Trial Higher School Certificate 2011 Extension 2

Time: 3 hours

Total 120 marks

Question 1 (15 marks) (begin on a new page)

a) Find $\int \frac{x}{\sqrt{16-x^2}} dx$.

b) By completing the square, find $\int \frac{8}{x^2 + 4x + 13} dx.$

c) i) Find real numbers *a*, *b*, *c*, such that

$$\frac{7x+4}{(x^2+1)(x+2)} = \frac{ax+b}{x^2+1} + \frac{c}{x+2} \quad .$$

ii) Hence, find

$$\int \frac{7x+4}{(x^2+1)(x+2)} dx \quad .$$

d) Use integration by parts to find

$$\int x^2 \log_e x \, dx \ . \tag{3}$$

e) Use the substitution $u = \cos x$, to find $\int \cos^2 x \sin^7 x \, dx.$ Marks

2

Ques	stion 2	(15 marks) (begin on a new page)	Marks
a)) Let $z = 2 + i$, $w = 1 - i$. Find, in the form $x + i y$,		
	i)	3z + iw,	1
	ii)	$z\overline{w}$,	1
	iii)	$\frac{5}{z}$.	1
b)	Let $\alpha = -\sqrt{3} + i$.		
	i)	Express α in modulus - argument form.	2
	ii)	Express α^4 in modulus - argument form.	1
	iii)	Hence express α^4 in form $x + i y$.	1
c)	Sketch the region in the complex plane where the inequalities		
		$ z - i \le 2$ and $0 \le \arg(z - 1) \le \frac{3\pi}{4}$ hold simultaneously.	3

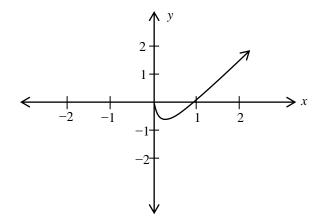
d) Let $z_1 = 4 + i$ and $z_2 = 1 + 2i$. Let points *A*, *B*, *C* represent the complex numbers $z_1, z_2, z_1 - z_2$, respectively, on the complex plane.

- i) On a diagram, show the points *A*, *B*, *C*. Indicate any geometrical relationships on your diagram.
- 1
- ii) The point *A* is rotated through 90° in the anticlockwise direction about *B* to the point *D*. Write down the complex number represented by *D*.
 - 1
- e) On an Argand diagram, sketch and describe geometrically the locus of z such that

$$|z| = |z - 4|.$$

Question 3 (15 marks) (begin on a new page)

a) The diagram below shows the graph of the function y = f(x).



Draw separate, one-third page sketches of the graphs of the following:

i)
$$y = -f(x)$$
, 1

ii)
$$y = |f(x)|,$$
 1

iii)
$$y = \frac{1}{f(x)},$$
 2

iv)
$$y = [f(x)]^2$$
. 2

b) i) On the same set of axes, sketch the graphs of
$$y = \log_e x$$
 and $y = \frac{2}{x}$. 1

ii) Hence, on a separate diagram, sketch the graph of
$$y = \frac{2\log_e x}{x}$$
. 4

Indicate on your graph any asymptotes and the co-ordinates of any stationary points.

c) Sketch the graph of
$$y^2 = (x - 2)(x - 3)$$
, including any asymptotes. 4

Marks

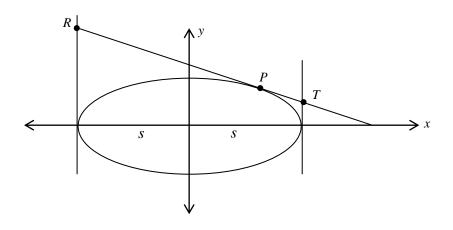
Question 4 (15 marks) (begin on a new page)

a) Consider the hyperbola with the equation
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
.

i)	What is the eccentricity of the hyperbola?	1
ii)	Find the co-ordinates of the foci and x intercepts of the hyperbola.	2

iii) Find the equations of the directrices and the asymptotes for the hyperbola. 2

b)



The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b > 0, as shown in the

diagram above. The points S and S' are the foci. The tangent at P meets the tangents at the ends of the major axis at R and T.

i) Show that the equation of the tangent at *P* is given by

$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1.$$
2

iii) Show that the points
$$R, T, S, S'$$
 are concyclic

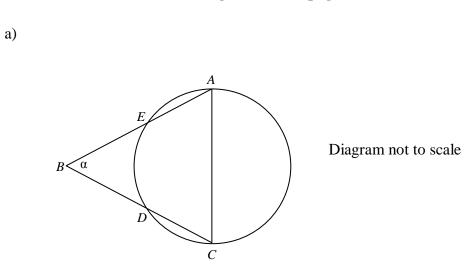
c) Let $Q(x_0, y_0)$ be an external point of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (That is $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} > 1$). Show that the equation of the chord of contact of the tangents from the point Q to the ellipse, is given by the equation $\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$. 4

Marks

3

Ques	tion 5	(15 marks) (begin on a new page)	Marks
a)		n $P(x) = x^4 + ax^2 + bx$ is divided by $x^2 + 1$, the remainder is $x + 2$. the values of <i>a</i> and <i>b</i> , given that these values are real.	3
b)	Find t	graph of $y = 2x^3 - 3x^2 - 12x + k$ has turning points at $x = 2$ and $x = -1$. the values of k such that the equation $y = 2x^3 - 3x^2 - 12x + k = 0$ has three and distinct roots.	2
c)	teach stude	ne-member fund raising committee consists of four students, three hers and two parents. The committee meets around a circular table, such that all t ents sit together as a group, all the teachers sit together as another group, but no to next to a student.	
	i)	How many different arrangements are possible for the members of the commi sit around the table.	ttee to 2
	ii)	One student and one parent are related. Given that all arrangements in b i) are equally likely, what is the probability that these two members sit next to each other?	2
d)	i)	Write down the three relations which hold between roots α , β , γ of the equation $ax^3 + bx^2 + cx + d = 0$, $a \neq 0$ and the coefficients <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> .	1
	ii)	Consider the equation $36x^3 - 12x^2 - 11x + 2 = 0$. You are given that the roots α , β , γ of this equation satisfy $\alpha = \beta + \gamma$ Use part i) to find α .	2
	iii)	Suppose the equation $x^3 + px^2 + qx + r = 0$ has roots α, β, γ , which satisfy $\alpha = \beta + \gamma$. Show that $p^3 - 4pq + 8r = 0$.	3

Question 6 (15 marks) (begin on a new page)



In the diagram above, AC is a diameter of a circle with the point *B* outside the circle. The intervals *BC* and *BA* meet the circle in the points *D* and *E* respectively.

Also, AC = BC. Let BA = x, BC = y and $\angle ABC = \alpha$.

i) Show that
$$\cos \alpha = \frac{x}{2y}$$
.

ii) Find the length
$$DC$$
 in terms of x and y. 4

b) Let
$$I_n = \int_{0}^{\frac{\pi}{2}} \cos^n t \, dt$$
, where $n \ge 0$ is an integer.

i) Show that
$$I_n = \left(\frac{n-1}{n}\right) I_{n-2}$$
 for $n \ge 2$.

ii) Hence find the exact value of
$$I_4$$
.

Question 6 continues on the next page.

