =13 n \\
n & =\frac{\pi}{13}
\end{aligned}
$$

\rightarrow Centre of "motion" $=9$. Amplitude $=4$.
\therefore Oeph is $x=-4 \cos \left(\frac{\pi t}{13}\right)+9$.
(ii) Finding when $-4 \cos \left(\frac{2 \pi t}{13}\right)+9=8$.

$$
\begin{aligned}
& \cos \left(\frac{2 \pi t}{13}\right)=\frac{1}{4} \\
& \frac{2 \pi t}{13}=1 \cdot 3181 \mathrm{n} \text { or } 4.9650 \ldots \\
& t=2 \mathrm{~h} 43 \mathrm{mins} 375.0110 \mathrm{~h} 16 \mathrm{mins} 22 \mathrm{l}
\end{aligned}
$$

But to the nearest minute must be BETWEEN these tines.
So $t=9: 44 \mathrm{a} . \mathrm{m}$ - to $5: 16 \mathrm{p} \cdot \mathrm{m}$.
(b)
(i) Initial horizontal velocity:

$$
\begin{aligned}
& \begin{array}{rlrl}
\lambda & \text { Force }=5 \ddot{x} & =-\frac{5}{6} v= \\
430^{\circ} & \leftarrow & & \\
\ddot{x} & =-1 v
\end{array} \\
& { }^{y} \downarrow \| \quad \ddot{x}=-\frac{1}{6} v . \\
& -50 \frac{5}{6} v . \\
& F=m a=5 y_{y_{0}}^{\prime \prime}=-50-\frac{5}{6} v \\
& y=-10-\frac{1}{6} v .
\end{aligned}
$$

(\vec{u}) Initial \dot{x} \& \dot{y} :
$600 \mathrm{~m} / \mathrm{s} /, \dot{y}=600 \sin 30^{\circ}=300 \mathrm{~m} / \mathrm{s}$.

$$
x=600 \cos 30^{\circ}=300 \sqrt{3} \mathrm{~m} / \mathrm{s}
$$

Y/L Ext 2 pIll

$$
\begin{aligned}
Q \cdot(15)(b)(\ddot{u}) \ddot{x}=\frac{d v}{d t}(v & \left.=v_{x}\right)
\end{aligned}=\frac{-1}{6} v .
$$

As $v=300 \sqrt{3}$ when $t=0$,

$$
\begin{aligned}
0 & =-6 \ln 300 \sqrt{3}+c \\
t & =-6 \ln +2+6 \ln (300 \sqrt{3}) \\
& =-6 \ln \left(\frac{v}{300 \sqrt{3}}\right) \\
\therefore e^{-\frac{t}{6}} & =\frac{N}{300 \sqrt{3}}
\end{aligned}
$$

$$
300 \sqrt{3} e^{-\frac{t}{6}}=v_{x}
$$

$$
x=\int 300 \sqrt{3} e^{-\frac{t}{6}} d t
$$

$$
=-1800 \sqrt{3} e^{-\frac{t}{b}}+c
$$

As $x=0$ when $t=0$

$$
\begin{aligned}
& 0=-1800 \sqrt{3} e^{0}+c \\
& x=1800 \sqrt{3}\left(1-e^{-\frac{t}{6}}\right)
\end{aligned}
$$

(iv) As $t \rightarrow \infty$, $e^{-\frac{x}{6}} \rightarrow 0 \quad \& x \rightarrow 1800 \sqrt{3}$.

Limiting range $=1800 \sqrt{3} \mathrm{~m}$.

$$
\begin{aligned}
(v) \ddot{y}=\frac{d v}{d t} & =-10-\frac{1}{6} v \\
& =\frac{-(60+v)}{6 .} \\
\frac{d t}{d v} & =\frac{-6}{60+v} \\
t & =\int \frac{-6}{60+v} \cdot d v \\
& =-6 \ln (60+v)+C \\
\text { As } \dot{y} & =300 \operatorname{lh} t=0 \\
0 & =-6 \ln (60+300)+C \\
6 \ln 360 & =C
\end{aligned}
$$

Y/Z Ext. 2 p. 12.
Q.(15)(6)(V)Lcontimed):

$$
\begin{aligned}
y & =\int 360 e^{-\frac{t}{6}}-60 \cdot d t \\
& =-2160 e^{-\frac{t}{6}}-60 t+C \\
\text { As } y & =0 \text { when } t=0 \\
0 & =-2160 e^{0}-60 \times 0+C \\
2160 & =C \\
y & =-2160 e^{-\frac{t}{6}}-60 t+2160 .
\end{aligned}
$$

