Gosford High School

2015

TRIAL
HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

- General Instructions
- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations

Total Marks - 100

Section I Pages 2-5

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section
- Answer on the response sheet provided

Section II Pages 6-12

90 marks

- Attempt Questions 11-16
- Start a new booklet for each question
- Answer Question 14(a) on the answer sheet provided
- Allow about 2 hours and 45 minutes for section II

Section I

10 Marks
Attempt Questions 1-10.
Allow about 15 minutes for this section.
Use the multiple-choice answer sheet for questions 1-10.

1 What is the value of $\lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h}$?
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2
$2 A, B, C$ are three consecutive terms in an arithmetic progression.
Which of the following is a simplification of $\frac{\sin (A+C)}{\sin B}$?
(A) $2 \cos B$
(B) $\sin 2 B$
(C) $\cot B$
(D) 1

3 What is the number of asymptotes on the graph of the curve $y=\frac{x^{2}}{x^{2}-1}$?
(A) 1
(B) 2
(C) 3
(D) 4

4 On the Argand diagram below, P represents the complex number z.

Which of the following Argand diagrams shows the point Q representing $z+\bar{z}$?
(A)

(B)

(C)

(D)

page 3

5 What is the acute angle between the asymptotes of the hyperbola. $\frac{x^{2}}{3}-y^{2}=1$?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$

6 Which of the following is an expression for $\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin x} d x$ after the substitution $t=\tan \frac{x}{2}$? $\quad 1$
(A) $\int_{0}^{1} \frac{1}{1+2 t} d t$
(B) $\int_{0}^{1} \frac{2}{1+2 t} d t$
(C) $\int_{0}^{1} \frac{1}{(1+t)^{2}} d t$
(D) $\int_{0}^{1} \frac{2}{(1+t)^{2}} d t$

7

The region in the first quadrant bounded by the curve $y=4 x^{2}-x^{4}$ and the x axis between $x=0$ and $x=2$ is rotated through 2π radians about the y axis. Which of the following is an expression for the volume V of the solid formed?
(A) $\quad V=2 \pi \int_{0}^{4} \sqrt{4-y} d y$
(B) $\cdots \quad V=-4 \pi \cdot \int_{0}^{4} \sqrt{4-y} d y$
(C) $\quad V=8 \pi \int_{0}^{4} \sqrt{4-y} d y$
(D) $\quad V=16 \pi \int_{0}^{4} \sqrt{4-y} d y$

8 The equation $x^{4}+p x+q=0$, where $p \neq 0$ and $q \neq 0$, has roots α, β, γ and δ. What is the value of $\alpha^{4}+\beta^{4}+\gamma^{4}+\delta^{4}$?
(A) $-4 q$
(B) $p^{2}-2 q$
(C) $p^{4}-2 q$
(D) p^{4}

9 Which of the following is the range of the function $f(x)=\sin ^{-1} x+\tan ^{-1} x$?
(A) $-\pi<y<\pi$
(B) $-\pi \leq y \leq \pi$
(C) $-\frac{3 \pi}{4} \leq y \leq \frac{3 \pi}{4}$
(D) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

10 If $e^{x}+e^{y}=1$, which of the following is an expression for $\frac{d y}{d x}$?
(A) $-e^{x-y}$
(B) e^{x-y}
(C) e^{y-x}
(D) $-e^{y-x}$

Section II

90 Marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section.
Answer the questions on your own paper, or in writing booklets if provided.
Start each question on a new page.
All necessary working should be shown in every question.

Question 11 (15 marks) Use a SEPARATE writing booklet

(a) If $z=1+3 i$ and $w=2-i$ find in the form $a+i b$ (for real a and b) the values of
(i) $\bar{z}-w$
(ii) $z w$
(b)(i) Express $-1+\sqrt{3} i$ in modulus/argument form.
(ii) Hence find the value of $z^{8}-16 z^{4}$ in the form $a+i b$ where a and b are real.
(c) In the Argand diagram $O A B C$ is a square, where O, A, B, C are in anti-clockwise cyclic order. The complex number z is represented by the vector $\overline{O A}$
(i) Find in terms of z the complex numbers represented by the vectors $\overline{O C}$ and $\overline{O B}$.
(ii) If the vector $\overrightarrow{O B}$ represents the complex number $4+2 i$, find z in the form $a+i b$ where a and b are real.
(d) The polynomial $P(x)=x^{6}+a x^{3}+b x^{2}$ has a factor $(x+1)^{2}$.

Find the values of the real numbers a and b.
(e) The equation $x^{4}+b x^{3}+c x^{2}+d x+1=0$ has roots $\alpha, \frac{1}{\alpha}, \beta, \frac{1}{\beta}$.
a) Find the following
(i)

$$
\int \frac{e^{-x}}{1+e^{x}} d x
$$

(ii)

$$
\begin{equation*}
\int \frac{x^{2}}{x+1} d x \tag{2}
\end{equation*}
$$

b) Find the exact value of the following definite integral:

$$
\int_{0}^{\frac{\pi}{6}} \sec ^{3} 2 \theta d \theta
$$

$$
4
$$

c) By using the substitution of $x=\tan \theta$, show that

$$
\int_{1}^{\sqrt{3}} \frac{1}{x^{2} \sqrt{1+x^{2}}} d x=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \operatorname{cosec} \theta \cot \theta d \theta
$$

d) The area bounded by the line $y=(2-x)$ and the x axis, is rotated about the y axis. By using the method of cylindrical shells, find the volume generated.

$$
\text { End of Question } 12
$$

page 7
(a) (i) If $z=\cos \theta+i \sin \theta$, show that $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \quad 1$
(ii) For $z=r(\cos \theta+i \sin \theta)$, find r and the smallest
positive value θ which satisfies $2 z^{3}=9+3 \sqrt{3} i$
2
(b) (i) Find the values of A, B, and C such that:

$$
\frac{4 x^{2}-3 x-4}{x^{3}+x^{2}-2 x}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+2}
$$

(ii) Hence evaluate

$$
\begin{equation*}
\int \frac{4 x^{2}-3 x-4}{x^{3}+x^{2}-2 x} d x \tag{1}
\end{equation*}
$$

(c) Solve the equation $x^{4}-7 x^{3}+17 x^{2}-x-26=0$, given that $x=(3-2 i)$ is a root of the equation.
(d) (i) Derive the equation of the tangent at the point $P\left(c t, \frac{c}{t}\right)$ on the rectangular hyperbola $x y=c^{2}$.
(ii) Find the coordinates of A and B where this tangent cuts the x and y axis respectively.
(iii) Prove that the area of the triangle OAB is a constant. (Where O is the origin).

End of Question 13

(a) The graph of $y=f(x)$ is shown below.

Draw neat, separate sketches for each of the following, showing all important features.
(i) $y=|f(x)|$

1
(ii) $y=\frac{1}{f(x)}$
(iii) $y^{2}=f(x)$
(iv) $y=e^{f(x)}$
(b) Show that the equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
at the point $P\left(x_{1}, y_{1}\right)$ is given by the equation: $\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}$
(c) A particle is projected vertically upwards. The resistance to the motion is proportional to the square of the velocity. The velocity of projection is V
(i) Show that the acceleration is given by: $\ddot{x}=-\left(g+k v^{2}\right)$
(ii) Find the maximum height reached and the time taken to reach this height, expressing your answer in terms of V and k.

End of Question 14

$$
\text { page } 9
$$

(a)

The base of a solid is the region bounded by the curve $y=\ln (x)$, the x-axis, and the lines $x=1$ and $x=e$, as shown in the diagram.
Vertical cross-sections taken through this solid in a direction parallel to the x-axis are squares. A typical cross-section $P Q R S$ is shown. Find the volume of the solid.
(b) A particle of mass $m \mathrm{~kg}$ is dropped from rest in a medium where the resistance to motion has magnitude $\frac{1}{40} m \nu^{2}$ when the speed of the particle is $v \mathrm{~ms}^{-1}$. After t seconds the particle has fallen x metres. The acceleration due to gravity is $10 \mathrm{~ms}^{-2}$.
(i) Explain why $\ddot{x}=\frac{1}{40}\left(400-\nu^{2}\right)$.
(ii) Find an expression for t in terms of v by integration.
(iii) Show that $v=20\left(1-\frac{2}{1+e^{t}}\right)$.
(iv) Find x as a function of t.
(c)

In the diagram, F is a focus of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ with eccentricity e. This branch of the hyperbola cuts the x axis at A where $A F=h . P$ is the point on the hyperbola vertically above F and the normal at P cuts the x axis at B making an acute angle θ with the x axis.
(i) Show that $\tan \theta=\frac{1}{e}$.
(ii) Show that $P F=h(e+1)$
(d) The equation $x^{3}+3 x^{2}+2 x+1=0$ has roots α, β and γ.

Find the monic cubic equation with roots α^{2}, β^{2} and γ^{2}.
(a) If $A(x)$ and $B(x)$ are odd polynomial functions show that the product $P(x)=A(x) \cdot B(x)$ is an even polynomial function.
(b)

In the diagram, MAN is the common tangent to two circles touching internally at A. B and C are two points on the larger circle such that $B C$ is a tangent to the smaller circle with point of contact $D . A B$ and $A C$ cut the smaller circle at E and F respectively. Copy the diagram. Show that $A D$ bisects $\angle B A C$.
(c) Derive the reduction formula:

$$
\int x^{n} e^{-x^{2}} d x=-\frac{1}{2} x^{n-1} e^{-x^{2}}+\frac{n-1}{2} \int x^{n-2} e^{-x^{2}} d x
$$

and use this reduction formula to evaluate $\int_{0}^{1} x^{5} e^{-x^{2}} d x$
(d) Use Mathematical Induction to prove that $5^{n}>4 n+12$ for all integers $n>1$.
(e) Five letters are chosen from the word CHRISTMAS. These five letters are then placed alongside one another to form a five letter arrangement. Find the number of distinct arrangements that are possible, considering all choices.

End of Question 16

$$
\begin{gathered}
\text { END OF EXAMINATION } \\
\text { page } 12
\end{gathered}
$$

Ext 2 (Solutin) TRIAL 2015°

$$
\begin{align*}
& \text { Q1/ } \lim _{h \rightarrow 0} \frac{\sqrt{h+1}-1}{h} \times \frac{\sqrt{h+1}+1}{\sqrt{h+1}+1} \\
& =\lim _{h \rightarrow 0} \frac{h+1-1}{h(\sqrt{h+1}+1)} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{h+1}+1} \\
& =\frac{1}{2} \tag{B}
\end{align*}
$$

Q2/

$$
\begin{aligned}
B-A & =C-B \\
2 B & =A+C \\
B & =\frac{A+C}{2} \quad B
\end{aligned}
$$

$$
=2 \cos B \quad(A)
$$

Q3/ $x=1, x=-1$ (vertical asymptotes)

$$
\lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}}}
$$

$\lim _{x \rightarrow \infty} \frac{1}{1-\frac{1}{x^{-2}}} \therefore y=1$ (hai2m) $\quad \therefore$ asymptote;

$$
\begin{equation*}
=1 \tag{C}
\end{equation*}
$$

$$
4 / z+\bar{z}=2 \operatorname{Re} z
$$

5/. Asymptos are $y= \pm \frac{1}{\sqrt{3}} x$

$$
\left.\begin{align*}
& \therefore \tan \theta=\left\lvert\, \frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}\right. \\
& 1-\frac{1}{3}
\end{align*} \right\rvert\,
$$

6/ $\quad t=\tan \frac{x}{2}$

$$
\frac{d t}{d x}=\frac{1}{2} \sec ^{2} \frac{x}{2}
$$

$$
\frac{2 d t}{T+t^{2}}=d x
$$

when $x=\frac{\pi}{2}$

$$
\frac{2 d t}{\sec ^{2} \frac{x}{2}}=d x
$$

$$
\begin{aligned}
& f=\tan \frac{\pi}{4} \\
& \therefore t=1
\end{aligned}
$$

whe $x=0$

$$
t=\tan 0
$$

$$
\therefore t=0
$$

$$
1+\sin x=1+\frac{2 t}{1+t^{2}}
$$

$$
\begin{align*}
& \frac{1+2 t}{1+t^{2}}=\frac{t^{2}+2 t+1}{1+t^{2}} \\
&=\frac{(t+1)^{2}}{1+t^{2}} \\
& \int_{0}^{1} \frac{t^{2}+t}{\left(1+t^{2}\right.} \\
&=\int_{0}^{1} \frac{2 d t}{t^{2}+1} \tag{D}\\
& \frac{2}{(1+t)^{2}} d t
\end{align*}
$$

$$
\begin{aligned}
& 7 / y=4 x^{2}-x^{4} \\
& x^{4}-4 x^{2}+4=4-y \\
& \left(x^{2}-2\right)^{2}=4-y \\
& \left(x^{2}-2\right)= \pm \sqrt{4-y} \\
& A=\pi\left(x_{2}^{2}-x_{1}^{2}\right) \quad \text { (Rad, outer - Radisinner) } \\
& \Delta V=\pi\left(x_{2}^{2}-x_{1}^{2}\right) \Delta y \\
& =\pi\{(2+\sqrt{4-y})-(2-\sqrt{4-y})\} \Delta y \\
& =\{2 \pi \sqrt{4-y} \Delta y
\end{aligned}
$$

$\therefore V=2 \pi \int_{0}^{4} \sqrt{4-y} \cdot d y$
8/ $x^{4}+p x+q=0$

$$
\begin{align*}
& \alpha^{4}+p \alpha+q=0 \\
& \beta^{4}+p \beta+q=0 \\
& \zeta^{4}+p Y+q=0 \\
& \sigma^{4}+p \sigma+q=0 \\
& \alpha^{4}+\beta^{4}+Y^{4}+\gamma^{4}+p(\alpha+\beta+Y+\sigma)+4 q=0 \\
& \alpha^{4}+\beta^{4}+Y^{4}+\sigma^{4}+0+4 q=0 \tag{A}\\
& \alpha^{4}+\beta^{4}+Y^{4}+\sigma^{4}=-4 q \quad(A)
\end{align*}
$$

9/ Domai- is $-1 \leq x \leq 1$

$$
\begin{align*}
\therefore \sin ^{-1}(-1)+\tan ^{-1}(-1) & \leq y \leq \sin ^{-1}(1)+\tan ^{-1}(1) \\
-\frac{\pi}{2}+-\frac{\pi}{4} & \leq y \leq \frac{\pi}{2}+\frac{\pi}{4} \\
-\frac{3 \pi}{4} & \leq y \leq \frac{3 \pi}{4} \quad \text { (c) } \tag{c}
\end{align*}
$$

10/ $e^{x}+\frac{d y}{d x} e^{y}=0$

$$
\begin{align*}
\frac{d y}{d x} & =\frac{-e^{x}}{e^{y}} \tag{A}\\
& =-e^{x-y}
\end{align*}
$$

$$
\text { QU/(a)z}=1+3 i \quad \bar{z}=1-3 i
$$

(i) $1-3 i-2+i=-1-2 i$
(ii)

$$
\begin{aligned}
(1+3 i)(2-i) & =2-i+6 i+3 \\
& =5+5 i
\end{aligned}
$$

(b) a)

$$
\begin{aligned}
R & =\sqrt{3+1} \\
& =2
\end{aligned}
$$

$\tan \alpha=\sqrt{3}$

$$
\alpha=\frac{\pi}{3}
$$

$$
\begin{array}{r}
\alpha=\frac{\pi}{3} \\
\therefore \theta=\frac{2 \pi}{3}
\end{array}
$$

$$
\begin{aligned}
\therefore-1+\sqrt{3} i & =2\left(\cos \frac{2 \pi}{3}+i \sin -\frac{2 \pi}{3}\right) \\
& =2 \cos \frac{2 \pi}{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
z^{8} & =2^{8}\left(\cos \frac{16 \pi}{3}+i \sin \frac{16 \pi}{3}\right) \\
& =2^{8}\left(-\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right) \\
& =2^{8}\left(-\frac{1}{2}-\frac{\sqrt{3} i}{2}\right) \\
& =2^{8} \frac{(-1-\sqrt{3} i}{2} \\
& =2^{7}(-1-\sqrt{3} i) \\
16 z^{4} & =16 \cdot 2^{4}\left(\cos \frac{8 \pi}{3}+i \sin \frac{8 \pi}{3}\right) \\
& =2^{8}\left(-\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \\
& =2^{8}\left(-\frac{1}{2}+\frac{\sqrt{3} i}{2}\right) \\
& =2^{7}(-1+\sqrt{3} i)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore z^{8}-16 z^{4} & =2^{7}(-1-\sqrt{3} i)-2^{7}(-1+\sqrt{3} i) \\
& =-2^{7}-2^{7} \sqrt{3} i+2^{7}-2^{7} \sqrt{3} i \\
& =-2.2^{7} \sqrt{3} i \\
& =-28 \sqrt{3} i
\end{aligned}
$$

(c)

$$
\overrightarrow{O A}=z \quad \therefore \quad \overrightarrow{O C}=i z
$$

(i)

$$
\begin{aligned}
\overrightarrow{O B} & =\overrightarrow{O A}+\overrightarrow{O C} \\
& =z+i z \\
& =z(1+i)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 4+2 i=z(1+i) \\
& \frac{4+2 i}{1+i}=z \\
& \frac{(4+2 i)}{(1+i)} \times \frac{(1-i)}{(1-i)}=z \\
& 6-2 i=2 z \\
& 3-i=z
\end{aligned}
$$

(d)

$$
\begin{aligned}
P(x) & =x^{6}+a x^{3}+b x^{2} \\
P(-1) & =0 \\
\therefore 0 & =(-1)^{6}+a(-1)^{3}+b(-1)^{2} \\
0 & =1-a+b \\
a-b & =1 \\
P \prime(x) & =6 x^{5}+3 a x^{2}+2 b x \\
P^{\prime}(-1) & =0 \\
0 & =6(-1)^{5}+3 a(-1)^{2}+2 b(-1) \\
0 & =-6+3 a-2 b \\
3 a-2 b & =6 \\
3 a-2 b & =6 \\
2 a-2 b & =2 \\
a & =4 \\
b & =3
\end{aligned}
$$

(e) Sum of cots 1 at atime are

$$
\begin{aligned}
\alpha+\frac{1}{\alpha}+\beta+\frac{1}{\beta} & =\frac{-b}{a} \\
\therefore \alpha+\frac{1}{\alpha}+\beta+\frac{1}{\beta} & =-b
\end{aligned}
$$

Sim of routs 3 at a time

$$
\begin{aligned}
\left(\alpha \times \frac{1}{\alpha} \times \beta\right)+\left(\alpha \times \beta \times \frac{1}{\beta}\right) & +\left(\frac{1}{\alpha} \times \beta \times \frac{1}{\beta}\right) \\
& +\left(\alpha \times \frac{1}{\alpha} \times \frac{1}{\beta}\right)=-\frac{d}{a} \\
B+\alpha+\frac{1}{\alpha}+\frac{1}{B}= & \alpha \quad \therefore \quad b=d
\end{aligned}
$$

$$
\begin{array}{r}
\text { Q12/(a) } \int \frac{e^{-x}}{1+e^{x}} d x \\
=\int \frac{1}{e^{x}\left(1+e^{x}\right)} d x
\end{array}
$$

For partial factor let $u=e^{x}$

$$
\begin{aligned}
& \frac{1}{u(1+u)}=\frac{a}{u}+\frac{b}{(1+u)} \\
& \therefore 1 \equiv a(1+u)+b u \\
& \text { Let } u=0 \\
& a=1 \\
& b=-1 \\
& \therefore \quad \int \frac{1}{e^{x}\left(1+e^{x}\right)} d x=\int \frac{1}{e^{x}}-\frac{1}{1+e^{x}} d x \\
&=\int e^{-x}-\left(\frac{1+e^{x}-e^{x}}{1+e^{x}}\right) d x \\
&=\int e^{-x}-\left(1-\frac{e^{x}}{1+e^{x}}\right) d x \\
&=-e^{-x}-x+\ln \left(1+e^{x}\right)+c
\end{aligned}
$$

(ii)

$$
\text { (ii) } \begin{aligned}
\int \frac{x^{2}}{x+1} d x & \frac{x-1}{x+1) \frac{x^{2}+0 x+0}{\frac{x^{2}+x}{-x}+0}} \frac{-x-1}{1} \\
\therefore \int \frac{x^{2}}{x+1} d x & =\int x-1+\frac{1}{x+1} d x \\
& =\frac{x^{2}}{2}-x+\ln |x+1|+c
\end{aligned}
$$

(b) $\int^{\frac{\pi}{6}} \sec ^{3} 2 \theta d \theta$

$$
\begin{aligned}
&=\int_{0}^{\frac{\pi}{6}} \sec ^{2} 2 \theta \cdot \sec 2 \theta d \theta \\
& \text { Let } u=\sec 2 \theta \\
& u=(\cos 2 \theta)^{-1} \\
& \frac{d u}{d \theta}=-(\cos 2 \theta)^{-2} \cdot-2 \sin 2 \theta \\
&=\frac{2 \sin 2 \theta}{\cos 2 \theta} \cdot \cos 2 \theta \\
&=2 \sec 2 \theta \tan 2 \theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d V}{d \theta}=\sec ^{2} \theta \\
& v=\frac{\tan 2 \theta}{2} \\
& \frac{\pi}{2} \frac{\pi}{6} \\
& =\left[\frac{\tan 2 \theta}{2} \cdot \sec 2 \theta\right]_{0}^{\frac{\pi}{6}}-\int_{0}^{\frac{\pi}{6}} \sec 2 \theta \cdot \tan ^{2} 2 \theta d \theta \\
& =\left[\frac{\tan \frac{\pi}{3}}{2} \cdot \sec \frac{\pi}{3}\right]-\int_{0}^{\frac{\pi}{6}} \sec 2 \theta\left(\sec ^{2} 2 \theta-1\right) d \theta \\
& =\frac{\sqrt{3}}{2} \cdot 2-\int_{0}^{\frac{\pi}{6}} \sec ^{3} 2 \theta-\sec 2 \theta d \theta \\
& \int_{0} 2 \int_{0}^{\frac{\pi}{6}} \sec ^{3} 2 \theta d \theta=\sqrt{3}+\int_{0}^{\frac{\pi}{6}} \sec 2 \theta d \theta \\
& =\sqrt{3}+\int_{0}^{\frac{\pi}{b}} \frac{\sec 2 \theta(\sec 2 \theta+\tan 2 \theta)}{(\sec 2 \theta+\tan 2 \theta)} \\
& =\sqrt{3}+\int_{0}^{\frac{\pi}{6}} \frac{\sec ^{2} 2 \theta+\sec 2 \theta \tan 2 \theta}{(\sec 2 \theta+\tan 2 \theta)} \\
& =\sqrt{3}+\frac{1}{2} \int_{0}^{\frac{\pi}{6}} \frac{2 \sec ^{2} 2 \theta+2 \sec 2 \theta \tan 2 \theta}{(\sec 2 \theta+\tan 2 \theta)}
\end{aligned}
$$

$$
\begin{aligned}
&=\sqrt{3}+\frac{1}{2} \ln [\sec 2 \theta+\tan 2 \theta]_{0}^{\frac{\pi}{6}} \\
&=\sqrt{3}+\frac{1}{2} \ln \left[\sec \frac{\pi}{3}+\operatorname{ten} \frac{\pi}{3}\right]-0 \\
&=\sqrt{3+\frac{1}{2}} \ln (2+\sqrt{3}) \\
& \therefore \int_{0}^{\frac{\pi}{6}} \sec ^{3} 2 \theta d \theta=\frac{\sqrt{3}}{2}+\frac{1}{4} \ln (2+\sqrt{3})
\end{aligned}
$$

(c)

$$
\left.\begin{array}{rr}
x=\tan \theta & \text { whe } x \\
=\sqrt{3} \\
\frac{d x}{d \theta}=\sec ^{2} \theta & \sqrt{3}
\end{array}\right)=\tan \theta, ~ \theta=\frac{\pi}{3}
$$

when $x=1$

$$
\begin{aligned}
& \int_{1}^{\sqrt{3}} \frac{1}{x^{2} \sqrt{1+x^{2}}} d x=\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{\tan ^{2} \theta \cdot \sec \theta} \cdot \sec ^{2} \theta d \theta \\
&=\int_{\frac{\pi}{4}}^{4} \frac{\pi}{4} \\
& \frac{\sec \theta}{\tan ^{2} \theta}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\cos f \theta \times \frac{\sin \theta}{\cos \theta} \times \tan \theta} d \theta \\
& =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \operatorname{cosec} \theta \cot \theta d \theta
\end{aligned}
$$

(d)

$$
\begin{gathered}
\Delta V=2 \pi x y \Delta x \\
\text { But } y=(2-x) \\
\Delta V=2 \pi\left(2 x-x^{2}\right) \Delta x
\end{gathered}
$$

$$
\begin{aligned}
\text { Total Volume } & =\lim _{\Delta x \rightarrow 0} \sum_{x=0}^{2} 2 \pi\left(2 x-x^{2}\right) \Delta x \\
& =2 \pi \int_{0} 2 x-x^{2} \cdot d x
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi\left[x^{2}-\frac{x^{3}}{3}\right]_{0}^{2} \\
& =2 \pi\left[4-\frac{8}{3}-(0-0)\right] \\
& =2 \pi\left[\frac{4}{3}\right] \\
& =\frac{8 \pi}{3} u^{2}
\end{aligned}
$$

(13)

$$
\text { 3) } \begin{aligned}
z & =\cos \theta+i \sin \theta \\
z^{n} & =\cos (n \theta)+i \sin (n \theta) \\
\frac{1}{z^{n}}-z^{-n} & =\cos (-n \theta)+i \sin (-n \theta) \\
& =\cos (n \theta)-i \sin (n \theta)
\end{aligned}
$$

$$
\begin{aligned}
z^{n}+\frac{1}{z^{n}} & =\cos (n \theta)+i \sin (n \theta)+\cos (n \theta)-i \sin (n \theta) \\
& =2 \cos (n \theta)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { (ii) } z^{3}=r^{3}(\cos 3 \theta+i \sin 3 \theta) \\
& 2 r^{3}(\cos 3 \theta+i \sin 3 \theta)=9+3 \sqrt{3 i} \\
& \therefore 2 r^{3} \cos 3 \theta=9 \text { and } 2 r^{3} \sin 3 \theta=3 \sqrt{3}
\end{aligned}
$$

by division-

$$
\begin{aligned}
\tan 3 \theta & =\frac{3 \sqrt{3}}{9} \\
& =\frac{\sqrt{3}}{3} \text { oi s } \frac{1}{\sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore 3 \theta & =\frac{\pi}{6} \text { (smallest positive value) } \\
\theta & =\frac{\pi}{18}
\end{aligned}
$$

Sub into $2 r^{3} \cos 3 \theta=9$.

$$
\begin{aligned}
2 r^{3} \cos \frac{\pi}{6} & =9 \\
2 / r^{3} \frac{\sqrt{3}}{Z} & =9 \\
r^{3} & =\frac{9}{\sqrt{3}} \\
r^{3} & =\frac{9}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
r^{3} & =3 \sqrt{3} \\
r & =\sqrt{3}
\end{aligned}
$$

(b) (i)

$$
\begin{array}{r}
A(x-1)(x+2)+B x(x+2)+C(x-1) x \equiv \\
4 x^{2}-3 x-4
\end{array}
$$

Let $x=0 \quad-2 A=-4$

$$
A=2
$$

Let $x=1 \quad 3 B=-3$

$$
B=-1
$$

Let $x=-2 \quad 6 C=18$

$$
c=3
$$

(ii)

$$
\text { i) } \begin{aligned}
& \int \frac{2}{x}+\frac{-1}{x-1}+\frac{3}{x+2} d x \\
= & 2 \ln x-\ln (x-1)+3 \ln (x+2)+c
\end{aligned}
$$

(c) As $(3-2 i)$ is a factor the$3+2 i$ is also a factor since
the coefticielf are rent

$$
\begin{aligned}
& \therefore x^{2}-(3-2 i+3+2 i) x+(3-2 i)(3+2 i) \\
& =x^{2}-6 x+13 \text { is a face- } \\
& x^{2}-x-2 \\
& x ^ { 2 } - 6 x + 1 3 \longdiv { x ^ { 4 } - x - 2 } x ^ { 3 } + 1 7 x ^ { 2 } - x - 2 6 \\
& x^{4}-6 x^{3}+13 x^{2} \\
& -x^{3}+4 x^{2}-x \\
& \frac{-x^{3}+6 x^{2}-13 x}{-2 x^{2}+12 x-26} \\
& \frac{-2 x^{2}+12 x-26}{0}
\end{aligned}
$$

$0 x^{2}-x-2$ is a factor is $(x+1)(x=2)$ are factors
\therefore Solution to $x^{4}-7 x^{3}+17 x^{2}-x-26=0$ are $x=3 \pm 2 i,-1$ and 2
(d)

$$
\begin{gathered}
x y=c^{2} y=c^{2} x^{-1} \\
\frac{d y}{d x}=\frac{-c^{2}}{x^{2}} \quad a t x=c t \\
m_{T}=\frac{-c^{2}}{c^{2} t^{2}} \\
=-\frac{1}{t^{2}} \\
y-\frac{c}{f}=-\frac{1}{t^{2}}(x-c t) \\
t^{2} y-c t=-x+c t \\
x+t^{2} y-2 c t=0
\end{gathered}
$$

(ii) When $x=0 \quad t^{2} y=2 c t$

$$
\begin{aligned}
& y=\frac{2 c t}{t^{2}} \\
& y=\frac{2 c}{t}
\end{aligned}
$$

$\therefore B$ is $\left(0, \frac{2 c}{t}\right)$
when $y=0 \quad x=2 c t$

$$
\therefore A \text { is }(2 c t, 0)
$$

(iii)

$$
\begin{aligned}
& O A=2 c t \\
& O B=\frac{2 c}{t}
\end{aligned}
$$

Area

$$
\begin{aligned}
A_{O A B} & =\frac{1}{2} \times 2 c t \times \frac{2 c}{t} \\
& =2 c^{2}
\end{aligned}
$$

which is constot as c is a constant.

Q/4/(a)

$$
\begin{aligned}
& \text { (b) } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{2 x}{a^{2}}+\frac{d y}{d x} \frac{2 y}{b^{2}}=0 \\
& \frac{d y}{d x}=-\frac{2 x}{a^{2}} \times \frac{b^{2}}{2 y} \\
& =-\frac{b^{2} x}{a^{2} y} \\
& A+\left(x, y_{1}\right) m_{n}=\frac{a^{2} y_{1}}{b^{2} x_{1}} \\
& \therefore y-y_{1}=\frac{a^{2} y^{\prime}}{b^{2} x_{1}}\left(x-x_{1}\right) \\
& \therefore b^{2} x, y-b^{2} x, y_{1}=a^{2} y_{1} x-a^{2} x_{1} y_{1}
\end{aligned}
$$

Divide by x, y,

$$
\begin{aligned}
& \frac{b^{2} y}{y_{1}}-b^{2}=\frac{a^{2} x}{x_{1}}-a^{2} \\
\therefore & \frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}
\end{aligned}
$$

(on rearnay
(c) $m \dot{x}=-m g-m k v^{2}$

$$
\begin{aligned}
\ddot{x} & =-g-k v^{2} \\
\therefore \quad \ddot{x} & =-\left(g+k v^{2}\right)
\end{aligned}
$$

Taking upwards as positive
(ii)

$$
\begin{aligned}
& v \frac{d v}{d x}=-\left(g+k v^{2}\right) \\
& \frac{d v}{d x}=-\frac{\left(g+k v^{2}\right)}{v} \\
& \frac{d x}{d v}=-\frac{v}{\left(g+k v^{2}\right)} \\
& x=-\int \frac{v}{g+k v^{2}} d v \\
& x=-\frac{1}{2 k} \int \frac{2 k v}{g+k v^{2}} d v \\
& x=-\frac{1}{2 k} \ln \left(g+k v^{2}\right)+c
\end{aligned}
$$

When- $x=0 \quad v=V$

$$
\begin{aligned}
0 & =-\frac{1}{2 k} \ln \left(g+k V^{2}\right)+C \\
\therefore C & =\frac{1}{2 k} \ln \left(g+k V^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=-\frac{1}{2 k} \ln \left(g+k v^{2}\right)+\frac{1}{2 k} \ln \left(g+k v^{2}\right) \\
& x=\frac{1}{2 k} \ln \left\{\frac{g+k v^{2}}{g+k v^{2}}\right\}
\end{aligned}
$$

Maximum height when $v=0$

$$
\begin{aligned}
x_{\text {max }} & =\frac{1}{2 k} \ln \left(\frac{g+k v^{2}}{g}\right) \\
\frac{d v}{d t} & =-\left(g+k v^{2}\right) \\
\frac{d t}{d v} & =\frac{-1}{g+k v^{2}} \\
t & =-\int \frac{1}{g+k v^{2}} d v \\
t & =-\frac{1}{k} \int \frac{1}{\frac{g}{k}+v^{2}} d v \\
\therefore+ & =-\frac{1}{k} \times \frac{1}{\sqrt{g}} \tan ^{-1}\left(\frac{\sqrt{k} v}{\sqrt{g}}\right)+C \\
t & =-\frac{1}{k} \frac{\sqrt{k}}{\sqrt{g}} \tan ^{-1}\left(\frac{\sqrt{k} v}{\sqrt{g}}\right)+C
\end{aligned}
$$

when $t=0 \quad v=\sqrt{ }$

$$
\begin{aligned}
& 0=-\frac{1}{\sqrt{k g}} \tan ^{-1}\left(\frac{\sqrt{k}}{\sqrt{g}} \sqrt{ }\right)+C \\
& C=\frac{1}{\sqrt{k g}} \tan ^{-1}\left(\frac{\sqrt{k}}{\sqrt{g}}\right) \sqrt{ } \\
& \therefore \quad t=-\frac{1}{\sqrt{k g}} \tan ^{-1}(\sqrt{k} \\
& \therefore \quad v+\frac{1}{\sqrt{k g}} \tan ^{-1}\left(\frac{\sqrt{k}}{\sqrt{g}}\right) \sqrt{ }
\end{aligned}
$$

Max height when $v=0$
ie $t=\frac{1}{\sqrt{k g}} \tan ^{-1}\left(\frac{\sqrt{k}}{\sqrt{g}}\right) \sqrt{ }$

Take a slice through $P(x, y)$ parl to the x axis win thickness Δy

$$
P Q=e-x
$$

\therefore Area of square PQRS $=(e-x)^{2}$

$$
\begin{aligned}
& \therefore \Delta V=(e-x)^{2} \Delta y \\
& \text { Total } \\
& \text { Volume }=\lim _{\Delta y \rightarrow 0} \sum_{x=1}^{e}(e-x)^{2} \Delta y
\end{aligned}
$$

but $\begin{aligned} & y=\ln x \\ & d x\end{aligned}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{x} \\
& d y=\frac{1}{x} d x \\
& \therefore V=\int_{1}^{e}(e-x)^{2} \cdot \frac{1}{x} d x \\
& V= \int_{1}^{e}\left(e^{2}-2 e x+x^{2}\right) x \frac{1}{x} d x \\
&= \int^{1} \frac{e^{2}}{x}-2 e+x d x \\
&= {\left[e^{2} \ln x-2 e x+\frac{x^{2}}{2}\right]_{1}^{e} } \\
&= e^{2}-2 e^{2}+\frac{e^{2}}{2}-\left(0-2 e+\frac{1}{2}\right) \\
&=-\frac{e^{2}}{2}+2 e-\frac{1}{2} u^{3}
\end{aligned}
$$

Taking Downwards as 1
(213)(b)
(i) Forces on particle
$t=0$
$x=0$

$$
v=0
$$

$$
\begin{aligned}
m \dot{x} & =m g-\frac{1}{40} m v^{2} \\
\dot{x} & =\frac{1}{40}\left(400-v^{2}\right) \quad \text { as } g=10
\end{aligned}
$$

(ii) $\frac{d v}{d t}=\frac{1}{40}\left(400-v^{2}\right)$

$$
\begin{aligned}
\frac{d t}{d t} & =\frac{40}{20^{2}-v^{2}} \\
& =\frac{1}{20+v}+\frac{1}{20-v} \\
t & =\ln \left(\frac{20+v}{20-v}\right)+c
\end{aligned}
$$

when $v=0, t=0 \therefore c=0$

$$
t=\ln \left(\frac{20+v}{20-v}\right)
$$

(iii) as $t=\ln \left(\frac{20+v}{20-v}\right)$
the- $e^{+}=\frac{20+v}{20-v}$

$$
\begin{gathered}
(20-v) e^{t}=20+v \\
20 e^{t}-v e^{t}=20+v \\
20 e^{+}-20 \\
20\left(e^{+}-1\right)=v+v e^{t} \\
20\left(e^{t-1}\right) \\
1+e^{t}
\end{gathered}=v .
$$

(iv)

$$
\begin{aligned}
\frac{d x}{d t} & =20\left(1-\frac{\frac{2}{e^{t}}}{\frac{1}{e^{t}}+\frac{e^{t}}{e^{t}}}\right) \\
& =20\left(1-\frac{2 e^{-t}}{e^{t+}+1}\right) \\
x & =20\left(t-2 \ln \left(1+e^{-t}\right)\right)
\end{aligned}
$$

Whe $x=0, t=0$

$$
\begin{aligned}
0 & =20(0-2 h 2) \\
& =-40 \ln 2 \\
\therefore x & =20\left(4-2 \ln \left(\frac{1+e^{-1}}{2}\right)\right)
\end{aligned}
$$

(c) F is $(a e, 0) A$ is $(a, 0)$

$$
\begin{aligned}
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& P F=e \cdot P M \\
& =e\left(a e-\frac{a}{e}\right) \\
& =a e^{2}-a \\
& =a\left(e^{2}-1\right) \quad \therefore P \text { is }\left(a e, a\left(e^{2}-1\right)\right) \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \frac{2 x}{a^{2}}-\frac{d y}{d x} \frac{2 y}{b^{2}}=0 \\
& \frac{d y}{d x}=\frac{2 x}{a^{2}} \times \frac{b^{2}}{2 y} \\
& =\frac{b^{2} x}{a^{2} y} \\
& \therefore m_{n}=\frac{-a^{2} y}{b^{2} x} \text { so at } P \\
& m_{n}=\frac{-a^{2} \cdot a\left(e^{2}-1\right)}{b^{2} a e} \\
& \text { but } b^{2}=a^{2}\left(e^{2}-1\right) \\
& m_{n}=-\frac{1}{e} \\
& \text { the } \tan (180-\theta)=m_{n} \\
& \because \quad \operatorname{ta} \theta=\frac{1}{e}
\end{aligned}
$$

(ii) $h=A F=a(e-1)$
and $P F=a\left(e^{2}-1\right)$

$$
\begin{aligned}
\therefore h(e+1) & =a(e-1)(e+1) \\
& =a\left(e^{2}-1\right) \\
\therefore P F & =h(e+1)
\end{aligned}
$$

(d)

$$
x^{3}+3 x^{2}+2 x+1=0
$$

\therefore with roots α^{2}, B^{2} and Y^{2} we get

$$
\begin{gathered}
\left(x^{\frac{1}{2}}\right)^{3}+3\left(x^{\frac{1}{2}}\right)^{2}+2\left(x^{\frac{1}{2}}\right)+1=0 \\
x^{\frac{3}{2}}+3 x+2 x^{\frac{1}{2}}+1=0 \\
x^{\frac{3}{2}}+2 x^{\frac{1}{2}}=-(3 x+1) \\
x^{\frac{1}{2}}(x+2)=-(3 x+1)
\end{gathered}
$$

square both sides

$$
\begin{aligned}
x(x+2)^{2} & =(3 x+1)^{2} \\
x\left(x^{2}-4 x+4\right) & =9 x^{2}+6 x+1 \\
x^{3}+4 x^{2}+4 x & =9 x^{2}+6 x+1
\end{aligned}
$$

\because manic equation is

$$
x^{3}-5 x^{2}-2 x-1=0
$$

Q16/(a) As both $A(x)$ and $B(x)$ are add
the- $A(-x)=-A(x)$

$$
B(-x)=-B(x)
$$

Now $P(-x)=A(-x)$. $B(-x)$
for $P(x)=A(x) \cdot B(x)$

$$
\begin{aligned}
\therefore P(-x) & =-A(x)-B(x) \\
& =A(x) \cdot B(x) \\
\therefore P(-x) & =P(x) \quad \text {-even. }
\end{aligned}
$$

(b)

Construct ED and EF

$$
\begin{aligned}
& \angle C A N=\angle A B C \text { (alterrate lage circle theoran) } \\
& \angle F A N=\angle A E F \text { (alterrate segmext theoren } \\
& \therefore \angle A B C=\triangle E F \\
& \therefore B C \| E F \text { (Correspordy } L \text { 's equil) }
\end{aligned}
$$

$\angle B D E=\angle D A E=\beta$ Calterate segmest theore largeciale)

$$
\begin{aligned}
& \angle B D E=\angle D E F=\beta \text { (atterate } \angle \text { 's } B C \| E F) \\
& \angle D E F=\angle D A C=\beta(\text { equal } \angle \text { 's on }
\end{aligned}
$$

circurference stodyon arc DF)

$$
\therefore D A E=\angle D A C=B
$$

Hence $A D$ bisects $\angle B A C$
(c) $\int x^{n} e^{-x^{2}} d x$

Let $u=x^{n-1}$

$$
\frac{d u}{d x}=(n-1) x^{n-2}
$$

$$
\begin{aligned}
& v^{\prime}=x e^{-x^{2}} \\
& v=-\frac{1}{2} e^{-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \int x^{n} e^{-x^{2}} d x & =-\frac{1}{2} x^{n-1} e^{-x^{2}}+\frac{n-1}{2} \int_{0}^{1} x^{n-2} e^{-x^{2}} d x \\
\int_{0}^{1} x^{5} e^{-x^{2}} d x & =\left[-\frac{1}{2} x^{4} e^{-x^{2}}\right]_{0}^{1}+2 \int_{0}^{1} x^{3} e^{-x^{2}} d x \\
& =-\frac{1}{2 e}+2\left[-\frac{1}{2} x^{2} e^{-x^{2}}\right]_{0}^{1}+1 \int_{0}^{1} x e^{-x^{2}} d x \\
& =-\frac{1}{2 e}+2 x-\frac{1}{2 e}+2\left[-\frac{1}{2} x^{0} e^{-x^{2}}\right]_{0}^{1} \\
& =-\frac{1}{2 e}-\frac{1}{e}+2\left[-\frac{1}{2 e}-\frac{1}{2}\right]^{6}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2 e}-\frac{1}{e}-\frac{1}{e}-1 \\
& =-\frac{1}{2 e}-\frac{2}{e}-1 \\
& =-\frac{1}{2 e}-\frac{4}{2 e}-1 \\
& =-1-\frac{5}{2 e}
\end{aligned}
$$

(d) $5^{n}>4 n+12$ for $n>1$

Step Prove true for $n=2$

$$
\begin{aligned}
& 5^{2}>4(2)+12 \\
& 25>20 \quad \therefore \text { the for } n=2
\end{aligned}
$$

Skep 2. Assume true for $n=k$ where k is a pasitiventerer ie $5^{k}>4 k+12$

Step 3 Prove true for $n=k+1$ ie $5^{k+1}>4 k+16$

$$
\begin{aligned}
& \text { LAS }=5.5^{k} \\
& >5(4 k+12) \\
& \text { from assumption } \\
& >20 k+60>4 k+16
\end{aligned}
$$

which is true for K bey a
positive inter

Step4 As, t is true for $n=2$ and if true for $n=k$, t is true for $n=k+1$, therefore true for all positive integers of $n, n>1$
(e) $2 \mathrm{~s}_{\mathrm{s}}^{\prime}$
[7] [6] $\times \frac{20}{2!}$ ways $=2100$
15
arragemets
17] [6] [4] $\times 5$ ways $=4200$ arravenets
No S's
[7] [6] [是 [4] $3=2520$ arraigeme).
\therefore Total

$$
\begin{aligned}
\text { arrangemeds } & =2100+4200+2520 \\
& =8820 \text { arrangements }
\end{aligned}
$$

Atterative appouch

$$
\begin{aligned}
& \begin{array}{c}
3 \text { Types } \\
2 S_{s}^{\prime} \\
N_{0} \text { of Select-s } \times N_{0} \text { of acrrayeneneb } \\
\left(1 \times 7 C_{3}\right) \times 5!
\end{array}
\end{aligned}
$$

