\qquad

2014

Mathematics Extension 2 Trial HSC Exam

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen. Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

pages $2-5$

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II
 pages $6-16$

90 marks

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Which of the following is equivalent to

$$
\int x \sec ^{2}\left(x^{2}\right) d x
$$

(A) $2 \tan \left(x^{2}\right)+C$
(B) $\frac{1}{2} \tan \left(x^{2}\right)+C$
(C) $\frac{1}{3} \tan \left(x^{2}\right)+C$
(D) $3 \tan \left(x^{2}\right)+C$

2 From the graph of $y=f^{\prime}(x)$ drawn, which could be the equation of $y=f(x)$

(A) $(x-6)(x-2)^{3}$
(B) $(x+6)(x-2)^{3}$
(C) $(x-6)(x+2)^{3}$
(D) $(x+6)(x+2)^{3}$

3 The $\sqrt{-3+4 i}$ is
(A) $2+i$
(B) $1+2 i$
(C) $2-i$
(D) $1-2 i$

4 A conic section has foci $S=(3,0)$ and $S^{\prime}=(-3,0)$ and vertices $(2,0)$ and $(-2,0)$.
The equation of the conic is
(A) $\frac{x^{2}}{5}+\frac{y}{4}=1$
(B) $\frac{x^{2}}{4}+\frac{y^{2}}{5}=1$
(C) $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
(D) $\frac{x^{2}}{5}-\frac{y^{2}}{4}=1$

5 For the function $g(x)=\tan ^{-1}\left(e^{x}\right)$ the range is
(A) $0 \leq y \leq \frac{\pi}{2}$
(B) $0 \leq y<\frac{\pi}{2}$
(C) $0<y \leq \frac{\pi}{2}$
(D) $0<y<\frac{\pi}{2}$

6 If $e^{x}+e^{y}=1$, which of the following is an expression for $\frac{d y}{d x}$?
(A) $-e^{x-y}$
(B) e^{x-y}
(C) e^{y-x}
(D) $-e^{y-x}$

7 The polynomial $P(x)=x^{4}+a x^{2}+b x+28$ has a double root at $x=2$.
What are the values of a and b ?
(A) $a=-11$ and $b=-12$
(B) $a=-5$ and $b=-12$
(C) $a=-11$ and $b=12$
(D) $a=-5$ and $b=12$

8 If ω is a non-real sixth root of -1 and ϕ is a non-real fifth root of 1 consider the following two statements:
(I)

$$
1-\omega+\omega^{2}-\omega^{3}+\omega^{4}-\omega^{5}=0
$$

$$
\begin{equation*}
1+\phi+\phi^{2}+\phi^{3}+\phi^{4}=0 \tag{II}
\end{equation*}
$$

(A) Both (I) and (II) are correct
(B) Only (I) is correct
(C) Only (II) is correct
(D) Neither is correct

9 Which of the following best represents the graph of $g(x)=x \tan x$
(A)

(C)

(D)

10 Without evaluating the integrals, which one of the following integrals is greater than zero?
(A) $\int_{-1}^{1}-e^{x} d x$
(B) $\int_{-1}^{1} \frac{\sin ^{-1} x}{x^{2}+1} d x$
(C) $\int_{-1}^{1} \frac{\tan ^{-1} x}{\cos x} d x$
(D) $\int_{-1}^{1} e^{-x^{2}} d x$

Section II

90 marks
 Attempt Questions 11-16
 Allow about $\mathbf{2}$ hours and $\mathbf{4 5}$ minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) For the complex numbers $z=1+i$ and $w=2-3 i$ find:
(i) $\bar{Z}-w$
(ii) $Z W$
(iii) Write z in modulus-argument form
(b) Show that $z=\sqrt{2} \operatorname{cis}\left(\frac{\pi}{3}\right)$ is a solution of the equation

$$
z^{8}-8 z^{2}=0
$$

(c) Find all real roots of the polynomial

$$
P(x)=x^{4}-x^{3}-4 x^{2}-2 x-12
$$ given that one root is $\sqrt{2} i$.

Question 11 continues on page 7

(d) Sketch the locus of z where the following conditions hold simultaneously

$$
0 \leq \arg (z-i) \leq \frac{2 \pi}{3} \text { and }|z-i| \leq 2
$$

(e) In an Argand diagram the points P, Q and R represent complex numbers z_{1}, z_{2} and $z_{2}+i\left(z_{2}-z_{1}\right)$ respectively.
(i) Show that $P Q R$ is a right-angled isosceles triangle
(ii) Find in terms of z_{1} and z_{2} the complex number represented 1 by the point S such that $P Q R S$ is a square.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) By completing the square find

$$
\int \frac{1}{\sqrt{2-\left(x^{2}+4 x\right)}} d x
$$

(b) Find

$$
\int \frac{\sin ^{3} x}{\cos ^{2} x} d x
$$

(c) Use the substitution $t=\tan \left(\frac{x}{2}\right)$ to evaluate

$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{\cos x+\sin x+1}
$$

(d) (i) Find the values of A, B, C and D such that

$$
\frac{5 x^{3}-3 x^{2}+2 x-1}{x^{4}+x^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+1}
$$

(ii) Hence find

$$
\int \frac{5 x^{3}-3 x^{2}+2 x-1}{x^{4}+x^{2}} d x
$$

(e) Evaluate

$$
\int_{1}^{e} \frac{\ln x}{\sqrt{x}} d x
$$

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Use the substitution $x=t-y$ where t is a constant to show

$$
\int_{0}^{t} f(x) d x=\int_{0}^{t} f(t-x) d x
$$

(ii) Hence, evaluate

$$
\int_{0}^{1} x(1-x)^{2014} d x
$$

(b)

(i) Prove that the equation of the tangent to the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

at the point $P(a \cos \theta, b \sin \theta)$ is

$$
(b \cos \theta) x+(a \sin \theta) y-a b=0
$$

(ii) $\quad Q$ and R are the feet of the perpendiculars to the tangent from the foci S and S^{\prime} respectively Prove that $S Q \times S^{\prime} R=b^{2}$

Question 13 continues on page 10

(c) As shown in the diagram below T_{1} and T_{2} are two points on the rectangular hyperbola $x y=c^{2}$ with parameters t_{1} and t_{2} respectively and T is a third point on it with parameter t such that $\angle T_{1} T T_{2}$ is a right angle

(i) Show that gradient of $T_{1} T$ is $-\frac{1}{t_{1} t}$ and deduce that since $\angle T_{1} T T_{2}$ is a right angle then $t^{2}=-\frac{1}{t_{1} t_{2}}$
(ii) Write down the gradient of $T_{1} T_{2}$
(iii) Hence, prove that $T_{1} T_{2}$ is parallel to the normal at T

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) α, β and γ are the roots of the equation

$$
x^{3}-6 x^{2}+12 x-35=0
$$

Form a cubic equation whose roots are $\alpha-2, \beta-2$ and $\gamma-2$
(b) By taking slices perpendicular to the axis of rotation find the volume of the solid generated by rotating the region bounded by the curve $y=(x-2)^{2}$ and the line $y=x$ about the x-axis
(c) The base of a solid is the region in the $x y$ plane enclosed by the curves $y=x^{4}, y=-x^{4}$ and the line $x=2$. Each cross-section perpendicular to the x-axis is an equilateral triangle

(i) Show that the area of the triangular cross-section at $x=h$ is $\sqrt{3} h^{8}$
(ii) Hence, find the volume of the solid
(d)

The region bounded by the parabola $y^{2}=4 x$ and the line $x=2$ is rotated about the line $x=6$.
Using the method of cylindrical shells, find the volume of the solid formed.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) This is the graph of $y=f(x)$:

On the separate graph answer sheet, sketch:
(i) $\quad y=(f(x))^{2}$
(ii) $y=\sqrt{f(x)}$
(iii) $y=\frac{1}{f(x)}$
(b) A particle of mass m is projected vertically upwards under gravity, the air resistance to the motion being $\frac{m g v^{2}}{k^{2}}$, where the speed is v, and k is a constant
(i) Show that during the upward motion of the ball

$$
\ddot{x}=-\frac{g}{k^{2}}\left(k^{2}+v^{2}\right)
$$

where x is the upward displacement.
(ii) Hence, show that the greatest height reached is

$$
\frac{k^{2}}{2 g} \ln \left(1+\frac{u^{2}}{k^{2}}\right)
$$

where u is the speed of projection
(c) An object is to undergo vertical motion on a bungee cord in a vacuum so that air resistance can be neglected. The only forces it experiences are gravity, $m g$ and an elastic force, $-k m x$, where x is the particle's displacement from the origin. Initially, the object is at its lowest point given by $x=-a$. All constants are positive.
(i) Using a force diagram show that

$$
\ddot{x}=-g-k x
$$

(ii) By integration show that

$$
v^{2}=k\left(\left(a-\frac{g}{k}\right)^{2}-\left(x+\frac{g}{k}\right)^{2}\right)
$$

(iii) Show that the motion is described by

$$
x=\left(\frac{g}{k}-a\right) \cos (\sqrt{k} t)-\frac{g}{k}
$$

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Let

$$
I_{n}=\int_{0}^{1} x^{n} e^{-x} d x
$$

Prove that for $n \geq 1$

$$
I_{n}=n I_{n-1}-\frac{1}{e}
$$

(b) Use the binomial theorem to find the term independent of x in the expansion

$$
\left((x+1)+x^{-1}\right)^{4}
$$

(c) Find the cartesian equation of the locus of w where $w=\frac{z}{z+2}$ is purely $\quad \mathbf{2}$ imaginary.

Question 16 continues on page 16

(d) (i) Use de Moivre's theorem to show that
$\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$
(ii) Deduce that $8 x^{3}-6 x-1=0$ has solutions $x=\cos \theta$, where $\cos 3 \theta=\frac{1}{2}$
(iii) Find the roots of $8 x^{3}-6 x-1=0$ in the form $\cos \theta$
(iv) Hence, evaluate $\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}$

End of paper

2014 Ext 2 Trial

1) $\int x \sec ^{2}\left(x^{2}\right) d x=\frac{1}{\frac{1}{2}} \int \frac{2 x \sec ^{2}\left(x^{2}\right) d x}{\tan x^{2}+c}$

$$
=\frac{1}{2} \tan x^{2}+c
$$

2) $f(x)$ hos a double root (0) $x=-2$ औ se f has a triple root
Since f iv incensing to right of stat pt $e x=4$
3)

$$
\begin{align*}
\sqrt{-3+4 i} & =\sqrt{1+4 i-4} \\
& =\sqrt{\frac{1+4 i+4 i^{2}}{(1+2 i)^{2}}} \\
& =\sqrt{1+}
\end{align*}
$$

4) Must be ex Aperbola.

$$
\begin{aligned}
& s=(a e)^{0} \quad \therefore e=\frac{3}{2} \\
& b^{2}=2^{2}\left(\frac{(y)}{}\right)^{-1} \quad \therefore \frac{x^{2}}{4}-y^{2}=1
\end{aligned}
$$

5) $0<y<\pi / 2$
6) $e^{x}+e^{y} \times \frac{d y}{d x}=0$

$$
\begin{aligned}
\frac{d x}{d x} & =-\frac{e^{x}}{e^{x}} \\
& =-e^{2-y}
\end{aligned}
$$

A
7)

$$
\begin{align*}
P(2) & =0=16+4 a+2 b+28 \\
P(x) & =4 x+2 a x+b \\
P^{\prime}(2) & =32+4 a+b=0 \\
b & =-12 \tag{Y}\\
a & =-5
\end{align*}
$$

8).

$$
\begin{aligned}
& \quad \omega^{6}+1=0 \\
& \therefore(\omega+1)\left(\omega^{5}-u^{4}+\omega^{3}-\omega^{2}+w-1\right) \text { doesit work for even power } \\
& \phi^{5}-1=0 \\
& \therefore(\phi-1)\left(\phi^{4}+\phi^{3}+\phi^{2}+\phi^{1}+1\right)=0 \\
& \therefore O_{n} l y \text { II }
\end{aligned}
$$

9) $g(-2)=x \tan x$ posse through origin
(0) D is even and $f(x)$ is always tue

$$
\therefore D
$$

Question 11
a) i)

$$
\begin{aligned}
\bar{z}-\omega & =1-i-(2-3 i) \\
& =1-i-2+3 i \\
& =-1+2 i
\end{aligned}
$$

ii)

$$
\begin{aligned}
z w & =(1+i)(2-3 i) \\
& =2-3 i+2 i-3 i^{2} \\
& =5-i
\end{aligned}
$$

iii) $\quad|z|=\sqrt{2} \quad \arg (z)=\pi / 4$

$$
\begin{aligned}
& =\sqrt{2} \quad a r \\
& z=\sqrt{2} \operatorname{cis}\left(\frac{\pi}{4}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
\text { hHS } & =\left(\sqrt{2} \text { cis }\left(\frac{\pi}{3}\right)\right)^{8}-8(\sqrt{2} \text { cis (I) } \\
& =16 \text { cis } \frac{8 \pi}{3}-16 \text { cis } \frac{2 \pi}{3} \\
& =16 \text { cis } \frac{2 \pi}{3}-16 \text { is } \frac{2 \pi}{3} \\
& =0 \\
& =\text { RMS }
\end{aligned}
$$

c) Since one root is $\sqrt{2}$: another is $-\sqrt{2}$ i let other two roots be α, β

$$
\begin{array}{r}
\alpha+\beta+\sqrt{2} i+\sqrt{2} i=1 \\
\alpha+\beta=1 \\
\alpha \beta \times \sqrt{2} i \times-\sqrt{2} i=-12 \\
\alpha \beta=-6
\end{array}
$$

$\therefore \alpha=3$ and $\beta=-2$ are the other roots
\therefore real roots ave 3 and -2
d)

e)i)

$$
\begin{aligned}
\overrightarrow{P Q} & =z_{2}-z_{1} \\
\overrightarrow{Q R} & =z_{2}+i\left(z_{2}-z_{1}\right)-z_{2} \\
& =i\left(z_{2}-z_{1}\right)
\end{aligned}
$$

Since multiplication by i rotates through 90°
\& doesnt charge modulus
$P Q$ is perpendicullor to $Q R$ \& equal in length
ii)

$$
\begin{aligned}
\overrightarrow{O S} & =\overrightarrow{O P}+\overrightarrow{Q R} \\
& =z_{1}+z_{2}-z_{2}+i\left(z_{2}-z_{1}\right) \\
& =z_{1}+i\left(z_{2}-z_{1}\right)
\end{aligned}
$$

Question 12
a)

$$
\begin{aligned}
\int \frac{d x}{\sqrt{6-\left(x^{2}+4 x+4\right)}} & =\int \frac{d x}{\sqrt{6-(x+2)^{2}}} \\
& =\sin ^{-1}\left(\frac{x+2}{\sqrt{6}}\right)+C
\end{aligned}
$$

b) $\int \frac{\sin ^{2} x}{\cos ^{2} x} \times \sin x d x=\int \frac{\left(1-\cos ^{2} x\right) \sin x}{\cos ^{2} x} d x$

$$
\begin{aligned}
& =\int \frac{\sin x}{\cos ^{2} x}-\frac{\cos ^{2} x \sin x}{\cos ^{2} x} d x \\
& =\int \sec x \tan x-\sin x d x
\end{aligned}
$$

b. Std Integrals $=\sec x+\cos x+c$
c) $\int_{0}^{1} \frac{2 d t}{\left(1+t^{2}\right) \pi\left(\frac{1+t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}+1}\right)}$

$$
\begin{aligned}
& t=\tan \left(\frac{x}{2}\right) \\
& \frac{d t}{d x}=\frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right)
\end{aligned}
$$

$$
=\int_{0}^{1} \frac{2 d t}{1-t^{2}+2 t+1+t^{2}}
$$

$$
=\int_{0}^{1} \frac{2 d t}{2+2 t}
$$

$$
=[\ln (2+2 t)]_{0}^{1}
$$

$$
\text { when } x=\frac{\pi}{2} \quad t=1
$$

$$
x=0 \quad t=0
$$

$$
=\ln 4-\ln 2
$$

$$
=\ln 2
$$

di) $\quad 5 x^{3}-3 x^{2}+2 x-1=A x^{x}\left(x^{2}+1\right)+B\left(x^{2}+1\right)+\left((x+D) x^{2}\right.$
let $x=0 \quad-1=B$

$$
\begin{aligned}
& =A x^{3}+A x-x^{2}-1+C x^{3}+D x^{-2} \\
& =(A+C) x^{3}+(D-1) x^{2}+A x-1
\end{aligned}
$$

byequating cots.

$$
\begin{aligned}
& A=2 \\
& D \cdot 1=-3 \Rightarrow D=-2 \\
& C=3
\end{aligned}
$$

ii)

$$
\begin{aligned}
\int \frac{5 x^{3}-3 x^{2}+2 x-1}{x^{4}+x^{2}} d x & =\int \frac{2}{x}-\frac{1}{x^{2}}+\frac{3 x-2}{x^{2}+1} d x \\
& =\int \frac{2}{x}-\frac{1}{x^{2}}+\frac{3 x}{x^{2}+1}-\frac{2}{x^{2}+1} d x \\
& =2 \ln x+\frac{3}{2} \ln \left(x^{2}+1\right)-2 \tan ^{-1} x+C
\end{aligned}
$$

e)

$$
\begin{array}{rlrl}
V_{1}^{e} \frac{\ln x}{\sqrt{x}} d x & =e^{e} \quad u=\ln x & V^{1}=x^{-1 / 2} \\
& =\left.2 \sqrt{x} \ln x\right|_{1} ^{e}-V_{1}^{2} x^{-1 / 2} d x & V=2 x^{1 / 2} \\
& =2 \sqrt{e} \ln e-2 \ln 1-2\left[2 x^{1 / 2}\right]_{1}^{e} & \\
& =2 \sqrt{e}-2(2 \sqrt{e}-2) & \\
& =2 \sqrt{e}-4 \sqrt{e}+4 & & \\
& =4-2 \sqrt{e} &
\end{array}
$$

Question 13
ai)

$$
\begin{aligned}
& \int^{t} f(x) d x=\int_{1}^{0} f(t-y) x-d y \quad \frac{d x}{d y}=-1 y \\
& \begin{array}{l}
\frac{d x}{d y}=-1 \\
d x=-2 y
\end{array} \\
& =-\int_{-}^{0} f(t-y) d y \text { when } x=t \quad y=0 \\
& =\int_{0}^{+} f(t-y) d y
\end{aligned}
$$

since y is just a dummy variable

$$
=\int_{0}^{t} f(t-x) d x
$$

ii) $\int_{0}^{1} x(1-x)^{2014} d x=\int_{0}^{1}(1-x) x^{2014} d x$

$$
\begin{aligned}
& =\int_{0}^{1} x^{2014}-x^{2015} d x \\
& =\left[\frac{1}{2015} x^{2015}-\frac{1}{2016} x^{2016}\right]_{0}^{1} \\
& =\frac{1}{2015} \times 1-\frac{1}{2016} \times 1-(0) \\
& =\frac{1}{4062240}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& \text { i) } \begin{aligned}
\frac{d x}{d x}=a \cos \theta & y=b \sin \theta \\
\frac{d \theta}{d \theta} & =-a \sin \theta \\
\frac{d y}{d x} & =\frac{d y}{d \theta} \times \frac{d \theta}{d x} \\
& =\frac{b \cos \theta}{-a \sin \theta}
\end{aligned} \\
&=b \cos \theta \\
&-a y \sin \theta+a b \sin ^{-a \sin \theta}(x-a \cos \theta)=\left(b \cos \theta x-a b \cos ^{2} \theta\right. \\
& 0=(b \cos \theta) x+(a \sin \theta) y-a b\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
&=(b \cos \theta) x+(a \sin \theta) y-a b
\end{aligned}
$$

ii) $S=(a c, 0) \quad S=(-a c, 0)$

$$
\begin{aligned}
Q S & =\left|\frac{a b e \cos \theta-a b}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\right| \quad R S^{\prime}=\left|\frac{-a b e \cos \theta-a b}{\sqrt{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}\right| \\
S Q \times S^{\prime} R & \left.=\frac{|a b(\cos \theta-1)| A|-a b(e \cos \theta+1)|}{b^{2} \cos ^{2}\left(\theta+a^{2} \sin ^{2} \theta\right.} \right\rvert\, \\
& =\frac{\left|-a^{2} b^{2}\left(e^{2} \cos ^{2} \theta-1\right)\right|}{b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}
\end{aligned}
$$

for an ellipse

$$
\begin{aligned}
& b^{2}=a^{2}\left(1-e^{2}\right) \\
&=\frac{\left|-a^{2} b^{2}\left(e^{2} \cos ^{2} \theta-1\right)\right|}{a^{2}\left(1-e^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right.} \\
&=\frac{\mid-a^{2} b^{2}\left(e^{2} \cos ^{2} \theta-1\right)}{a^{2} b^{2}-e^{2} c^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta} \\
&=\frac{\mid-a^{2} b^{2}\left(e^{2} \cos ^{2} \theta-1\right)}{a^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)-a^{2} e^{2} \cos ^{2} \theta} \\
&=\frac{\mid a^{2} b^{2}\left(1-e^{2} \cos ^{2} \theta\right)}{a^{2}\left(1-e^{2} \cos ^{2} \theta\right)} \\
&=b^{2}
\end{aligned}
$$

c) ii

$$
T_{1}=\left(c t_{1}, \frac{c}{t_{1}}\right)
$$

$$
m_{T_{T} T}=\frac{\frac{c}{t}-\frac{c}{t_{1}}}{c t-c t_{1}}
$$

$$
=\frac{c t_{1}-c t}{t_{1} t}
$$

$$
=\frac{-c\left(t-t_{1}\right)}{t, t} \div \frac{c\left(t-t_{1}\right)}{1}
$$

Slope for $T T_{2}=-\frac{1}{t_{2} t}$

$$
=-\frac{1}{t_{1} t}
$$

Since perpendicular

$$
\begin{aligned}
-\frac{1}{t_{2}+} \times-\frac{t}{t_{1} t} & =-1 \\
\frac{1}{t_{1} t_{2} t^{2}} & =-1 \\
t^{2} & =-\frac{1}{t_{1} t_{2}}
\end{aligned}
$$

ii)

$$
m_{T_{1} T_{2}}=-\frac{1}{t_{1} t_{2}}
$$

Ti)

$$
\begin{gathered}
y=\frac{c^{2}}{x} \\
\frac{d y}{d x}=-\frac{c^{2}}{x^{2}}
\end{gathered}
$$

@ $\frac{d x}{l}$ slope is $\frac{x^{2}}{(c t)^{2}}=-\frac{1}{t^{2}}$
\therefore Normal Las slope t^{2}
From i) $t^{2}=-\frac{1}{t_{1} t_{2}}$
\therefore normal parallel to $T_{2} T_{1}$

Question 14
a) let $x=2-2$

$$
\begin{aligned}
& 2=x+2 \\
& (x+2)^{3}-6(x+2)^{2}+12(x+2)-35=0 \\
& x^{3}+6 x^{2}+12 x+8-6 x^{2}-24 x-24+12 x+24-35=0 \\
& x^{3}-27=0
\end{aligned}
$$

$$
\begin{aligned}
& (x-2)^{2}=x \\
& x^{2}-4 x+4=x \\
& x^{2}-5 x+4=0 \\
& (x-4)(x-1)=0 \\
& x=1 \text { or } 4
\end{aligned}
$$

an element of volume is

$$
\begin{aligned}
\Delta v & =\pi\left(y_{1}^{2}-y_{2}^{2}\right) \delta_{2} x \quad y_{1}=x \quad y_{2}=(x-2)^{2} \\
& =\pi\left(x^{2}-(x-2)^{4}\right) \delta x \\
V & =\lim _{x \rightarrow 0} \sum_{x=1}^{4} \pi\left(x^{2}-x^{2}\right. \\
& =\pi \int_{1}^{4} 4 x-4 x \\
& =\pi \cdot\left[2 x^{2}-4 x\right]_{1}^{4} \\
& =\pi(32-16-(2-4)] \\
& =\pi
\end{aligned}
$$

c) il
@ $x=1$

$$
y=h^{4}
$$

length of all sides $2 h^{4}$

$$
\begin{aligned}
&\left(2 h^{4}\right)^{2}=x^{2}+\left(h^{4}\right)^{2} \\
& 4 h^{8}=x^{2}+h^{8} \\
& x^{2}=3 h^{8} \\
& x=\sqrt{3} h^{4} \\
& \text { Area }= \frac{1}{2} \times 2 h^{4} \times \sqrt{3} h^{4} \\
&=\sqrt{3} h^{8}
\end{aligned}
$$

ii) $V=\int_{0}^{2} \sqrt{3} x^{8} d x$

$$
\begin{aligned}
& =\sqrt{3}\left[\frac{x^{9}}{9}\right]_{0}^{2} \\
& =\frac{512 \sqrt{3}}{9}
\end{aligned}
$$

(y_{i}
An element of volume is

$$
\begin{aligned}
\partial V & =2 \pi \cos 2 \pi(6-x) \times \delta x \\
& =8 \pi \sqrt{x}(6-x) \delta x
\end{aligned}
$$

(i)

$$
\begin{aligned}
V & =\lim _{\delta x \rightarrow 0} \sum_{x=0}^{2} 8 \pi \sqrt{x}(6-x) \delta x \\
& =8_{\pi} \int_{0}^{2} \sqrt{x}(6-x) d x
\end{aligned}
$$

iii)

$$
\begin{aligned}
V & =8 \pi \int_{0}^{2} 6 x^{1 / 2}-x^{3 / 2} d x \\
& =8 \pi\left[4 x^{3 / 2}-\frac{2}{5} x^{5 / 2}\right]_{0}^{2} \\
& =8 \pi\left(8 \sqrt{2}-\frac{8 \sqrt{2}}{5}-(0)\right) \\
& =\frac{256 \sqrt{2} \pi}{5}
\end{aligned}
$$

Question 15 a
Answer Sheet
Insert into question 15 answer booklet
(i) $y=(f(x))^{2}$

(ii) $y=\sqrt{f(x)}$

(iii) $y=\frac{1}{f(x)}$

Qn楼 15
b) il

$$
F=-m g-\frac{m g v^{2}}{R^{2}}
$$

$\frac{-m v^{2}}{k^{2}} v^{0} \downarrow-m g \ddot{x}=-m g\left(\frac{k^{2}}{k^{2}+v^{2}} k^{k^{2}}\right)$

$$
=-\frac{m g}{k^{2}}\left(k^{2}+v^{2}\right)
$$

ii)

$$
\begin{gathered}
v \frac{d g}{x}=-\frac{\cdots g}{k^{2}}\left(k^{2}+v^{2}\right) \\
\frac{1}{2} \times \frac{2 v}{k^{2}+v^{2}} d v=-\frac{m g}{k^{2}} d x \\
\frac{1}{2} \ln \left(k^{2}+v^{2}\right)=-\frac{m g}{k^{2}} x+C
\end{gathered}
$$

(a) $\quad x=0 \quad v=u$

$$
\frac{1}{2} \ln \left(k^{2}+u^{2}\right)=c
$$

max Leight when $v=0$

$$
\begin{aligned}
\frac{1}{2} \ln \left(k^{2}\right) & =-\frac{g}{b^{2}} x+\frac{1}{2} \ln \left(k^{2}+u^{2}\right) \\
\frac{g}{k^{2}} x & =\frac{1}{2}\left(\ln \left(k^{2}+u^{2}\right)-\ln k^{2}\right) \\
x & =\frac{k^{2}}{2 g} \ln \left(\frac{k^{2}+u^{2}}{k^{2}}\right) \\
& =\frac{k^{2}}{2 g} \ln \left(1+\frac{u^{2}}{k^{2}}\right)
\end{aligned}
$$

c ${ }^{2}$

$$
\begin{aligned}
& F=-m g-k m x \\
& m \dot{x}=-m g-k m x \\
& m \tilde{x}=m(-g-k x) \\
& \dot{x}=-g-k x
\end{aligned}
$$

ii)

$$
\begin{aligned}
& u \frac{d v}{d x}=-g-k x \\
& \frac{1}{2} v^{2}=-g x-\frac{k}{2} x^{2}+c \\
& -a \quad v=0
\end{aligned}
$$

$$
\begin{aligned}
x & =-a \\
& \theta=a g-\frac{a^{2} k}{2}+c \\
& c
\end{aligned}=\frac{a^{2} k b}{2}-a g \text { (nitially stafinary af linit of } \quad \begin{aligned}
\frac{1}{2} v^{2} & =-g x-\frac{k^{1}}{2} x^{2}+\frac{a^{2} k}{2}-a g \\
v^{2} & =a(k-2 a g \\
& =k\left(a^{2}-2 a g \frac{2}{k}-\frac{2 g x}{k}-2 g x-k x^{2}\right. \\
& =k\left(a^{2}-\frac{2 a g}{k}+\frac{g^{2}}{k^{2}}-\frac{g^{2}}{k^{2}}-\frac{2 g x}{k}-x^{2}\right) \\
& =k\left(\left(a-\frac{g}{k}\right)^{2}-\left(\frac{g^{2}}{k^{2}}+\frac{2 g x}{k}+x^{2}\right)\right) \\
& =k\left(\left(a-\frac{g}{k}\right)^{2}-\left(x+\frac{g}{k}\right)^{2}\right)
\end{aligned}
$$

iii)
(a) $t=0$

$$
\begin{gathered}
x=-a \\
\cos ^{-1}\left(\frac{-a+\frac{a}{k}}{a-\frac{a}{2}}\right)=\mp \sqrt{h} \times 0+c \\
\cos ^{-1}(-1)^{2} \\
c=c \\
\frac{x+\frac{a}{\frac{1}{2}}}{a-\frac{a}{2}}=\cos (\pi+\sqrt{k}+)
\end{gathered}
$$

Since $\cos (\pi+\alpha)=\cos (\pi-\alpha)$ we con take either without an concern.
choosing the -us

$$
\frac{x+\frac{g}{k}}{a-\frac{a}{k}}=\cos (\pi-\sqrt{k} t)
$$

Since $\cos (\pi-\alpha)=-\cos \alpha$ for all α

$$
\begin{aligned}
& x+\frac{g}{k} \\
& a-\frac{g}{k} \\
& x+\frac{g}{k}=\left(\frac{g}{k}-a\right) \cos \sqrt{k} t \\
& x=\left(\frac{g}{k}-a\right) \cos \sqrt{k} t-\frac{g}{k}
\end{aligned}
$$

Question 16
a)

$$
\begin{aligned}
I_{A} & =\int_{0}^{1} x^{n} e^{-x} d x \quad u_{1}=x^{n} \\
& =\left[x^{n} \times-e^{-x}\right]_{0}^{1}-\int_{0}^{1} n x \times x^{n-1} x-e^{-x} \times d x \\
& =1_{x-e^{-1}-\left(0^{n} \times-e^{0}\right)+\sqrt{1} \int_{0}^{1} x^{n-1} e^{-x} d x} \\
& =n \int_{0}^{-1} x^{n-1} e^{-x} d x-\frac{1}{e} \\
& =n I_{n-1}-\frac{1}{e}
\end{aligned}
$$

$$
V^{\prime}=e^{-x}
$$

b)

$$
\left((x+1)+x^{-1}\right)^{4}=\sum_{r=0}^{4}{ }^{4} C_{r}(x+1)^{4-r}\left(x^{-1}\right)^{r}
$$