Marks

6c) i) Let k > 0 be a real number.

If
$$\frac{(k+1)^{k-1}}{k^k} < 1$$
, show that $(k+1)^{k+1} > \frac{(k+1)^{2k}}{k^k}$.

ii) Prove, by mathematical induction, for all integers $n \ge 2$ that $n^n > (n+1)^{n-1}$.

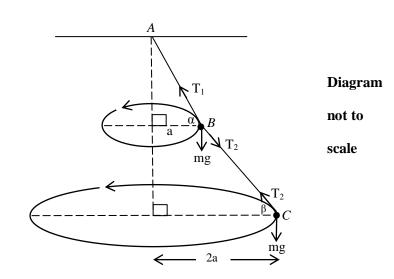
Question 7 (15 marks) (begin on a new page)

a) Let
$$I_n = \int \frac{dx}{(x^2 + 1)^n}$$
 where $n \ge 1$, is an integer.
i) Show that, for $n \ge 2$, $I_n = \frac{1}{2(n-1)} \left[\frac{x}{(x^2 + 1)^{n-1}} + (2n-3)I_{n-1} \right]$.

$$\int_{0}^{1} \frac{dx}{\left(x^{2}+1\right)^{2}}.$$

Question 7 continues on the next page.

Marks



A light, inextensible string *ABC* where $AB = \frac{5a}{3}$ and is inclined at an angle of α to the horizontal, while $BC = \frac{5a}{4}$ and is inclined at an angle β to the horizontal. At *B* is attached a particle of mass 7*m* and at *C* is attached a particle of *m*. The end *A* is attached to a fixed point and the whole system rotates steadily with uniform

angular velocity about the vertical through A in such a way that B and C describe horizontal circles of radii a and 2a respectively.

The tensions in the strings *AB* and *BC* are T_1 and T_2 respectively. The strings remain taught. The acceleration due to gravity is *g*.

i) Show that
$$T_2 = \frac{5}{3}mg$$
. 3

ii) Find
$$T_1$$
.

iii) If
$$v_1$$
 is the speed of B and v_2 is the speed of C, find the value of $\frac{v_1}{v_2}$. 4

7b)

Marks

6

Question 8 (15 marks) (begin on a new page)

a) The region between the curve $y = \sin x$ and the line y = 1, from x = 0to $x = \frac{\pi}{2}$, is rotated around the line y = 1. Using a slicing technique, find the exact volume formed.

b) i) Differentiate with respect to x, the function, h(x) given by

$$h(x) = \frac{\log_e x}{r} \quad \text{for } x > 0.$$

ii) Given that the only stationary point of y = h(x) is a maximum turning point, deduce, without calculating any numerical values, that e^π > π^e.
 [you may assume that π > e]

c) The diagram shows a boat showroom built on level ground. The length of showroom is 100 m. At one end of the showroom, the shape is a square measuring 20 m by 20 m and at the other end an isosceles triangle of height 20 m and base 10 m. The trapezium *ABCD* is a cross section of the showroom taken parallel to the ends.

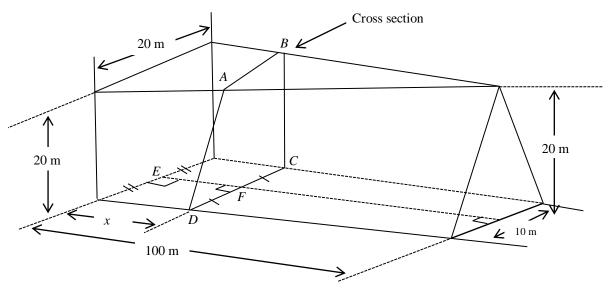


Diagram not to scale.

- i) If *EF* is x metres in length, show that the length of *DC* is $\left(20 \frac{x}{10}\right)$ metres. 2
- ii) By considering trapezoidal slices parallel to the ends of the showroom, find the volume enclosed by the showroom.

END OF EXAMINATION

THGS Yr 12 Extension 2 Trial solutions 2011

Pg-1-

(a)(i) Let
$$u = 16 - x^2$$
 then $\frac{du}{dx} = -2x$
 $x dx = -\frac{1}{2} du$
 $\int \frac{x}{\sqrt{16 - x^2}} dx = -\frac{1}{2} \int u^{-\frac{1}{2}} du$
 $= -\frac{1}{2} \times 2u^{\frac{1}{2}}$
 $= -\sqrt{16 - x^2}$
(b) $\int \frac{8}{x^2 + 4x + 13} dx = 8 \int \frac{dx}{(x + 2)^2 + 3^2}$
 $= \frac{8}{3} \tan^{-1} \frac{(x + 2)}{3} + c$

(c)(i)
$$\frac{7x+4}{(x^2+1)(x+2)} = \frac{ax+b}{x^2+1} + \frac{c}{x+2}$$

$$7x+4 = (ax+b)(x+2) + c(x^2+1)$$

Let $x = -2$ and $x = 0$
 $-10 = 5c$ $4 = b(0+2) - 2(0^2+1)$
 $c = -2$ $b = 3$
Equating the coefficients of x^2 , $0 = a - 2$
 $a = 2$

$$\therefore a = 2, b = 3 \text{ and } c = -2$$

(c)(ii)
$$\int \frac{7x+4}{(x^2+1)(x+2)} dx = \int (\frac{2x+3}{(x^2+1)} - \frac{2}{(x+2)}) dx$$
$$= \int (\frac{2x}{(x^2+1)} + \frac{3}{(x^2+1)} - \frac{2}{(x+2)}) dx$$
$$= \ln(x^2+1) + 3\tan^{-1}x - 2\ln|x+2| + c$$

$$\int x^{2} \log_{e} x \, dx = \log_{e} x \times \frac{x^{3}}{2} - \int \frac{x^{3}}{3} \frac{1}{x} \, dx$$
$$= \frac{x^{2} \log_{e} x}{3} - \frac{1}{3} \int x^{2} \, dx$$
$$= \frac{x^{3} \log_{e} x}{3} - \frac{x^{3}}{7} + c$$

e) Let $u = \cos x$ then $-du = \sin x dx$ Now $\sin^6 x = (\sin^2 x)^3$ $= (1 - \cos^2 x)^3$ $= 1 - 3\cos^2 x + 3\cos^4 x - \cos^6 x$ $\int \cos^2 x \sin^7 x dx = \int \cos^2 x \sin^6 x \sin x dx$ $= \int u^2 (1 - 3u^2 + 3u^4 - u^6)(-du)$ $= \int -u^2 + 3u^4 - 3u^6 + u^8 du$ $= -\frac{u^3}{3} + \frac{3u^5}{5} - \frac{3u^7}{7} + \frac{u^9}{9} + c$ $= -\frac{\cos^3 x}{3} + \frac{3\cos^5 x}{5} - \frac{3\cos^7 x}{7} + \frac{\cos^9 x}{9} + c$