(vi) Maximum height: Is y when $y=0$

$$
\begin{aligned}
360 e^{-\frac{t}{6}}-60 & =0 \\
e^{-\frac{t}{6}} & =\frac{1}{6} \\
\&-\frac{t}{6} & =\ln \left(\frac{1}{6}\right) \\
t & =-6 \ln \left(\frac{1}{6}\right) \\
& =6 \ln 6 .
\end{aligned}
$$

$$
\begin{aligned}
\text { Max. height } & =-2160^{e-\ln 6}-60 \times 6 \ln 6+2160 \\
& =1154 \cdot 966 \mathrm{~m} .
\end{aligned}
$$

So the maximum height the projectile readers is approx. 1155 m aftr. 10.75 ... second.

Y/2 Ext 2 p. 13

$$
\begin{aligned}
& \text { Q. }(16)(a)(i) \quad \underset{g}{\square}{\underset{K V}{2}}^{L_{2}} \\
& \ddot{x}=v \cdot \frac{d v}{d x}=-g-k v^{2} \text {. } \\
& \frac{d x}{d x}=\frac{-q-b u^{2}}{v} \\
& \frac{d x}{d v}=\frac{-v}{g+k v^{2}} \text {. } \\
& x=\frac{1}{2 k} \int \frac{2 h v}{9+k v^{2}} d v \\
& x=\frac{-1}{2 k} \ln \left(g+h v^{2}\right)+c \\
& \text { As } x=0 \text { when } v=0 \text {, } \\
& \begin{array}{l}
\text { As } x=0 \text { when } \\
0=-\frac{1}{2 k} \ln \left(9+k u^{2}\right)+c
\end{array} \\
& \begin{aligned}
\frac{1}{2 k} \ln \left(g+k v^{2}\right) & =c \\
x & =-\frac{1}{2 k} \ln \left(g+k v^{2}\right)+\frac{1}{2 k} \ln \left(g+k v^{2}\right)
\end{aligned} \\
& x=\frac{1}{2 k} \ln \left(\frac{g+k v^{2}}{g+k v^{2}}\right) \text {. }
\end{aligned}
$$

(ii) Maximum height reachal $v=0$

$$
\begin{aligned}
& x=\frac{1}{2 k} \ln \left(\frac{g+b v^{2}}{9}\right) \\
& x=\frac{1}{2 k} \ln \left(1+\frac{k v^{2}}{9}\right)
\end{aligned}
$$

(iii) $\quad \begin{aligned} \frac{1}{g} \quad \text { Going down: } \ddot{x} & =g-k v^{2} \\ v . d v & =g-k v^{2}\end{aligned}$

$$
\begin{aligned}
& \begin{aligned}
\frac{g}{2} & v \cdot \frac{d v}{d x}
\end{aligned}=g-k v^{2} \text { ? } \\
& \frac{d x}{d x}=\frac{g-\nu_{v}^{2}}{v} \\
& \frac{d x}{d v}=\frac{v}{9-k v^{2}} \\
& x=-\frac{1}{2 k} \int \frac{2 h v}{g-h v^{2}} \cdot d v \\
& x=-\frac{1}{2 k} \ln \left(g-h v^{2}\right)+c
\end{aligned}
$$

As projectile is falling from rest, $0=-\frac{1}{2 k} \ln g+C \Rightarrow C=\frac{1}{2 k} \ln g$

$$
x=\frac{1}{2 k} \ln \left(\frac{g}{g-k v^{2}}\right)^{2 k}
$$

Y/2 Ext. 2 p. 14
Q. (16)(a)(iv) $T=$ terminal velocity [when $\ddot{x}=0$].

$$
\begin{array}{r}
g-k v^{2}=0 \\
v^{2}=\frac{g}{2} \\
v=\sqrt{\frac{g}{2}} \\
\therefore T=\sqrt{\frac{g}{2}}
\end{array}
$$

W is impart velocity \rightarrow velocity when projectile hits the ground, which is where $x=\frac{1}{2 k} \ln \left(1+\frac{k u^{2}}{g}\right)$

$$
\text { So } \begin{aligned}
& \frac{1}{2 k} \ln \left(\frac{g}{g-k w^{2}}\right)=\frac{1}{2 k} \ln \left(1+\frac{k u^{2}}{g}\right) \\
& \frac{g}{g-k w^{2}}=1+\frac{k u^{2}}{2} \\
& \times g\left(g-k w^{2} g^{2}\right. \\
&-g^{2}+g k w^{2}-g^{2}-g v^{2}+k v^{2}+v^{2} u^{2} w^{2}-k^{2} u^{2} w^{2} \\
& g^{k} w^{2}+k^{2} u^{2} w^{2}=k v^{2} \\
& \frac{1}{u^{2}}+\frac{k}{g} \div 85 b u g w^{2} u^{2} \\
&=\frac{1}{w^{2}}
\end{aligned}
$$

