

Gosford High School

2015

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

• General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total Marks – 100

Section I Pages 2-5

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section
- Answer on the response sheet provided

Section II Pages 6 – 12

90 marks

- Attempt Questions 11 16
- Start a new booklet for each question
- Answer Question 14(a) on the answer sheet provided
- Allow about 2 hours and 45 minutes for section II

Section I

10 Marks Attempt Questions 1-10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for questions 1-10.

- 1 What is the value of $\lim_{h \to 0} \frac{\sqrt{h+1}-1}{h}$? (A) 0 (B) $\frac{1}{2}$ (C) 1 (D) 2
- 2 A, B, C are three consecutive terms in an arithmetic progression. Which of the following is a simplification of $\frac{\sin(A+C)}{\sin B}$?
 - (A) $2\cos B$
 - (B) $\sin 2B$
 - (C) $\cot B$
 - (D) 1

3 What is the number of asymptotes on the graph of the curve $y = \frac{x^2}{x^2 - 1}$?

page 2

- (A) 1
- (B) 2
- (C) 3
- (D) 4

1

1

1

4 On the Argand diagram below, P represents the complex number z.

.

Which of the following Argand diagrams shows the point Q representing $z + \overline{z}$?

Marks 1

.

Marks

5 What is the acute angle between the asymptotes of the hyperbola $\frac{x^2}{3} - y^2 = 1$?

- (A) $\frac{\pi}{6}$
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$

6 Which of the following is an expression for $\int_{0}^{\frac{x}{2}} \frac{1}{1+\sin x} dx$ after the substitution $t = \tan \frac{x}{2}$? 1

7

The region in the first quadrant bounded by the curve $y = 4x^2 - x^4$ and the x axis between 1 x = 0 and x = 2 is rotated through 2π radians about the y axis. Which of the following is an expression for the volume V of the solid formed ?

(A)
$$V = 2\pi \int_{0}^{4} \sqrt{4-y} \, dy$$

(B) $V = 4\pi \int_{0}^{4} \sqrt{4-y} \, dy$
(C) $V = 8\pi \int_{0}^{4} \sqrt{4-y} \, dy$

(D)
$$V = 16\pi \int_0^4 \sqrt{4-y} \, dy$$

8 The equation $x^4 + px + q = 0$, where $p \neq 0$ and $q \neq 0$, has roots α, β, γ and δ . What is the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$?

- (A) -4q
- (B) $p^2 2q$
- (C) $p^4 2q$
- (D) p^4

9 Which of the following is the range of the function $f(x) = \sin^{-1} x + \tan^{-1} x$?

1

1

Marks

1

- (A) $-\pi < y < \pi$
- (B) $-\pi \leq y \leq \pi$
- $(C) \qquad -\frac{3\pi}{4} \le y \le \frac{3\pi}{4}$
- (D) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

10 If $e^x + e^y = 1$, which of the following is an expression for $\frac{dy}{dx}$?

(A) $-e^{x-y}$

ţ

- (B) e^{x-y}
- (C) e^{y-x}
- (D) $-e^{y-x}$

Section II

90 Marks Attempt Questions 11-16 Allow about 2 hours and 45 minutes for this section.

Answer the questions on your own paper, or in writing booklets if provided. Start each question on a new page. All necessary working should be shown in every question.

Question 11 (15 marks)

Use a SEPARATE writing booklet

- (a) If z = 1+3i and w = 2-i find in the form a+ib (for real a and b) the values of
 (i) z̄ w
 - (ii) zw

(b)(i)	Express $-1 + \sqrt{3} i$ in modulus/argument form.	2
(ii)	Hence find the value of $z^8 - 16z^4$ in the form $a + ib$ where a and b are real.	2

- (c) In the Argand diagram OABC is a square, where O, A, B, C are in anti-clockwise cyclic order. The complex number z is represented by the vector \overrightarrow{OA} .
 - (i) Find in terms of z the complex numbers represented by the vectors \overline{OC} and \overline{OB} . 2
 - (ii) If the vector \overrightarrow{OB} represents the complex number 4+2i, find z in the form a+ib 2 where a and b are real.
- (d) The polynomial $P(x) = x^6 + ax^3 + bx^2$ has a factor $(x + 1)^2$. Find the values of the real numbers a and b.
- (e) The equation $x^4 + bx^3 + cx^2 + dx + 1 = 0$ has roots $\alpha, \frac{1}{\alpha}, \beta, \frac{1}{\beta}$.

Show that b = d

End of Question 11 Page 6 1

1

3

Question 12 (15 marks)

Marks

3

a) Find the following

(i)

$$\int \frac{e^{-x}}{1+e^x} \, dx \tag{3}$$

(ii)

$$\int \frac{x^2}{x+1} \, dx \tag{2}$$

b) Find the exact value of the following definite integral:

$$\int_{0}^{\frac{\pi}{6}} \sec^{3} 2\theta \, d\theta \qquad 4$$

c) By using the substitution of $x = tan \theta$, show that

$$\int_{1}^{\sqrt{3}} \frac{1}{x^2\sqrt{1+x^2}} \, dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} cosec\theta cot\theta \, d\theta$$

d) The area bounded by the line y = (2 - x) and the x axis, is rotated about the y axis. By using the method of cylindrical shells, find 3 the volume generated.

End of Question 12

Question 13 (15 marks)

Start a new booklet

Marks

3

1

(a) (i) If
$$z = cos\theta + isin\theta$$
, show that $z^n + \frac{1}{z^n} = 2cosn\theta$
(ii) For $z = r(cos\theta + isin\theta)$, find r and the smallest
positive value θ which satisfies $2z^3 = 9 + 3\sqrt{3}i$
2

(b) (i) Find the values of *A*, *B*, and *C* such that: $\frac{4x^2 - 3x - 4}{x^3 + x^2 - 2x} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 2}$

(ii) Hence evaluate

$$\int \frac{4x^2 - 3x - 4}{x^3 + x^2 - 2x} \, dx \qquad 1$$

- (c) Solve the equation $x^4 7x^3 + 17x^2 x 26 = 0$, given that x = (3 - 2i) is a root of the equation. 3
- (d) (i) Derive the equation of the tangent at the point $P(ct, \frac{c}{t})$ on 2 the rectangular hyperbola $xy = c^2$.
 - (ii) Find the coordinates of A and B where this tangent cuts the x and y axis respectively. 2
 - (iii) Prove that the area of the triangle OAB is a constant.(Where O is the origin).

End of Question 13

3

4

(a) The graph of y = f(x) is shown below.

Draw neat, separate sketches for each of the following, showing all important features.

(i)
$$y = |f(x)|$$
 1

(ii)
$$y = \frac{1}{f(x)}$$
 2

(iii)
$$y^2 = f(x)$$
 2

(iv)
$$y = e^{f(x)}$$
 2

(b)

١

Show that the equation of the normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

at the point $P(x_1, y_1)$ is given by the equation: $\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$

(c) A particle is projected vertically upwards. The resistance to the motion is proportional to the square of the velocity. The velocity of projection is V

(i) Show that the acceleration is given by:
$$\ddot{x} = -(g + kv^2)$$

(ii) Find the maximum height reached and the time taken to reach this height, expressing your answer in terms of V and k.

End of Question 14

Marks

1 2

1

2

(a)

The base of a solid is the region bounded by the curve $y = \ln(x)$, the x-axis, and the lines x = 1 and x = e, as shown in the diagram. Vertical cross-sections taken through this solid in a direction parallel to the x-axis are squares. A typical cross-section PQRS is shown. Find the volume of the solid.

(b) A particle of mass m kg is dropped from rest in a medium where the resistance to motion has magnitude $\frac{1}{40}mv^2$ when the speed of the particle is $v \text{ ms}^{-1}$. After *t* seconds the particle has fallen *x* metres. The acceleration due to gravity is 10 ms⁻².

(i) Explain why
$$\ddot{x} = \frac{1}{40} \left(400 - v^2 \right)$$
.
(ii) Find an expression for *t* in terms of *v* by integration.
(iii) Show that $v = 20 \left(1 - \frac{2}{1 + e^t} \right)$.

(iv) Find x as a function of t.

In the diagram, F is a focus of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with eccentricity e. This branch of the hyperbola cuts the x axis at A where $AF = h \cdot P$ is the point on the hyperbola vertically above F and the normal at P cuts the x axis at B making an acute angle θ with the x axis.

(i) Show that
$$\tan \theta = \frac{1}{e}$$
. 3

(ii) Show that
$$PF = h(e+1)$$

(c)

(d) The equation $x^3 + 3x^2 + 2x + 1 = 0$ has roots α , β and γ .

Find the monic cubic equation with roots α^2 , β^2 and γ^2 .

End of Question 15

2

1

Start a new booklet

If A(x) and B(x) are odd polynomial functions show that the product (a) $P(x) = A(x) \cdot B(x)$ is an even polynomial function.

(b)

In the diagram, MAN is the common tangent to two circles touching internally at A. B and C are two points on the larger circle such that BC is a tangent to the smaller circle with point of contact D. AB and AC cut the smaller circle at E and F respectively. Copy the diagram. Show that AD bisects $\angle BAC$.

Derive the reduction formula: (c)

$$\int x^{n} e^{-x^{2}} dx = -\frac{1}{2} x^{n-1} e^{-x^{2}} + \frac{n-1}{2} \int x^{n-2} e^{-x^{2}} dx$$

se this reduction formula to evaluate
$$\int_{0}^{1} x^{5} e^{-x^{2}} dx$$

and use this reduction formula to evaluate

(d) Use Mathematical Induction to prove that
$$5^n > 4n + 12$$
 for all integers $n > 1$.

Five letters are chosen from the word CHRISTMAS. These five letters are (e) then placed alongside one another to form a five letter arrangement. Find the number of distinct arrangements that are possible, considering all choices.

End of Question 16

2

4

4

3

2

Marks

Ext 2 (Sol-tim) TRIAL 2015 Q1/ Lim_ $\frac{-1}{h} \frac{Jh+1}{\sqrt{h+1}+1}$ Jh+1 $\frac{-\lim_{h \to 0} \frac{h+l-l}{h(h+l+l)}}{h \to 0}$ Vh+1+ . - 1 $Q_2/B-A=C$. B 2BB = A + C $\frac{2B}{R}$ <u>S</u>,. Sin Ő 2.B= A+C 2 Sin B Cas B -2 Cas B (vertical asymptotes) $Q_3/x=1, x=-$ <u>x</u>² <u>x</u>² x-700 -<u>-</u>x2 · y=1 (horizon 1) asymptote; $\frac{1}{1-\frac{1}{2}}$ Lim • $\mathcal{T} \rightarrow \mathcal{O} \mathcal{O}$

= 2 Rez $\overline{2}$ \rightarrow $\overline{2}$ 4 are $\gamma = \pm \frac{1}{\sqrt{3}} \chi$ 5 Asymptotes $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}$. +- 6= $\begin{array}{c|c}2 & 2\\\hline \hline \sqrt{3} & \overline{3}\end{array}$ <u>- 6=</u> 3 $\frac{3}{\sqrt{3}}$ tonG 0 tonie . 0 <u>++-</u> 3 کرالم الم 6 whe- $\frac{dt}{dx} = \frac{1}{2} \frac{\sec^2 x}{2}$ $\frac{2dt}{2} = dx$ ، ۵ Sec² when X $\frac{2d+}{++^2} = dx$ 1= fan 0 $1 + S_{1} \times = 1 + 2 + \frac{1}{1 + 2}$

= $\frac{1^{2}+2+1}{2}$ 1+2+ +1)- $\frac{7}{12} \times \frac{2d}{12}$ O $\int \frac{2}{(1++)^2} dt$ $\gamma = 4x^2 - x^4$ $x^4 - 4x^2 + 4 = 4 - y$ $(x^{2}-2)^{2}=4-y$ $(x^{2}-2)=\pm 14-y$ A=TT (X, -X) (Radius outer - $\Delta V = \pi \left(x_{2}^{2} - x_{1}^{2} \right)$) Dy · $=\pi \left(2+\sqrt{4-y}\right) - \left(2-\sqrt{4-y}\right)$ Δų 2π J4-y Δy

 $V = 2\pi \int 4 - y dy (A)$ $8/x^{4}+px+q=0$ $\begin{array}{l} \swarrow 4 + p \measuredangle + q = 0 \\ B^{4} + p \uplambda + q = 0 \\ \curlyvee 4 + p \uplambda + q = 0 \\ \checkmark 4 + p \uplambda + q = 0 \end{array}$ $\chi^{4} + B^{4} + \gamma^{4} + \gamma^{4} + \rho(\chi + B + \gamma + \sigma) + 4q = 0$ Domain is -1=x ≤ 1 $\frac{1}{1} = \frac{1}{1} \left(-1 \right) + \frac{1}{1} \left(-1 \right) = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} \left(-1 \right) + \frac{1}{1} = \frac{1}{1} \left(-1 \right) = \frac{1}{1} = \frac{1}{1} \left(-1 \right) + \frac{1}{1} = \frac{1}{1} \left(-1 \right) = = \frac{1}{1} \left($ $\leq \underline{T} + \underline{T}$ $\frac{-3\pi}{4} \leq y \leq 3\pi$ $\frac{10}{e^{2}+dy} = \frac{9}{20}$ $\frac{d_{y} = -e^{x}}{dx = e^{y}} \qquad (A)$

 $\frac{11}{a} = 1 + 3i = 1 - 3i$ $w = 2 - i \quad w = 2 + i$ $(i) \quad \frac{1-3i-2+i}{(ii)(1+3i)(2-i)} = 2-i+6i+3$ (b) (c) $R = \overline{3+1}$ 13 $a = \frac{1}{2\pi}$ -1 + 3i = 2(052 TT + 25.-2TT) CIS 2TT $\frac{2^{8} = 2^{8} \left((3 + 1) \frac{16\pi}{3} + 1 \frac{16\pi}{3} \right)}{= 2^{8} \left((3 + 1) \frac{16\pi}{3} + 1 \frac{16\pi}{3} \right)}$ (ii) $=2^{8}(-1-3i)$ = 28 $(-1-\sqrt{3})$ $= 2^{7} (-1 - h)$ 16=4=16.24 (cos & + isn & T $-\cos \frac{1}{2} + i \sin \frac{1}{3}$ $= 2^{8}($ $= 28(-\frac{1}{2} + \frac{1}{2}i)$ $= 2^{7}(-1 + \sqrt{3}i)$

 $\frac{16_{2}4}{2} = 2^{7} \left(-1 - \sqrt{3}\right) - 2^{7} \left(-1 + \sqrt{3}\right)$ $= -2^{7} - 2^{7} \sqrt{3} + 2^{7} - 2^{7} \sqrt{3}$ $= -2.2^{-1}\sqrt{3}i$ 8 0-256/32 (e) A 6 ļ. $\overrightarrow{OA} = \ge$ OC = λ (i) OB = OA OC ₅┾ ≥ ====(1+2 (ií 4+2i= (1+i 7

 $P(x) = 2c^{2} + ax + bx^{2}$ $\frac{-1) = 0}{0 = (-1)^{6} + a(-1)^{3} + b(-1)^{2}}$ a-b= $P'(x) = 6x^{5} + 3ax^{2} + 2bx$ р ((_) $-6(-1)^{5} + 3a(-1)^{2} + 2b(-1)$ 3a - 2b = 63a-2b=62 subtract (e) sum of nots atime are af $\frac{d+1}{d+B+1} = -b$ A + L + B + L = -bSom of roots 3 at a time $(d \times f \times B) + (d \times B \times f) + (f \times B \times f)$ $\left(\begin{array}{c} dx \\ dx \\ dx \\ B \end{array} \right) = -\frac{d}{G}$ $B + \alpha + \perp + \perp - d$. $\alpha = \beta = - \alpha$.

oc_____dsc____ $\frac{12}{a}$ 6 e $\frac{1}{x(1+e^{x})}$ For $\frac{q}{1+u} + \frac{b}{1+u}$ 144 $\alpha = 1$ $\frac{dx}{(1+e^{x})} = \frac{1}{e^{x}} = \frac{1}{1+e^{x}}$ ėx $-e^{\chi}$ - (1+ex $-\left(1-e^{\chi}\right)$ $-\left(1+e^{\chi}\right)$) dry

 (\tilde{i}) - dx $\chi^2 + 0\chi + 0$ $d_{x} =$ $\chi - 1 +$ - dx Σ + (<u> >C</u> + $\underline{x}+1$ Sec 320 do . Sec 20, Sec 26 d 6 $= \frac{\sec 2 \Theta}{(\cos 2 \Theta)^{-1}}$ = - (\log \sec{1}{\sec{1}{2}})^{-2} = -2 \sec{1}{3} - 2 \sec{1}{3} - 2 \sec{1}{3} O Let u: = 25, 20 (0326. (0326 = 2 Sec 20 + an 20

 $\frac{dV}{d\phi} = \sec^2 \Theta$ <u>20</u> ec26 Sec 20 0. T Sec 6 <u>√</u>3 2 2 - (sec 3 20 -Sec 20 d θ 3 + Sec 26 d0 Sec 20 d6 = √ 6 Sec 20 (Sec 20 + ta 20) 3+ Sec 20+ an 20 Sec 28 + 2sec²20 + 2sec 20 tan 20 3+ .Sec 20+ ta

= 13 + - In Sec 26 + to 26 Sect + <u>= √3</u> 0 13 lin Sec³ 20 de 3 + 1 10 2+ ĥ (2)when_ \overline{a} X dx = Sec20 do Sec26 do tan26, Seco Τ Sec O Θ 24

J G Costo x Sind xten 6 Cosec @ cot @ 20 : d P(J) $\Delta V = 2\pi x y \Delta x$ But i (2-x) $2\pi x$ $\Delta v = 2\pi$ 2 Volume otal 7 2 == 2 <u>Dx</u> Δ<u>x>0</u> × 2x-x-dx 2π

 2π 3 2 8 (0-0)17 8TT U² 13 251-6 Cas Z Cos (nG 5 .-Cas Sin -n6 Cus 5 1-ぇ Ş n +isn(n6)+(-,66)-isn(n0) (05) Zn 2 \bigtriangleup

 $(ii) = r^3 (a) 30 + i 5,-30$ 2r³(10,36+15,-36) = 9+3/31 · 2 r Cus 30 = 9 and $2r^{3}s_{1n}3\theta = 3/3$ by division $t_{0} = 30 = 3/3$ $= \frac{\sqrt{3}}{2} \text{ or } \frac{1}{\sqrt{3}}$ I (smallest positive value) 30 18 into 2030= Sub 3 CONT 9 $2/r^{3}\sqrt{3}$ 9 $\frac{2}{C^3 = 9}$ $\sqrt{2}$ $r^{3} = 9 \quad \sqrt{3}$ $\sqrt{3} \quad \sqrt{3}$ $(^{3}-3/3)$ トニノ 3

·. · · · b)(i) A(x-1)(x+2) + Box(x+2) + C(x-1)ox =82-3x-4 Let x=0 -2A = -43B = -3Let x = Let x = --2 6C = 18 $\dot{C} = 3$ · <u>2</u> 2 $-\frac{-1}{x-1}$ + $\frac{3}{x+2}$ due ln(x-1) + 3ln(x+2) + CAs $\int C$ -22 3-22 them a also factur since the coefficients - marker 3+2i) . **ス**-25 + ($pc^2 - 6jc + 13$ $x^{2} - 6x + 13)x$ 7xc3+17x2-x-26 3 + X ١ $-5(^{3}+$ 13,0 $^{2} + (2 \times -2x^2 + 12x - 26$

 $x^2 - x - 2$ is a factor ie (x+i)(x-2) are factors 0 $-\infty = x^4 - 7x^3 + 17x^2 - x - 26 = 0$ Sol-times dre x=3=2i, -1 and 2 $xy=c^2$ $y=c^2x^{-1}$ $\frac{dy}{dx} = \frac{-c^2}{x^2} \quad \text{af } x = ct$ $m_{T} = -c^{2}$ +2 $\frac{\gamma - \zeta}{\tau} = -\frac{1}{\tau^2} (x - c +)$ $\frac{1^2y-c+=-x+c+}{2}$ $2c + t^2y - 2ct = 0$ (ii) When x=0 $f'_y=2ct$ y = 2ct $\frac{y=2c}{L}$ B is (0, 2c)

Whe x = 2c +0 (2c+,0)A 15 Ø 2c+jii ØΔ $\frac{OB}{OB} = \frac{2c}{t}$ × 2ct× 2c rea OAB 2c2 _ 15 Constant as c is which a constant . Q14/(01) (1.5,5) 4,0-4 x

 $\frac{2\infty}{2}$ ∂ $\frac{-2x}{a^2}$ x dx $\frac{-\frac{b^2x}{a^2y}}{\frac{-a^2y}{b^2x}}$ A m $=a^2y!$ C - 24 b²x, y, $b^2 x, y$ a24,5C 21 b² $= \frac{a^2 x}{x} - a$ 2 $\frac{a^2x - b^2y}{x} - \frac{a^2 - b}{y}$ 2_

(c) mmky2 mq Taking upward's $\mathcal{X} = -q - k v^2$ ž kv^2 a v dvdx = $-(g+kv^2)$ -(g+kv2) dV $\frac{\partial x}{\partial V} = -(q + kv^2)$ $\frac{V}{q+kv^2}$ dv 2 $\frac{2KV}{g+kv^2}$ dV $\frac{-1}{2k}$ $g + kv^2 + C$ $= -\frac{1}{2K}$ Whe $-\ln(g+kV^2)+C$ $= - \frac{\ln \log}{2k}$ $= \frac{\ln \log k}{2k}$ 0 -2)

 $\frac{3}{2K} = -\frac{1}{2K} \ln \left(\frac{g + kv^2}{g + kv^2} \right) + \frac{1}{2K} \ln \left(\frac{g + kv^2}{g + kv^2} \right)$ $\frac{\chi = 1}{2k} \frac{\ln 5 q + k \nabla^2}{\frac{q + k v^2}{2}}$ aximum heig ht when V=0 $x_{max} = \frac{1}{2K} \left(\frac{g + k \sqrt{2}}{q} \right)$ $\frac{dv}{dI} = -(q + kv^2)$ $\frac{d+}{dV} = \frac{-1}{g+kv^2}$ $= -\int \frac{1}{g + kv^2} dv$ $\frac{-1}{K} \left(\frac{1}{\frac{9}{K} + v^2} dv \right)$ $\frac{-1}{K} \times \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \frac{1}{$ $K = \frac{\sqrt{K}}{\sqrt{g}} + \frac{\sqrt{K}}{$

when 20 *= - 1 tan-' (VK -+ C____ = $\frac{1}{\sqrt{Kq}}$ $\frac{1}{\sqrt{Kq}}$ V . (VK) $= -\frac{1}{\sqrt{Kg}} + \frac{1}{\sqrt{g}} + \frac{1}{\sqrt{Kg}} + \frac{1}{\sqrt{Kg}}$ when V = O1 to-'(ìe VIC - Vg (a æ »Ayt <u>slice</u> <u>x</u> axis with thickness

P-x Area of square POIRS = (e $-\overline{)}$ $1 = (e - x)^2 \Delta y$ Total $\frac{e}{\sum (e-x)^2} \Delta y$ Volume ف $b \circ +$ ±_____ $(e-x)^2$. dx $\left(e^{2}-2ex+x^{2}\right)\times \bot$ dx $\frac{e^2}{\int \frac{e^2}{x} + \frac{1}{x} dx}$ $\begin{bmatrix} e^2 \ln x - 2ex + \frac{x^2}{2} \end{bmatrix}$ e²-2e²+ e²-(0-2e+2) $=-e^{2}+2e-1, u^{3}$

aking Downwar 1 -+-Forces on particle 6 +=0 40 V2 X=0 VIO ma X - I muz mx = mq $\dot{x} = \frac{1}{400} \left(\frac{400 - v^2}{v^2} \right)$ as g = 10 400 - V2 (ii)40 40 262 -V d+ 2 • .] 1 20-V $\frac{1}{2}$ $3 + \sqrt{2}$ In (20+V +=0 :.c=0 when-V = 0 20+1 ت โท 201 V <u>as</u> . = 20+V e-0 0

 $(0-v)e^{+} = 20+v$ 200 $V+Ve^+$ $V(1+e^+)$ $) - \vee$ 20 $+e^{+}-2$ 1+e^{+} 1+e^{+} }=√___ 20 . 2 1+0+ $\frac{1-\frac{2}{e+}}{\frac{1}{e+}\frac{e+}{e+}}$ (ivi $-2e^+$ ſ 20_ X = + - 2 1/ (1+e-+ $\frac{x=0}{0-2k^2}$ $\frac{2\ln\left(\frac{1+e^{-1}}{2}\right)}{2}$ x = 20(+-_____

(C (ae, o)Fis Ais (ao $b^2 = a^2 (e^2 - 1)$ PF=e.PM - <u>a</u> ae $\frac{ae^2-a}{a(e^2-1)}$ ٠ Pis (ae, a (e2-1)) 0 α^2 , <u>a'. a</u> $(e^{2}-1)$ r 2 b2-a.(e2-1) but Ð. m n O

 (μ) h = AF = a(e-i)and $PF = a(e^2 - 1)$ h(e+1) = a(e-1)(e+1) $= \alpha (e^2 - 1)$ PF = h(e+i) $) x^{3} + 3x^{2} + 2x + 1 = 0$ with roots of, B' and Y' we get $(x^{\frac{1}{2}})^{3} + 3(x^{\frac{1}{2}})^{2} + 2(x^{\frac{1}{2}}) + 1 = 0$ $\frac{3}{x^{2}+3x+2x^{2}+1=0}$ $\frac{3}{2} + 2x^{\frac{1}{2}} = -(3x+1)$ $x^{2}(x+2) = -(3x+1)$ Square both Sides $\frac{32}{2} \left(\frac{x+2}{4} \right)^2 = (3x+1)^2$ $\propto (x^2 + 4x + 4) = 93(^2 + 6x + 1)$ $x^3 + 4x^2 + 4x = 9x^2 + 6x + 1$ monic equation is $x - 5x^2 - 1x - 1 = 0$

Q16/0) As both A(x) and B(x) are odd (-x) = -A(x)- R(~) Now A(-x), B(-x)(-x) =P(x) =A(x), B(x)-A(x) - B(x)Ξ A(x). B(x)P(x) .. eve-М Construct ED and EF LCAN = LABC Calternate Segme Calterrate Segme. Smaller LFAN = LAEF · LABC = AEF BULLEF (COFFESpordy ('s equal)

LBDE = LDAE = B Colterate segment theore large circle ZDEF= ZDAC=B (equal 2's on Circinference Stadyon arc DF) = B bisects LBAC $\int x^n e^{-x^2} dx$ $\frac{e^{-x^{2}}}{2} dx = -\frac{1}{2} x^{n-1} e^{-x^{2}} + \frac{n-1}{2} \left(x^{n-2} e^{-x^{2}} dx - \frac{1}{2} \right)^{n-2} e^{-x^{2}} dx$ $\int x^{5} e^{-x^{2}} dx = \int \frac{1}{2} x^{4} e^{-x^{2}} + 2 \int x^{3} e^{-x^{2}} dx$ $= -\frac{1}{2e} + 2 \left[-\frac{1}{2} x^2 e^{-x} \right] + 1 \left[x e^{-x^2} dx \right]$ $\frac{1}{2e} = -\frac{1}{2e} + \frac{2}{2} - \frac{1}{2} + \frac{2}{2} - \frac{1}{2} - \frac{1}{2} - \frac{2}{2} - \frac{1}{2} - \frac$ $2\begin{bmatrix}-1\\-2e\\-2\end{bmatrix}$ = - <u>r</u>e - e

<u>-2</u> e 4 Ze 2e -1 - 55 > 4n+12 for n>1 Prove the fir n=2 > 4(2)+12>20 : the for n=2 25 Assume true for n=12 where K is a positive integr Slep 2 $5^{k} > 4_{k+12}$ ie Prove true for n=k+1 e 5K+1 > 4K+16 $LHS = 5.5^{K}$ $\rightarrow 5(4K+12)$ _____; /<u>_____</u>, from assumpt. > 20 K + 60 > 4 K + 16 which 15 beij K positive in type

is true for n=29true n=k, j+for 12 true for n=k+1, therefor all posit rse 1 egers. 0 51 9 20 ways ሯ 100 5 ways 4 \times 4200 arrangements No S's 13/ 2520 14 6 2100+4200+2520 angene 5 8820 arrangem we approch 3 Types No of Selec x No of arrangements 51 $2S_s$ 7C2 / x <u>×</u>____ 2100 <u>/</u> <u>/ ×</u> 7<u>C5</u> 1 S _ <u>× 5</u> ooOS's 5 2520 8820