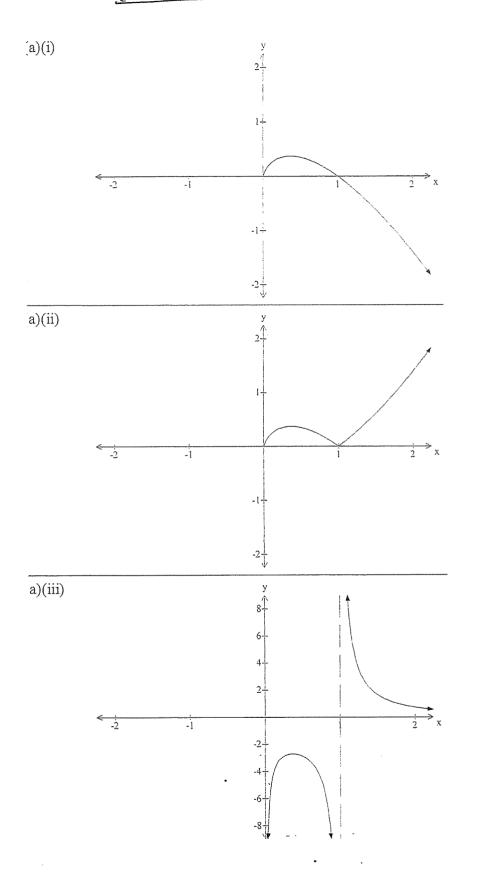
Question 2

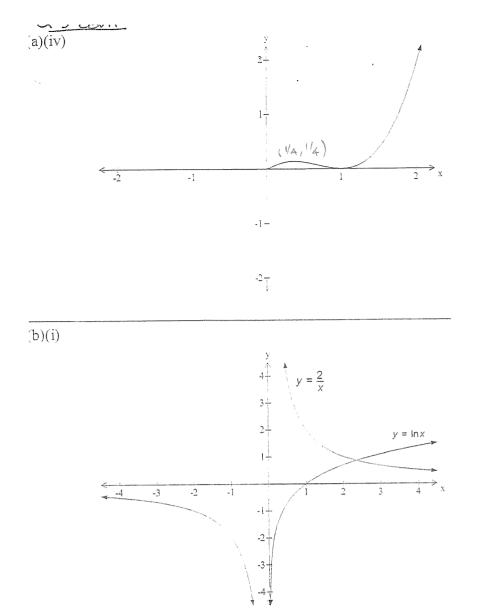
(a)(i)
$$3z + iw = 3(2 + i) + i(1 - i)$$

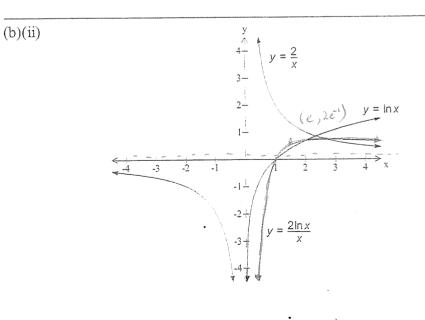
 $= 6 + 3i + i - i^{2}$
 $= 7 + 4i$
(a)(ii) $z\overline{w} = (2 + i)(1 + i)$
 $= 2 + 2i + i + i^{2}$
 $= 1 + 3i$
(a)(iii) $\frac{5}{z} = \frac{5}{2 + i} \times \frac{2 - i}{2 - i}$
 $= \frac{5(2 - i)}{4 + 1}$
 $= 2 - i$

Q.2 (b)(i)	Angle α is in the 2 nd quadrant with $\arg \alpha = \frac{5\pi}{6}$ and	
	$(\alpha)^2 = (\sqrt{3})^2 + 1^2$ = 3 + 1 $\tan \alpha = -\frac{1}{\sqrt{3}}$	
	$ \alpha = 2$	
	Modulus-argument form $2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$	A B
(b)(ii)	De Moivre's theorem	2(d)(1) $2 + A$
	$\alpha^{4} = (2\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})^{4}$	
	$=2^{4}(\cos 4 \times \frac{5\pi}{6} + i\sin 4 \times \frac{5\pi}{6})$	
	$=16(\cos\frac{10\pi}{3}+i\sin\frac{10\pi}{3})$	
	$=16(\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3})$	(ii) D rep
(b)(iii)	$\alpha^4 = 16(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3})$	$Z_2 + i(Z_1 - Z_2)$ = $1 + 2i + i(3 - i)$
	$=16(-\frac{1}{2}+i \times -\frac{\sqrt{3}}{2})$	= 2+56
	$= 10(-\frac{1}{2}+i) \times (-\frac{1}{2})$ = -8 - 8\sqrt{3}i	
(c)	y A	Re)
	4	(1,2) = 7
		2
		4
	4	
	$-2\frac{1}{\sqrt{2}}$	
	$ z - i \le 2$ represents a region with a centre is (0, 1) and radius is less than or equal to 2.	
	$0 \le \arg(z-1) \le \frac{3\pi}{4}$ represents a region between angle 0	
	and $\frac{3\pi}{4}$ whose vertex is (1, 0), not including the vertex	
	·	3

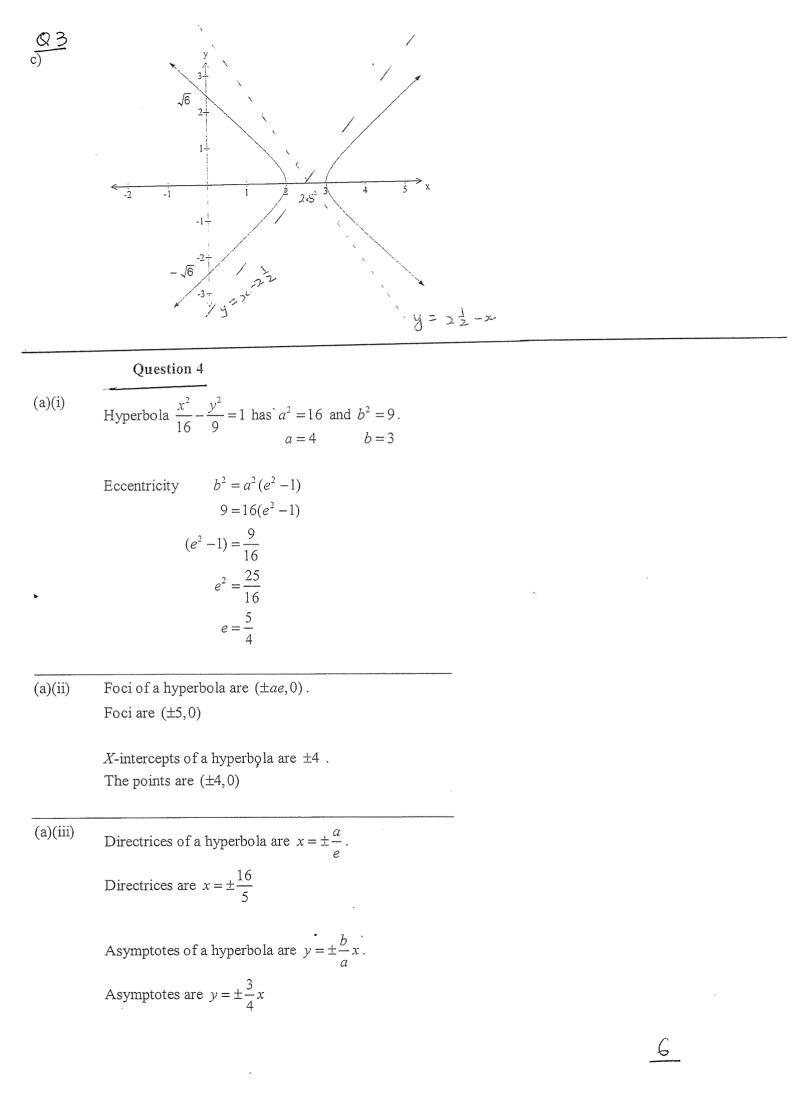
.

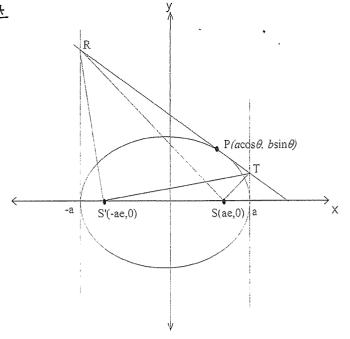






.





b)(i) To find the equation of tangent through P $x = a \cos \theta \qquad y = b \sin \theta$ $\frac{dx}{d\theta} = -a \sin \theta \qquad \frac{dy}{d\theta} = b \cos \theta$ $\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$ $= b \cos \theta \times \frac{1}{-a \sin \theta}$ $= \frac{-b \cos \theta}{a \sin \theta}$

Equation of the tangent

$$y - y_{1} = m(x - x_{1})$$

$$y - b\sin\theta = \frac{-b\cos\theta}{a\sin\theta}(x - a\cos\theta)$$

$$ay\sin\theta - ab\sin^{2}\theta = -bx\cos\theta + ab\cos^{2}\theta$$

$$bx\cos\theta + ay\sin\theta = ab(\sin^{2}\theta + \cos^{2}\theta)$$

$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$

(b)(ii)
$$\frac{Q}{At} T x = a$$
 then $\frac{a}{a} \cos \theta + \frac{y}{b} \sin \theta = 1$
 $\frac{y}{b} \sin \theta = 1 - \cos \theta$
 $y = \frac{b(1 - \cos \theta)}{\sin \theta}$

At R x = -a then similarly $y = \frac{b(1 + \cos \theta)}{\sin \theta}$

Gradients of lines at the focus S(ae,0)

Gradient RS × Gradient TS

$$= \frac{b(1+\cos\theta)}{\sin\theta} - 0 \times \frac{b(1-\cos\theta)}{\sin\theta} - 0$$
$$= \frac{b(1+\cos\theta)}{-a-ae} \times \frac{b(1-\cos\theta)}{a-ae}$$
$$= \frac{b(1+\cos\theta)}{-a(1+e)\sin\theta} \times \frac{b(1-\cos\theta)}{a(1-e)\sin\theta}$$
$$= \frac{b^2(1-\cos^2\theta)}{-a^2(1-e^2)\sin^2\theta}$$
$$= -1 \qquad \therefore \angle 2 \leq \tau = 90^{\circ}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{a^2} \left(\frac{1 - \cos^2 \alpha}{(1 - c^2) \sin^2 \alpha} \right)$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

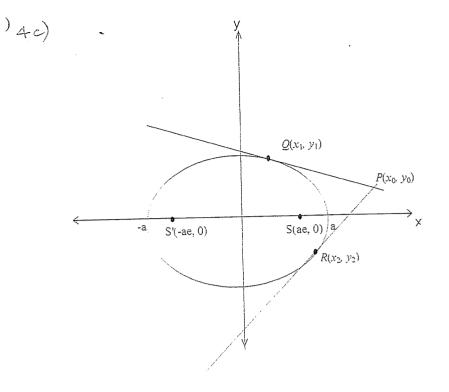
$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

$$\frac{\partial P}{\partial x} = \frac{b^2}{(1 - c^2) \sin^2 \alpha}$$

•

.

,



To find the gradient of the tangent

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
$$\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = \frac{-2x}{a^2} \times \frac{b^2}{2y}$$
$$= \frac{-xb^2}{ya^2}$$

Equation of the tangent at $P(x_1, y_1)$

$$y - y_{1} = m(x - x_{1})$$

$$y - y_{1} = \frac{-x_{1}b^{2}}{y_{1}a^{2}}(x - x_{1})$$

$$yy_{1}a^{2} - y_{1}^{2}a^{2} = -x_{1}xb^{2} + x_{1}^{2}b^{2}$$

$$x_{1}xb^{2} + yy_{1}a^{2} = y_{1}^{2}a^{2} + x_{1}^{2}b^{2}$$

$$\frac{x_{1}x}{a^{2}} + \frac{y_{1}y}{b^{2}} = \frac{y_{1}^{2}}{b^{2}} + \frac{x_{1}^{2}}{a^{2}}$$

$$\frac{x_{1}x}{a^{2}} + \frac{y_{1}y}{b^{2}} = 1$$

 $P(x_0, y_0)$ is on the tangent at Q.

$$\therefore \frac{x_1 x_0}{a^2} + \frac{y_1 y_0}{b^2} = 1$$
 Eqn 1

Similarly the equation of the tangent at $R(x_2, y_2)$ is

$$\frac{x_2 x}{a^2} + \frac{y_2 y}{b^2} = 1$$

 $P(x_0, y_0)$ is on the tangent at R

$$\therefore \frac{x_2 x_0}{a^2} + \frac{y_2 y_0}{b^2} = 1 \qquad \text{Eqn 2}$$

Hence the points P & Q both satisfy

$$\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$$

 \therefore The equation of the chord of

contact PQ is
$$\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$$
 9

a)
$$P(x) = x^{4} + ax^{2} + bx$$

 $x^{2} + 1 = (x + i)(x - i)$
 $P(i) = i^{4} - a + bi$
but $P(i) = i + 2$ From $P(x) = (x^{2} + 1)q(x) + x + 2$
 $\therefore 1 - a = 2$ $bi = i$
 $a = -1$, $b = 1$

b)
$$y = 2x^3 - 3x^2 - 12x + k$$

need $y(2) \times y(-1) < 0$
 $(2 \times 8 - 3 \times 4 - 24 + k)(-2 - 3 + 12 + k) < 0$
 $(k - 20)(k + 7) < 0$
 $-7 < k < 20$

ci) 4!students and 3! teachers,
$$\therefore P_1P_2 = 2 \times 3! \times 4! = 288$$

cii) S_1P_1 represents student, parent. *S'*, *P* are remaining set of students and other parents, *T* is teachers.

 $\therefore 3! =$ students and 3! = teachers. $2 \times 3! \times 3! = 72$

$$\therefore \operatorname{Prob} = \frac{72}{288} = \frac{1}{4}$$

5*di*)
$$\alpha + \beta + \gamma = \frac{-b}{a}$$
 $\alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a}$ $\alpha\beta\gamma = \frac{-d}{a}$

dii)
$$\alpha + \beta + \gamma = 2\alpha = \frac{12}{36} = \frac{1}{3}, \ \alpha = \frac{1}{6}$$

$$diii) \alpha + \beta + \gamma = 2(\beta + \gamma) = -p$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \beta\gamma + (\beta + \gamma)\alpha$$

$$= \beta\gamma + (\beta + \gamma)^{2}$$

$$= (\beta^{2} + 3\beta\gamma + \gamma^{2})$$

$$= q$$

$$\alpha\beta\gamma = \beta\gamma + (\beta + \gamma) = -r$$

$$\therefore p^{3} - 4pq + 8r$$

$$= -8(\beta + \gamma)^{3} + 8(\beta + \gamma) + (\beta^{2} + 3\beta\gamma + \gamma^{2}) - 8(\beta + \gamma)\beta\gamma$$

$$= -8(\beta + \gamma) [(\beta + \gamma)^{2} - (\beta^{2} + 3\beta\gamma + \gamma^{2}) + \beta\gamma]$$

$$= 0$$

Assume AB = x *ai*) join *C* to $E, \angle AEC = 90^{\circ}$ *CE* is the axis of symmetry for $\triangle ABC$. $EB = \frac{x}{2}$

$$EB = \frac{1}{2}$$

$$\therefore \cos \alpha = \frac{EB}{BC} = \frac{\frac{x}{2}}{y} = \frac{x}{2y}.$$

ii) join A to
$$D, \angle ADC = 90^{\circ}$$

$$\cos \alpha = \frac{BD}{AB}$$
$$\therefore BD = AB \cos \alpha$$
$$= x \cdot \frac{x}{2y} = \frac{x^2}{2y}$$

$$\therefore DC = y - \frac{x^2}{2y}$$
$$= \frac{2y^2 - x^2}{2y}$$

$$bi)I_{n} = \int_{0}^{\frac{\pi}{2}} \cos^{n} t \, dt \qquad bii)I_{4} = \frac{3}{4}I_{2}$$

$$= \left[\sin t \cdot \cos^{n-t} t\right]_{0}^{\frac{\pi}{2}} + (n-1)\int_{0}^{\frac{\pi}{2}} \sin^{2} t \cdot \cos^{n-2} t \, dt \qquad = \frac{3 \cdot 1}{4 \cdot 2}I_{0}$$

$$I_{n} = (n-1)\int_{0}^{\frac{\pi}{2}} (1 - \cos^{2} t) \cdot \cos^{n-2} t \, dt \qquad \int_{0}^{\frac{\pi}{2}} dt = [t]_{0}^{\frac{\pi}{2}}$$

$$= (n-1)[I_{n-2} - I_{n}] \qquad = \frac{\pi}{2}$$

$$I_{4} = \frac{3}{8} + \frac{\pi}{2}$$

$$nI_{n} = (n-1)I_{n-2} \qquad I_{n} \ge 2$$

6ci)
$$0 < \frac{(k+1)^{k-1}}{k^k} < 1$$

so $(k+1)^{k+1} > (k+1)^{k+1} \times \frac{(k+1)^{k-1}}{k^k}$
 $\therefore (k+1)^{k+1} > \frac{(k+1)^{(k+1+k-1)}}{k^k} = \frac{(k+1)^{2k}}{k^k}$

6*cii*) Let P(n) be the proposition that

$$n^n > (n+1)^{n-1} \text{ for } n \ge 2$$

$$P(2): 2^{2} > (2+1)^{2-1},$$

LHS = 4, RHS = 3

:..

.

LHS > RHS, so true for P(2)

To Prove : If
$$P(k)$$
 is true then $P(k+1)$ is true for $k \ge 2$.
 $P(k)$: $k^k > (k+1)^{k-1}$
 $P(k+1):(k+1)^{k+1} > (k+2)^k$.
Consider LHS of $P(k+1)$
Assuming $P(k)$ true then $k^k > (k+1)^{k-1}$,
 $k > 0$, then $k^k > (k+1)^{k-1}$

$$\frac{\left(k+1\right)^{k-1}}{k^k} < 1$$

So by i)

$$(k+1)^{k+1} > \frac{(k+1)^{2k}}{k^{k}}$$

$$= \left[\frac{(k+1)^{2}}{k}\right]^{k}$$

$$= \left(\frac{k^{2}+2k+1}{k}\right)^{k}$$

$$= \left(k+2+\frac{1}{k}\right)^{k}$$

$$> (k+2)^{k} \text{ as } k > k$$

 $\therefore P(k+1)$ true provided P(k) true. Hence P(n) true for integeers $n \ge 2$, by Mathematical Induction.

$$7ai) I_{n} = \int \frac{dx}{(x^{2}+1)^{n}}, \quad n \ge 1$$

$$= \int \frac{1}{(x^{2}+1)^{n}} \frac{d}{dx}(x) dx$$

$$= \frac{x}{(x^{2}+1)^{n}} - (-n) \int x \cdot \frac{2x}{(x^{2}+1)^{n+1}} dx, \quad n \ge 1$$

$$= \frac{x}{(x^{2}+1)^{n}} + 2n \int \frac{x^{2}}{(x^{2}+1)^{n+1}}$$

$$= \frac{x}{(x^{2}+1)^{n}} + 2n \int \left[\frac{x^{2}+1}{(x^{2}+1)^{n+1}} - \frac{1}{(x^{2}+1)^{n+1}}\right] dx$$

$$= \frac{x}{(x^{2}+1)^{n}} + 2n \int \frac{dx}{(x^{2}+1)^{n}} - 2n \int \frac{dx}{(x^{2}+1)^{n+1}}$$

$$\therefore I_{n} = \frac{x}{(x^{2}+1)^{n}} + 2n I_{n} - 2n I_{n+1}$$

$$\therefore 2n I_{n+1} = \frac{x}{(x^{2}+1)^{n}} + (2n-1) I_{n}$$

$$\therefore I_{n+1} = \frac{1}{2n} \left[\frac{x}{(x^{2}+1)^{n}} + (2n-1) I_{n}\right]$$

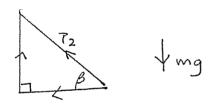
replace *n* by *n*-1, for $n \ge 2$

$$I_{n} = \frac{1}{2(n-1)} \left[\frac{x}{(x^{2}+1)^{n-1}} + (2n-3)I_{n-1} \right]$$

. Q7

7aii)
$$I_{n} = \frac{1}{2(n-1)} \left\{ \left[\frac{x}{(x^{2}+1)^{n-1}} \right]_{0}^{1} + (2n-3)I_{n-1} \right] \\ = \frac{1}{2(n-1)} \left[\frac{1}{2} + (2n-3)I_{n-1} \right], n \ge 2$$
$$I_{2} = \int_{0}^{1} \frac{dx}{(x^{2}+1)^{2}} \\ = \frac{1}{2} \left[\frac{1}{2} + I_{1} \right] \\I_{1} = \int_{0}^{1} \frac{dx}{(x^{2}+1)} = \left[\tan^{-1} x \right]_{0}^{1} \\ = \tan^{-1}1 - 0 = \frac{\pi}{4} \\ \therefore I_{2} = \frac{1}{2} \left[\frac{1}{2} + \frac{\pi}{4} \right] = \frac{1}{4} + \frac{\pi}{8}$$

7b)
$$\int_{-\frac{1}{2}} \int_{-\frac{\pi}{4}}^{1} \int_{-\frac{\pi}{4}}$$



$$T_{1} \cos \alpha - T_{2} \cos \beta = \frac{7}{2} maw^{2}$$
(1)
$$T_{1} \sin \alpha = T_{2} \sin \beta + 7mg$$
(2)

$$\cos \alpha = \frac{a}{5a/3} = \frac{3}{5}$$
$$\sin \alpha = \frac{4}{5}$$

$$T_{2} \cos \beta = m.2a.w^{2} \qquad (3)$$

$$T_{2} \sin \beta = mg \qquad (4)$$

$$\cos \beta = \frac{a}{5a/4} = \frac{4}{5}$$

$$\sin \beta = \frac{3}{5}$$

}

7bi)
$$T_2 = \frac{mg}{\sin \beta} = mg \times \frac{5}{3} = \frac{5}{3}mg$$

bii) by(2)
 $T_1 \times \frac{4}{5} = \frac{5}{3}mg \times \frac{3}{5} + 7mg$
 $\frac{4}{5}T_1 = 8mg$

$$\frac{-5}{5}T_1 = 8mg$$
$$\therefore T_1 = \frac{5}{4}8mg = 10mg$$

iii) by (1)

$$T_{1} \cos \alpha - T_{2} \cos \beta = \frac{7mv_{1}^{2}}{a}$$

$$10mg \times \frac{3}{5} - \frac{5}{3}mg \times \frac{4}{5} = \frac{7mv_{1}^{2}}{a}$$

$$\therefore v_{1}^{2} = \frac{a}{7m} \left[10mg \times \frac{3}{5} - \frac{5}{3}mg \times \frac{4}{5} \right]$$

$$= \frac{ag}{7} \left[6 - \frac{4}{3} \right]$$

$$= \frac{ag}{7} \times \frac{14}{3} = \frac{2}{3}ag$$

also by
$$(4)$$

so by (4)

$$T_{2} \cos \beta = \frac{mv_{2}^{2}}{2a}$$

$$\frac{5}{3}mg \times \frac{4}{5} = \frac{m}{2a}v_{2}^{2}$$

$$v_{2}^{2} = \frac{2a}{m} \times \frac{5}{3}mg \times \frac{4}{5}$$

$$= ag \left[2 \times \frac{5}{3} \times \frac{4}{5} \right]$$

$$= \frac{8}{3}ag$$

$$\therefore \left(\frac{v_1}{v_2}\right)^2 = \frac{\frac{2}{3}}{\frac{8}{3}} = \frac{1}{4}$$
$$\left(\frac{v_1}{v_2}\right) = \frac{1}{2}$$

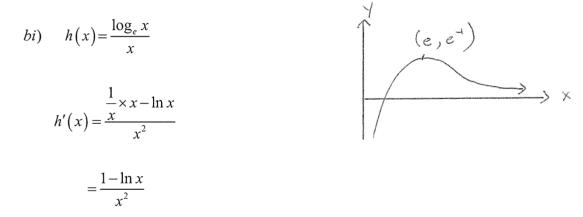
÷

 $\underline{\pi}$

a) Area of slice =
$$\pi (1-y)^2$$
 Vol slice = $\pi (1-\sin x)^2 \Delta x$
= $\pi (1-\sin x)^2$

$$V = \lim_{\Delta x \to 0} \sum_{0}^{2} \pi (1 - \sin x)^{2} dx$$

= $\pi \int_{0}^{\frac{\pi}{2}} (1 - 2\sin x)^{2} dx + (1 - \frac{1}{2})^{2} \cos 2x dx$ $(\sin^{2} x)^{2} = \frac{1}{2} - \frac{1}{2} \cos 2x dx)$
= $\pi \int_{0}^{\frac{\pi}{2}} (\frac{3}{2} - 2\sin x)^{2} - \frac{1}{2} \cos 2x dx$
= $\pi \left[\frac{3}{2} x + 2\cos x - \frac{1}{4} \sin 2x \right]_{0}^{\frac{\pi}{2}}$
= $\pi \left(\frac{3\pi}{4} - 2 \right) u^{3}$

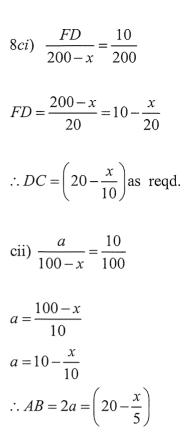


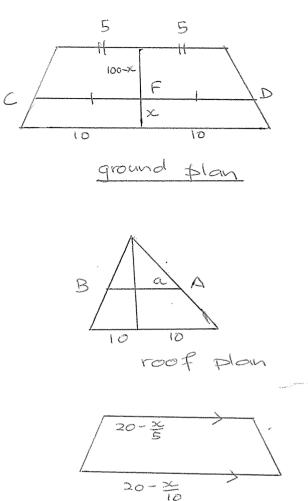
17

bii) St.Pt. is at x = e, $y = e^{-1}$

assuming $\pi > e$, then from the graph

$$\frac{\ln \pi}{\pi} < e^{-1} = \frac{1}{e}$$
$$\therefore \ln \pi < \frac{\pi}{e}$$
$$\therefore e^{\ln \pi} < e^{\frac{\pi}{e}}$$
$$\left(e^{\ln \pi}\right)^{e} < \left(e^{\frac{\pi}{e}}\right)^{e}$$
$$\pi^{e} < e^{\pi}$$
$$ie e^{\pi} > \pi^{e}$$





each trap slice looks like: Area of face is:

$$A_{1} = 10\left(20 - \frac{x}{5} + 20 - \frac{x}{20}\right)$$
$$A_{1} = 400 - 3x$$

Vol of each slice is ΔV where $\Delta V = (400 - 3x) \Delta x$ $\therefore V = \lim_{\Delta x \to 0} \sum (400 - 3x) \Delta x$ $= \int_{0}^{100} (400 - 3x) dx$

$$= \left[400x - \frac{3x^2}{2} \right]_0^{100}$$
$$= 25000 \ m^3$$

End of solutions

Pg 18

Marking Guidelines for THGS

Mathematics Extension 2 Trial HSC 2011

Preamble

- These guidelines were strictly implemented. Very occasionally a 'Judgment Call' may have been made. Marks were awarded, not deducted, for student's working as per guidelines.
- The 'carry through error policy' was used unless the solution was made easier by the student's error. In these cases, a 'Judgment Call' was made.
- Multiple Solutions policy. The last attempt (not crossed out) is assumed to be the actual attempt, whether or not other attempts have been crossed out. If a crossed out attempt would have gained more marks, one mark was deducted, and if higher then this became the mark.
- A red line down the left or right hand side of a script page means the content has been read by the marker.
- For each question part, only the total mark is given on the right hand side of the page, usually without comment. Sometimes working is underlined in red usually indicating that a problem with the student's working is noted.

Question 1

1(a) <u>2 marks</u>

- Correct bald answer-ignore '+C'.
- Correct solution-ignore '+C'.

<u>1 mark</u>

- Correct integral from a correct substitution.
- Answer of the form $k\sqrt{16-x^2}$ obtained from a correct integral.

1(b) <u>2 marks</u>

- Correct bald answer-ignore '+C'.
- Correct solution-ignore '+C'.

<u>1 mark</u>

- Correct integral with the square completed.
- Obtains answer of the form $k \tan^{-1}(\frac{x+2}{a})$ obtained from their integral.

1(c)(i) 3 marks

• Correct answer or solution.

2 marks

• Obtains a set of answers by using a correct method.

<u>1 mark</u>

• Obtains a correct equation in *a*, *b*, *c*.

1(c)(ii) 2 marks

- Correct answer or solution.
- Obtains a correct answer from their set of values of a, b, c. (Ignore '+C'.)

<u>1 mark</u>

- Obtains a set of three integrals using their set of values of *a*,*b*,*c*.
- Obtains an answer of the form $k \ln(x^2 + 1) + l \tan^{-1} x + m \ln(x + 2)$.

1(d) <u>3 marks</u>

• Correct solution-ignore '+C'.

2 marks

• Obtains an answer of the form $kx^3 \ln(x) - mx^3$, with m>0, using a correct method.

<u>1 mark</u>

• Attempts to use correctly the method of 'Integration by Parts'.

1(e) <u>3 marks</u>

• Correct solution.

<u>2 marks</u>

- Obtains a correct integral in terms of a polynomial in *u*.
- Obtains the correct answer, in terms of cos(x), from their integrand expressed as a polynomial in *u*.

<u>1 mark</u>

- Correctly substitutes $u = \cos(x)$.
- Obtains a correct answer, in terms of *u*, from their integrand.

2(a)(i), (ii), (ii)

<u>1 mark each</u>-correct answer.

2(b)(i)

<u>2 marks</u>

• Correct answer.

<u>1 mark</u>

- Correct modulus.
- A correct argument.

2(b)(ii)

<u>1 mark</u>

- A correct answer.
- A correct answer from their answer to 2(b)(i).

2(b)(iii)

<u>1 mark</u>

- A correct answer.
- A correct answer from their answer to 2(b)(ii).

2(c)

<u>3 marks</u>

• Correct diagram.(Ignore no open circle on real axis at 1, and, heavy line on all of the ray $\arg(z-1) = \frac{3\pi}{4}$).

2 marks

- Diagram showing loci |z i| = 2 and $\arg(z 1) = \frac{3\pi}{4}$ correctly.
- Diagram with one of the two loci shown correctly with correct shading for their diagram.

<u>1 mark</u>

- Shading correct for their diagram with their two loci.
- One of the two loci drawn correctly.

2(d)(i)

<u>1 mark</u>-correct diagram with AB parallel to OC and AB=OC marked or indicated in some way.

2(d)(ii)

1 mark-correct answer.

2(e)

<u>3 marks</u>

• Correct sketch and geometrical description of locus.

2 marks

- Correct equation for locus.
- Correct sketch of locus.
- Correct geometrical description of locus.

<u>1 mark</u>

• Attempts to find equation of locus by a correct method.

Question 3

3(a)(i) <u>1 mark</u>-Correct graph shape.

3(a)(ii) <u>1 mark</u>-Correct graph shape including cusp on x-axis.

3(a)(iii)

<u>2marks</u>

• Correct graph shape including the two vertical and the horizontal asymptotes.

<u>1 mark</u>

- Correct graph shape.
- The asymptotes x = 1 and y = 0 shown correctly on diagram.

3(a)(iv)

<u>2 marks</u>

• Correct graph shape including the two turning points (NOTE: gradient is indeterminate as $x \rightarrow 0^+$ from the given information, so shape ignored at x = 0).

<u>1 mark</u>

• Graph is shown to be non-negative.

3(b)(i) <u>**1** mark</u> – Correct graph shapes of $y = \frac{2}{x}$ and $y = \ln(x)$.

3(b)(ii)

<u>4 marks</u>

• Correct graph showing correct co-ordinates of turning point, *x*-intercept and indication of the asymptotes.

3 marks

- Correct graph shape shown with correct co-ordinates of turning point determined.
- Correct graph shape shown with the correct two asymptotes indicated and the *x*-intercept given.

2 marks

- Co-ordinate of the turning point correctly determined.
- Correct two asymptotes and *x*-intercept indicated.

<u>1 mark</u>

- The horizontal asymptote is correctly determined.
- Correct graph shape is shown.

3(c)

4 marks

• Correct graph shape shown with the following correctly indicated: the two *x*-intercepts, the two asymptotes, with respective equations and common *x*-intercept.

<u>3 marks</u>

- Correct graph shape shown with the two *x*-intercepts and *y*-intercepts correctly shown.
- Correct graph shape shown with the two *x*-intercepts and the two asymptotes (no equations given, but common *x*-intercept given).

2 marks

• Correct graph shape shown with correct *x*-intercepts.

<u>1 mark</u>

- Correct graph shape shown.
- Asymptotes correctly shown (no equation or *x*-intercept given)
- Correct two *x*-intercepts and *y*-intercepts shown.
- Graph displays *x*-axis as an axis of symmetry.

4(a)(i) <u>1 mark</u>- Correct answer.

4(a)(ii)

<u>2 marks</u>

• Correct answers, or, correct answers using their value of *e* from 4(a)(i).

<u>1 marks</u>

- Obtains correct co-ordinates of foci, or, from using their value of *e* in 4(a)(i).
- Obtains correct *x*-intercepts.

4(a)(iii)

<u>2 marks</u>

• Correct answers, or, correct answers using their value of *e* in 4(a)(i).

<u>1mark</u>

- Obtains correct directrices, or, correct from using their value of *e* in 4(a)(i).
- Obtains correct asymptotes, or, correct from using their value of *e* in 4(a)(i).

4(b)(i)

2 marks

• Correct solution-must show the use of $\sin^2 \theta + \cos^2 \theta = 1$.

<u>1 mark</u>

- Obtains correct gradient formula in terms of θ .
- Uses $\sin^2 \theta + \cos^2 \theta = 1$ to achieve their answer.

4(b)(ii)

<u>3 marks</u>

• A correct solution.

2 marks

• Obtains correct expressions for the gradients of RS and TS.

<u>1 mark</u>

• Attempts to use $m_1m_2 = -1$ in their solution.

4(b)(iii)<u>1 mark</u>-uses a correct method of proof.

4(c)

<u>4 marks</u>

• A correct solution.

<u>3 marks</u>

• Obtains the Cartesian equation of tangent to the ellipse and attempts to use it to find the chord of contact by a correct method.

2 marks

- Obtains Cartesian equation of tangent to the ellipse by a correct method.
- Uses a correct reasoning to find the chord of contact.

<u>1 mark</u>

- Obtains gradient formula for tangent at $P(x_1, y_1)$ or similar point on ellipse.
- Uses $\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1$ or similar result in finding equation of tangent to ellipse.
- Attempts to use correct reasoning in finding the equation of the chord of contact.

Question 5

5(a)

<u>3 marks</u>

• Correct solution.

<u>2marks</u>

- Obtains a correct equation in *a*, *b*.
- Obtains correct values of *a*, *b* from their equation(s).

<u>1 mark</u>

- Obtains $x^2 + 1 = (x+i)(x-i)$.
- Obtains $P(x) = (x^2 + 1)Q(x) + (x + 2)$ or similar.
- Obtains one of $P(\pm i) = \pm i + 2 \operatorname{or} 1 a \pm ib$.

5(b)

<u>2 marks</u>

• Correct solution.

<u>1 mark</u>

- Obtains a correct possible graph of y = y(x).
- Obtains a correct condition(s) for three real and distinct roots.

5(c)(i)

<u>2 marks</u>

• Correct answer in any form.

<u>1 mark</u>

- Obtains answer of 3!×4! or equivalent merit.
- Shows correct reasoning for permutations in a circle.

5(c)(ii)

<u>2 marks</u>

- Correct answer in any form.
- Correct solution using their reasoning and answer from 5(c)(i).

<u>1mark</u>

- Obtains $2 \times 3! \times 3!$ as the number of arrangements.
- Shows correct reasoning for their circle permutation formula used in 5(c)(i).

5(d)(i) <u>1 mark</u> – Correct answer.

5(d)(ii)

- <u>2 marks</u>
- Correct answer.

<u>1 mark</u>

• Obtains $\alpha + \beta + \gamma = 2\alpha$.

• Obtains
$$\alpha + \beta + \gamma = \frac{1}{3}$$

5(d)(iii)

<u>3 marks</u>

• Correct solution.

<u>2 marks</u>

- Obtains p,q,r in terms of β,γ .
- Obtains $\alpha = -\frac{p}{2}$ as a root and attempts to substitute into the equation.

<u>1 mark</u>

- Correctly finds one of the sum of roots, sum of roots taken two at a time, product of roots.
- Correctly finds $-\frac{p}{2}$ as a root of the equation.

6(a)(i)

<u>2 marks</u>

• A correct solution.

<u>1 mark</u>

- Showing EC is perpendicular to AB, or equivalent merit.
- Showing $EB = AE = \frac{x}{2}$.
- Attempts to use the cosine rule.

6(a)(ii)

<u>4 marks</u>

• A correct solution.

3 marks

- Obtains correctly *BD* in terms of *x*, *y*.
- Obtains correctly $cos(2\alpha)$ in terms of *x*, *y*.

2 marks

- Attempts to find *BD* by a correct method.
- Attempts to find *DC* by a correct method.

<u>1 mark</u>

- Shows AD is perpendicular to BC.
- Shows $\angle ACB = \pi 2\alpha$.

6(b)(i)

<u>2 marks</u>

• A correct solution.

<u>1 mark</u>

• Shows
$$I_n = (n-1) \int_{0}^{\frac{1}{2}} \sin^2(t) \cos^{n-2}(t) dt$$
.

π

• Shows $I_n = I_{n-2} - \frac{1}{n-1}I_n$ or equivalent merit.

6(b)(ii)

<u>2 marks</u>

• A correct solution.

<u>1 mark</u>

- Obtains $I_0 = \frac{\pi}{2}$.
- Uses the reduction formula correctly.

6(c)(i)

<u>2 marks</u>

• A correct solution.

<u>1 mark</u>

• Obtains that
$$(k+1)^{k+1} > (k+1)^{k+1} \times \frac{(k+1)^{k-1}}{k^k}$$
.

• Obtains
$$\frac{(k+1)^{2k}}{k^k} = (k+1)^{k+1} \times \frac{(k+1)^{k-1}}{k^k}$$
.

6(c)(ii)

<u>3 marks</u>

• A correct proof.

2 marks

• Shows statement true for n = 2 and uses 6(c)(i) in the inductive step or equivalent merit.

<u>1 mark</u>

• Shows statement true for n = 2.

7(a)(i)

<u>4 marks</u>

A correct solution.

<u>3 marks</u>

• Obtains I_n in terms of I_{n-1} or I_{n+1} .

2 marks

• Correctly expresses $\frac{x^2}{(x^2+1)^{n+1}}$ or $\frac{1}{(x^2+1)^n}$ as two partial fractions.

<u>1 mark</u>

• Attempts to use integration by parts.

7(a)(ii)

<u>2 marks</u>

• A correct solution.

<u>1 mark</u>

- Correctly uses the reduction formula for the given integral.
- Correctly obtains $\int_{0}^{1} \frac{dx}{1+x^{2}} = \frac{\pi}{4}.$

7(b) There was a typographical error in this question. The stem was correctly worded but the diagram had mass B marked incorrectly as m instead of correctly as 7m. The marking took this into account so that no student was disadvantaged. This would not have affected the outcome to 7(b)(i).

7(b)(i)

<u>3 marks</u>

• A correct solution.

2 marks

• Obtains $T_2 \sin(\beta) = mg$.

<u>1 mark</u>

- Obtains $\sin(\beta) = \frac{3}{5}$.
- Obtains a correct vector diagram for T_2 .

Page **11** of **14**

7(b)(ii)

<u>2 marks</u>

• A correct solution using mass at *B* either 7*m* or *m*.

<u>1 mark</u>

- Correctly obtains $T_1 \sin(\alpha) = T_2 \sin(\beta) + \begin{cases} 7mg \\ mg \end{cases}$ or equivalent.
- Correctly obtains T_1 from their equations.

7(b)(iii)

4 marks

- A correct solution.
- A correct solution using their results from 7(b)(i) and (ii).

3 marks

• Correctly finds v_1^2 or v_2^2 by using a correct method.

2 marks

• Correctly obtains the equations $T_1 \cos(\alpha) - T_2 \cos(\beta) = \begin{cases} \frac{7mv_1^2}{a} \\ \frac{mv_1^2}{a} \end{cases}$ and $T_2 \cos(\beta) = \frac{mv_2^2}{2a}$ or

equivalent.

• Correctly obtains $\frac{v_1}{v_2}$ from their equations using their results from 7(b)(i) and (ii).

<u>1 mark</u>

- Shows vector force diagrams for particle *B*.
- Correctly obtains $T_1 \cos(\alpha) T_2 \cos(\beta) = \begin{cases} \frac{7mv_1^2}{a} \\ \frac{mv_1^2}{a} \end{cases}$ or equivalent.
- Obtains $\cos(\beta) = \frac{4}{5}$.

8(a)

<u>4 marks</u>

• A correct solution.

<u>3 marks</u>

- Obtains a correct primitive from a correct integral for the volume.
- Substitutes correctly into their primitive from a correct integral for the volume.

<u>2 marks</u>

- Obtains a correct integral for the volume.
- Obtains correctly a volume from their integral whose integrand involves a sine function.

<u>1 mark</u>

- Obtains a correct integrand in their integral for the volume.
- Obtains a correct expression for their 'slice' volume.
- Obtains a correct integral from their 'slice' volume.

8(b)(i) <u>1 mark</u> – A correct answer.

8(b)(ii)

<u>2 marks</u>

• A correct proof.

<u>1 mark</u>

- Obtains correctly $\frac{\ln(\pi)}{\pi} < e^{-1}$ or equivalent merit.
- Obtains, for x>0, that e^{-1} is the global maximum of h(x).

8(c)(i)

<u>2 marks</u>

• A correct proof.

<u>1 mark</u>

• Obtains a correct statement using similar triangles related to the floor of the showroom.

8(c)(ii)

<u>6 marks</u>

• A correct solution.

<u>5 marks</u>

• Obtains a correct primitive from a correct integral for the volume.

<u>4 marks</u>

- Obtains a correct integral for the volume.
- Obtains a correct volume from their integral.

<u>3 marks</u>

- Obtains a correct integrand.
- Obtains a correct primitive from their integral for the volume.

2 marks

• Obtains a correct expression for the area of the trapezium *ABCD*.

<u>1 mark</u>

• Obtains a correct statement using similar triangles related to the ceiling of the showroom.

END OF MARKING GUIDELINES