Using binomial theorem on $(x+1)^{k-r}=\sum_{k=0}^{4 r}{ }^{4-r} C_{k} x^{k} \times 1^{4 r-k}$

$$
\left((x+1)+x^{-1}\right)^{4}=\sum_{r=0}^{4}{ }^{4} c_{r} x^{-r} \times \sum_{k=0}^{4-r}{ }^{4-r} c_{k 2} x^{k}
$$

for term independent of x

$$
\begin{aligned}
-r+k & =0 \\
r & =k
\end{aligned}
$$

\therefore const term is

$$
\begin{aligned}
\sum_{r=0}^{4}{ }^{4} C_{r} \times \sum_{r=0}^{4-r} C_{r}^{4} & ={ }^{4} C_{0} \times{ }^{4} C_{0}+{ }^{4} C_{1} \times{ }^{3} C_{1}+{ }^{4} C_{2} \times{ }^{2} C_{2} \\
& =19
\end{aligned}
$$

c) let $\omega=x$ xi
to be purely imaginaris real part $=0$

$$
x=0
$$

but 0 is not an imaginary number so locus is

$$
x=0 \text { except }(0,0)
$$

di) consider

$$
\begin{aligned}
\operatorname{cis} 3 \theta & =(\operatorname{cis} \theta)^{3} \\
& =(\cos \theta+i \sin \theta)^{3} \\
& =\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta+3 i^{2} \cos \theta \sin ^{2} \theta+i^{3} \sin ^{3} \theta \\
& =\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-i \sin ^{3} \theta
\end{aligned}
$$

equating real parts

$$
\begin{aligned}
\cos 3 \theta & =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \\
& =\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =\cos ^{3} \theta-3 \cos \theta+3 \cos ^{3} \theta \\
& =\cos ^{3} \theta-3 \cos \theta
\end{aligned}
$$

ii) when $\cos ^{3} \theta=\frac{1}{2}$

$$
\begin{aligned}
& 4 \cos ^{3} \theta-3 \cos \theta=\frac{1}{2} \\
& 8 \cos ^{3} \theta-6 \cos \theta=1 \\
& 8 \cos ^{3} \theta-6 \cos \theta-1=0
\end{aligned}
$$

which is $8 x^{3}-6 x-1=0$ when $x=\cos \theta$
\therefore the solutions are given by $x=\cos \theta$
(iii) therrots of $80 x^{3}-6 x-1=0$
are given by the solutions of $\cos 3 \theta=\frac{1}{2}$

$$
\begin{aligned}
3 \theta & =2 \pi n \pm \frac{\pi}{3} \\
\theta & =\frac{2 n \pi}{3} \pm \frac{\pi}{9}
\end{aligned}
$$

for $\begin{aligned} \wedge & =0 & \theta & =\frac{\pi}{9} \\ n & =1 & \theta & =\frac{7 \pi}{9}\end{aligned} \quad$ taking +ie

$$
\begin{array}{ll}
n=1 & \theta=\frac{7 \pi}{9} \\
n+2 & \theta=\frac{13 \pi}{9}
\end{array}
$$

only. need 3 roots since degree 3 polynomial $\cos \frac{\pi}{9}, \cos \frac{13 \pi}{9}, \cos \frac{5 \pi}{9}$
iv)

iv) roots are $\cos \frac{\pi}{9}, \cos \frac{7 \pi}{9}$ and $\cos \frac{13 \pi}{9}$ consider $\cos \frac{7 \pi}{9}$.

$$
\begin{aligned}
\cos \frac{7 \pi}{9} & =\cos \left(\pi-\frac{2 \pi}{9}\right) \\
& =-\cos \frac{2 \pi}{9}
\end{aligned}
$$

consider

$$
\begin{aligned}
\cos \frac{13 \pi}{9} & =\cos \left(-\frac{5 \pi}{9}\right) \\
& =\cos \left(-\frac{\pi}{4}\right) \\
& =-\cos \frac{4 \pi}{9}
\end{aligned}
$$

\therefore roots are $\cos \frac{\pi}{9},-\cos \frac{2 \pi}{9}$ and $-\cos \frac{4 \pi}{9}$
\therefore product of roots is

$$
\begin{aligned}
& \cos \frac{\pi}{9} \times-\cos \frac{2 \pi}{9} \times-\cos \frac{\pi}{9} \\
& =\cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{9}
\end{aligned}
$$

product of roots is $\frac{1}{8}$

$$
\therefore \quad \cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \cos \frac{4 \pi}{4}=\frac{1}{8}
$$