As T [Terminal Velocity $]=\sqrt{\frac{g}{k}}, \frac{1}{T^{2}}=\frac{6}{9}$.

$$
\therefore \frac{1}{u^{2}}+\frac{1}{T^{2}}=\frac{1}{w^{2}} \quad Q \in 0 .
$$

(b)(i) $z^{5}-1=0$

$$
z^{-1}=\operatorname{cis} \frac{2 \pi}{5}, \operatorname{cis} \frac{4 \pi}{5}, \operatorname{cis} \frac{6 \pi}{5}, \operatorname{cis} \frac{8 \pi}{5}, 1 \text {. }
$$

(ii) w is cis $\frac{2 \pi}{5}$ [root with smallest positive agumat].

Other roots $=\omega^{2}$ (cis $\frac{4 \pi}{5}, \omega^{3}$ (cis $\left.\frac{6 \pi}{5}\right), \omega^{4}$ (ii $\left.\frac{8 \pi}{5}\right) \mathrm{L} 1$.
\therefore By sum of roots of $z^{5}-1=0,1+w+w^{2}+\omega^{3}+w^{4}=0$

$$
\begin{aligned}
& w+w^{2}+w^{3}+w^{4}=-1 . \\
& \text { As } \frac{w^{4}}{w^{5}}=\frac{\omega^{4}}{1}=\frac{1}{w} \& \frac{w^{3}}{w^{3}}=\frac{\omega^{3}}{1}=\frac{\omega^{2}, \omega+\omega^{4}+\omega^{2}+\omega^{3}}{\left(w+\frac{1}{\omega}\right)+\left(w^{2}+\frac{1}{\omega^{2}}\right)=-1 .}
\end{aligned}
$$

Y12 Ext. 2 p. 15

$$
\begin{aligned}
& \text { Q. }(16)(b)(\ddot{i}) \text { As } \omega+\frac{1}{\omega}=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}+\cos \left(\frac{-2 \pi}{5}\right)+i \operatorname{iin}\left(\frac{-2 \pi}{3}\right) \\
& =\cos \frac{2 \pi}{5}+\operatorname{tin} \frac{2 \pi}{5}+\cos \frac{2 \pi}{5}-i \sin \frac{2 \pi}{5} \\
& =2 \cos \frac{2 \pi}{5} \operatorname{Cascoseven} \text {, } \sin \text { odd } \text {. } \\
& \text { \& similarly } \omega^{2}+\frac{1}{\omega^{2}}=2 \cos \frac{4 \pi}{5} \\
& 2 \cos \frac{2 \pi}{5}+2 \cos \frac{4 \pi}{5}=-1 \text {. }
\end{aligned}
$$

Given that $\cos \frac{4 \pi}{5}=2 \cos ^{2}\left(\frac{2 \pi}{3}\right)-1\left[b y \cos 2 \theta=2 \cos ^{2} \theta-1\right]$,

$$
\begin{aligned}
& 2 \cos \frac{2 \pi}{5}+4 \cos \frac{2 \pi}{5}-2=-1 . \\
& 4 \cos ^{2} \frac{2 \pi}{5}+2 \cos \frac{2 \pi}{5}-1=0 .
\end{aligned}
$$

Hence $\cos \frac{2 \pi}{5}$ is a root of $4 x^{2}+2 x-1=0$
(iv) Solving $4 x^{2}+2 x-1=0$

$$
\begin{aligned}
x & =\frac{-2 \pm \sqrt{2^{2}-4 x 4 x-1}}{2 \times 4} \\
& =-2 \pm \sqrt{20} \\
& =\frac{-2 \pm 2 \sqrt{5}}{8} \\
& =\frac{-1 \pm \sqrt{5}}{4}
\end{aligned}
$$

As $\frac{2 \pi}{5}$ is in $Q_{1}, \cos \frac{2 \pi}{5}$ is positive.

$$
\therefore \cos \frac{2 \pi}{5}=\frac{-1+\sqrt{5}}{4}
$$

END OF SOLUTIONS:

