Section I

10 Marks

Attempt Questions 1-10
Allow about 20 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1 Let α, β and γ be roots of the equation $x^{3}+3 x^{2}+4=0$. Which of the following polynomial equations have roots α^{2}, β^{2} and γ^{2} ?
A. $x^{3}-9 x^{2}-24 x-4=0$
B. $x^{3}-9 x^{2}-12 x-4=0$
C. $x^{3}-9 x^{2}-24 x-16=0$
D. $x^{3}-9 x^{2}-12 x-16=0$
2. If $w=\sqrt{3} \operatorname{cis}(\pi)$, then w^{4} is equal to
A. $9 \operatorname{cis}(0)$
B. 9 cis (π)
C. 81cis (4π)
D. $4 \sqrt{3}$ cis $\left(\pi^{4}\right)$
3. $\int \frac{3 x^{2}}{\sqrt{x^{3}-2}} d x$ is equal to
A. $2 \sqrt{x^{3}-2}+c$
B. $\frac{\sqrt{x^{3}-2}}{2}+c$
C. $\frac{2}{3\left(x^{3}-2\right)^{\frac{3}{2}}}+c$
D. $\frac{3}{2\left(x^{3}-2\right)^{\frac{3}{2}}}+c$
4. If $y=\tan 2 x$, then $\frac{d^{2} y}{d x^{2}}$ is equal to
A. $\frac{8 \sin 2 x}{\cos ^{3} 2 x}$
B. $2 \sec ^{2} 2 x$
C. $\frac{8 \sin 2 x}{\cos 2 x}$
D. $\frac{-8 \sin 2 x}{\cos 2 x}$
5. A light elastic spring of natural length 2 metres hangs vertically from a ceiling. A mass of 0.5 kg is attached to the free end of the spring and hangs in equilibrium. Given that the stiffness of the spring is 0.25 g (where g is gravity in $\mathrm{m} / \mathrm{s}^{2}$), then the length of the spring in metres would be
A. $\frac{2}{g}$
B. 2
C. $2+\frac{2}{g}$
D. 4
6. The displacement x, in metres, of a particle from a fixed point at time t, in seconds, $t \geq 0$, is given by $x=2 \cos (3 t)$.
The number of oscillations made by the particle per second is
A. $\frac{1}{\pi}$
B. $\frac{3}{2 \pi}$
C. 2
D. 3
7. If $z=x+y i$, then the set of points in the complex plane given by $(2-i) z+(2+i) \bar{z}=1$ is
A. a horizontal line through $(0,2)$
B. a vertical line through $(-2,0)$
C. a straight line with gradient 2 and y-intercept -1
D. a straight line with gradient -2 and y-intercept $\frac{1}{2}$
8. A solution to the differential equation $\frac{d y}{d x}+\frac{1}{\sqrt{1-x^{2}}}=1$ is
A. $x-\sin ^{-1} x$
B. $x-\cos ^{-1} x$
C. $x-2 \sqrt{1-x^{2}}$
D. $\frac{-2 x^{3}}{3} \sqrt{1-x^{2}}$
9. An ellipse is shown on the set of axes below. The scale on the x and y axes is the same. The centre of the ellipse is the point (h, k).

The general form of the equation of an ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
For the ellipse shown above
A. $h<k$ and $a<b$
B. $h<k$ and $a=b$
C. $h=k$ and $a>b$
D. $h>k$ and $a<b$
10. The eccentricity of a hyperbola with parametric equations $x=3 \sec \theta$ and $y=4 \tan \theta$ is:
A. $\frac{5}{3}$
B. $\frac{3}{5}$
C. $\frac{5}{4}$
D. $\frac{4}{3}$

Section II

90 Marks
 Attempt Questions 11-16
 Allow about 2 hours and 40 minutes for this section

Answer each question in a separate writing booklet. Extra writing booklets are available All necessary working should be shown in every question.

Question 11 ($\mathbf{1 5}$ marks) Use a SEPARATE writing booklet

a) Find $\int \frac{d t}{\sqrt{7+6 t-t^{2}}}$
b) i) Show that $\frac{1}{\left(x^{2}+3\right)\left(x^{2}+1\right)}=\frac{1}{2}\left[\frac{1}{\left(x^{2}+1\right)}-\frac{1}{\left(x^{2}+3\right)}\right]$
ii) Hence evaluate $\int_{0}^{1} \frac{1}{\left(x^{2}+3\right)\left(x^{2}+1\right)} d x$
c) The equation $z^{2}-(a+i b) z-6 i=0$, where a and b are real, has roots α and β such that $\alpha^{2}+\beta^{2}=5$.
i) Show that $a^{2}-b^{2}=5$ and $a b=-6$
ii) Hence find the values of a and b.3
d) If $I_{m}=\int_{0}^{k}\left(k^{2}-x^{2}\right)^{m} d x$, for $m \geq 1$, show that

$$
I_{m}=\frac{2 k^{2} m}{2 m+1} \cdot I_{m-1}
$$

$$
\left[\operatorname{Hint} \frac{x^{2}}{k^{2}-x^{2}}=\frac{k^{2}}{k^{2}-x^{2}}-1\right]
$$

Question 12 ($\mathbf{1 5}$ marks) Use a SEPARATE writing booklet
a) Given the graphs of $y^{2}=f(x)$ and $y=|f(x)|$ as shown.

i) Explain the shape and position of $y=f(x)$ in relation to the above graphs.
ii) Hence, sketch the grapgh of $y=f(x)$.
iii) Hence sketch the graph of $y=f|(x)|$.
b) $\quad A B$ is a diameter of a circle $A B C$. The tangent at A and C meet at T. The lines $T C$ and $A B$ are produced to meet at P. Join $A C$ and $C B$.

i) Prove that $\angle B C P=90^{\circ}-\angle C A T$.
ii) Explain why $A T C B$ could never be a cyclic quadrilateral.

You must supoort your answers with geometrical reasons.
c) i) Prove that if a polynomial $P(x)$ has a root α of multiplicity r, then $P^{\prime}(x)$ has a root of multiplicity $(r-1)$.
ii) Given that $x=1$ is a double root of the equation $x^{4}-5 x^{3}+16 x^{2}-21 x+9=0$, and using the result of ci), or otherwise, find the other roots.

Question 13 (15 marks) Use a SEPARATE writing booklet
a) i) Show that $\sin x+\sin 3 x=2 \sin 2 x \cos x$.
ii) Hence, or otherwise, solve $\sin x+\sin 2 x+\sin 3 x=0$ for $0 \leq x \leq 2 \pi$.
b) A hyperbola has eccentricity $\frac{3}{2}$ and directrices $x=-4$ and $x=4$.

Find the Cartesian equation of this hyperbola.
c) The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. The points T and T^{\prime} are the feet of the perpendiculars from the foci S and S^{\prime} respectively to the tangent through P.
i) Show that $S T=\frac{|e \cos \theta-1|}{\sqrt{\frac{\cos ^{2} \theta}{a^{2}}}+\frac{\sin ^{2} \theta}{b^{2}}}$
ii) Hence prove $S T \cdot S^{\prime} T^{\prime}=b^{2}$.
d) A corner on a race track is an arc of a circle of radius 100 m . The track is banked such that there is no tendency for a vehicle to move sideways when cornering at $100 \mathrm{~km} / \mathrm{h}$. Find the angle, to the nearest minute, of banking. Take g to be $10 \mathrm{~m} / \mathrm{s}^{2}$.

Question 14 ($\mathbf{1 5}$ marks) Use a SEPARATE writing booklet
a) If $z=\cos \theta+i \sin \theta$,
i) Show that $z^{z}+z^{-z}=2 \cos n \theta$ for $n=1,2,3, \ldots \ldots$
ii) Hence show that $4 \cos \theta \cos 2 \theta \cos 3 \theta=1+\cos 2 \theta+\cos 4 \theta+\cos 6 \theta$
iii) Hence find the general solution of $\cos ^{2} \theta+\cos ^{2} 2 \theta+\cos ^{2} 3 \theta=1$.
b) The region bounded by the graphs of $y=x^{2}$ and $y=x+2$ is revolved around the line $x=3$. Express the volume of the resulting solid as a definite integral. Do not calculate the value of this integral.
c) A solid has , as its base, the circular region in the $x y$ plane bounded by the graph of $x^{2}+y^{2}=a^{2}$, where $a>0$. Find the volume of the solid if every cross section by a plane perpendicular to the x-axis is an equilateral triangle with one side in the base.

Question 15 ($\mathbf{1 5}$ marks) Use a SEPARATE writing booklet

a) An ellipse can be described as the locus of a point moving so that the sum of its distance from two fixed points (foci) is a constant.
i) If the two fixed points are $A(-4,0)$ and $B(4,0)$ and the sum of the distances of $P(x, y)$ from these points is 10 units, show that the equation of the ellipse is $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.
ii) Show that the ellipse can be represented parametrically by the equations $x=5 \cos \theta$ and $y=3 \sin \theta$ and find the equation, in general form of the tangent to the ellipse at $\theta=\frac{\pi}{6}$.
b) The roots of $x^{3}+3 p x+q=0$ are α, β and γ none of which are equal to 0 .
i) Find the monic equation with roots $\frac{\beta \gamma}{\alpha}, \frac{\alpha \gamma}{\beta}, \frac{\alpha \beta}{\gamma}$, giving the coefficients in terms of p and q.
ii) Deduce if $\alpha \beta=\gamma$, then $\left(3 p-q^{2}\right)+q=0$.
c) Given that $\sin ^{-1} x, \cos ^{-1} x$ and $\sin ^{-1} \sqrt{\left(1-x^{2}\right)}$ are acute, show that:
$\sin \left(\sin ^{-1} x-\cos ^{-1} x\right)=2 x^{2}-1$.

Question 16 (15 marks) Use a SEPARATE writing booklet

a) A particle of mass m is projected vertically upward under gravity with a speed v in a medium where resistance is $m k$ times the speed, where k is a positive constant. If the particle reaches its greatest height H, in time T, show that $v=g T+k H$.
b)

Given that $\sin (x+y)+\sin (x-y)=2 \sin x \cos y$ and $\cos (x+y)+\cos (x-y)=2 \cos x \cos y$ and by using the fact that $A+B+C=\pi$ for triangle $A B C$.

$$
\text { Show that } \frac{\sin A+\sin B}{\cos A+\cos B}=\cot \frac{C}{2}
$$

c) If $\cos \alpha=\tan x \cot y$, show that $\tan ^{2} \frac{1}{2} \alpha=\sin (y-x) \operatorname{cosec}(y+x)$
d) Evaluate $\int_{0}^{\frac{\pi}{3}} \frac{1}{9-10 \sin ^{2} x} d x$

1	2	3	4	5	6	7	8	9

Tials 20414. Soln ExT2
Q!
Let $y=x^{\frac{1}{2}}$

$$
\begin{aligned}
& y^{3 / 2}+3 y=-k \\
& \Rightarrow y^{3 / 2}=-3 y-4
\end{aligned}
$$

expand t square
c

$$
\Rightarrow y^{3}-9 y^{2}-24 y-16=0
$$

$$
\therefore \text { © }
$$

A
2. C as $P(x)$ has real coeffigients, Cgmplex roots occur in conjugate pairs

Q2 $\omega=\sqrt{3}$ cis π

$$
\begin{align*}
w^{4} & =(\sqrt{3})^{4} \operatorname{as}(4 \pi) \\
& =a \operatorname{cis} 0
\end{align*}
$$

3. $\int \frac{3 x^{2}}{1 x^{3}-2} d x=\int \frac{d u}{d x} u^{-\frac{1}{2}} d x$

$$
\begin{align*}
\operatorname{let} u=x^{3}-2 & =\int u^{-\frac{1}{2}} d^{u} \\
\therefore \frac{d u}{d x}=3 x^{2} & =2 u^{\frac{1}{2}}+c \tag{14.}\\
& =2 \sqrt{x^{2}-2}+c
\end{align*}
$$

4. $y=\tan 2 x$

$$
\begin{align*}
\frac{d y}{d x} & =2 \sec ^{2} 2 x \\
& =2(\cos 2 x)^{-2} \\
\frac{d^{2} y}{d x^{2}} & =-4(\cos 2 x)^{-3}-2 \sin 2 x \tag{A}\\
& =\frac{8 \sin 2 x}{\cos ^{3} 2 x}
\end{align*}
$$

5.
6.

$\begin{array}{rl}T & T\end{array}=k_{x}$.

$$
T=0.5 \mathrm{~g} \therefore x=2
$$

Since x is the extension in
the spring beyondits natural length, the leugth of the sting is $2+2=4 \mathrm{~m}$.
6. no of oscrllations persec is f

$$
\begin{align*}
& \therefore f=\frac{n}{2 \pi}, n=3 \text {. Ron } x=2 \cos (\beta) \\
& \therefore f=\frac{3}{2 \pi} \tag{3}
\end{align*}
$$

(7).

$$
\begin{aligned}
& (2-i) z+(2+i) \bar{z}=1 \\
& 2 z-i z+2 \bar{z}+i \bar{z}-1 \\
& \text { If } z=x+y i \text {. } \\
& \Rightarrow 2(x+i y)-i(x+i y)+2(x-i y)+i(x-i y)=1 \\
& 2 x+2 i y-i x+y+2 x-2 i y+i x+y=1
\end{aligned}
$$

$4 x+2 y=1$

$$
2 y=-4 x+1
$$

$$
y=\frac{-23}{2} \operatorname{coc}+\frac{1}{5}
$$

(8)

$$
\begin{align*}
& \frac{d y}{d x}+\frac{1}{\sqrt{1 x^{2}}}=1 \\
& \frac{d y}{d x}=1-\frac{1}{\sqrt{1-x^{2}}} \\
& y=\int 1-\frac{1}{\sqrt{1-x^{2}}} d x \\
&=x-\sin ^{-1} x+c \tag{A}
\end{align*}
$$

(9). For cence of elepse, $k=0, h>0$ So $h>k$. The length of semi-major axib is b, This rus 11 to yaxis scuil niner is a; 11 to x axis. $\therefore \cdot a<b$
(10) A

$$
\begin{aligned}
c & =\sqrt{\frac{a^{2}+b^{2}}{a^{2}}} \\
& =\sqrt{\frac{9+16}{9}} \\
& =5 / 3 .
\end{aligned}
$$

Question 11.
(a)

$$
\begin{align*}
& \int \frac{d t}{\sqrt{7+6 t-t^{2}}} \\
= & \int \frac{d t}{\sqrt{16-(t-5)^{2}}} \\
= & \sin ^{-1}\left(\frac{t-3}{4}\right)+c \tag{2}
\end{align*}
$$

(b) (i) Let $\frac{1}{\left(x^{2}+3\right)\left(x^{2}+1\right)}=\frac{A}{x^{2}+3}+\frac{B}{x^{2}+1}$

$$
\therefore 1=A\left(x^{2}+1\right)+B\left(x^{2}+3\right)
$$

$$
\text { Let } x^{2}=-1 \quad \therefore \quad 1=23
$$

$$
B=\frac{1}{2}
$$

Let $x^{2}=-3 \quad \therefore 1=A-2$ (2)

$$
A=-\frac{1}{2}
$$

$$
\therefore \frac{1}{\left.x^{2}+3\right)\left(x^{2}+1\right)}=\frac{1}{2}\left[\frac{1}{\left(x^{2}+1\right)}-\frac{1}{\left.x^{2}+3\right)}\right]
$$

$$
\text { (ii) } \frac{1}{2} \int_{0}^{1}\left(\frac{1}{x^{2}+1}-\frac{1}{x^{2}+3}\right) d x
$$

$$
=\frac{1}{2}\left[\tan ^{-1} x-\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}\right]_{0}^{1}
$$

$$
=\frac{1}{2}\left[\frac{\pi}{4},-\frac{1}{\sqrt{3}}, \frac{\pi}{6}\right]
$$

$$
\begin{equation*}
=\frac{\pi}{4}\left[\frac{1}{2}-\frac{\sqrt{3}}{98}\right] \tag{2}
\end{equation*}
$$

OR students cmn expand RHS to become LIHS.
$\mu(c)(v)$

$$
\begin{aligned}
& \text { () } \alpha+\beta=a+i b \\
& \alpha \beta=-i b \\
& (\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta \\
& \therefore(a+i b)^{2}=5-12 i \\
& a^{2}-b^{2}+2 i a b=5-12 i
\end{aligned}
$$

equate real timag.

$$
\begin{align*}
& a^{2}-b^{2}=5 \tag{2}\\
& a b=-6
\end{align*}
$$

(i1)
$1[$ or $a=-3, b=2]$
1(d)

$$
\begin{align*}
& I_{m}=\int_{0}^{k}\left(k^{2}-x^{2}\right)^{m} \cdot d x \tag{3}\\
& \text { hetu}=\left(k^{2}-x^{2}\right)^{m} \quad v^{\prime}=1 \\
& \left.d u=m\left(k^{2}-x\right)^{m+1} \cdot 2 x \quad v=x\right], \\
& \therefore I_{m}=\left[x\left(k^{2}-x^{2}\right)^{m}\right]_{0}^{k}+\left[\int_{0}^{k} 2 m x^{2}\left(k^{2}-x^{2}\right)^{m-1} d x\right] \\
& =\left[k\left(k^{2}-k^{2}\right)^{m}-0\right]_{+2 m} \int_{0}^{k} x^{2}\left(k^{2}-x^{2}\right)^{m-1} d x \\
& =2 m \int_{0}^{k} \frac{x^{2}\left(k^{2}-x^{2}\right)^{m}}{k^{2}-x^{2}} d x \\
& =2 m k^{2} \int_{0}^{k}\left(k^{2}-x^{2}\right)^{m-1} d x-2 m \int\left(k^{2}-m^{2}\right)^{m} d x \\
& \therefore I_{m}=2 k^{2} m I_{m-n}=2 m I_{m} \\
& I_{m}(1+2 m)=2 k^{2} m I_{m-1}(4) \\
& I_{m}=\frac{2 k^{2} m}{2 m+1} I_{m-1}
\end{align*}
$$

50% of students coved not stant out carrectly thena covednot ans this question

Q12
(a) iFrom the graph $y^{2}=f(x)$, value of $f(x)$ between vertical asymptote $+y$-axis is negative. (I) \therefore the pal of the graph $y=|f(x)|$ must be obtained by 2 reflection about x-axis. (ii)
(ii)

(iiI) $y=|f(x)|$ is symmetrical about y-axis.
since $f(|-x|)=f(|x|)$
for $x>0$
\therefore graph of $y=f(|x|)$ is

$12($ b) $)(i) \angle C A T=\angle A B C$ (\angle bet tan the had) bo and $\angle B C P=\angle C A B\left(1{ }^{1}\right.$ n) bat $\angle B A T=90^{\circ} \quad$ (diam 1 trad

$$
\therefore \angle B C P=90^{\circ}-\angle C A T .
$$

(ii) Since $\angle B C P$ is ext \angle and its $=\angle B A C$ which is pat of int opp $<, 1$ AT BC cannot be cyclic quad as theorem ext $\angle=$ intoppc does not hoed.
(c) 4 Let $P(x)=(x-\alpha)^{r} Q(x)$

$$
\begin{aligned}
& \therefore P^{\prime}(x)=Q(x)\left[r(r-\alpha)^{r-1}\right]+\left[(x-\alpha)^{r} Q^{\prime}(x)!\right. \\
& {\left[\begin{array}{l}
\text { ie } P^{\prime}(x)=(x-\alpha)^{r-1}\left[r Q(x)+(x-x) Q^{\prime}(x)\right] \\
\therefore P^{\prime}(x) \text { has a root } \\
x=x \text { of muetiperaty }(r-1) \\
\text { since } P(x)=P^{\prime}(\alpha)=0 \text { by subst. }
\end{array}\right.}
\end{aligned}
$$

Some students $p^{\prime}(x)$
bat did not factaise
$(x-x)^{r-1}+$ show ta al
$p^{\prime}(\alpha)=p(\alpha)=0$.
(i) Let $p(x)=x^{4}-5 x^{3}+16 x^{2}-21 x+9$

$$
p^{\prime}(x)=4 x^{3}-15 x^{2}+32 x-21
$$

we know $p(1)=p\left(c_{1}\right)=0$

$$
p^{\prime}(1)=4-15+32+21=0=p(1)
$$

To find other roots, several appicoos
$H B \quad P(x)=(x-1)^{2} Q(x)$
by inspect $Q(x)=x^{2}-3 x+9$
OR Divide $(x-1)^{2}$ into $P(x)$ +use
long: to find $P(x$!
OR $1,1, \alpha, \bar{\alpha}$ are roots sing $(\tilde{\alpha}(\theta x)$)

$$
\Delta<0
$$

$$
\begin{aligned}
& \Delta<0 \\
& x^{2}-3 x+9=0, x=\frac{3 \pm \sqrt{-27}}{2} \\
& 2
\end{aligned} \frac{3 \pm 3 \sqrt{3} i}{2}
$$

Q14
(a)

$$
\text { (i) } \begin{aligned}
z^{n}+z^{-h} & =\cosh \theta+i \sinh \theta \\
& +\cos (-n \theta)+i \sin (-n \theta) \\
= & \cosh \theta+i \operatorname{sinn} \theta-i \sinh \theta \operatorname{trote\operatorname {cos}} \\
& \sin \text { in od } \alpha) \\
= & 2 \cosh \theta .
\end{aligned}
$$

(w)

$$
\begin{aligned}
& z+z^{-1}=2 \cos \theta, z^{2}+z^{-2}=2 \cos 2 \theta \\
& z^{3}+z^{-3}=2 \cos 3 \theta \\
& 8 \cos \theta \cos 2 \theta \cos 3 \theta=\left(z+z^{-1}\right)\left(z^{2}+z^{-2}\right)\left(z^{3}+z^{-3}\right) \\
& \begin{array}{l}
=z^{6}+1+z^{2}+z^{4}+z^{-4}+z^{-2}+1+z^{-6} \\
=2+z^{2}+z^{-2}+z^{4}+z^{-4}+z^{6}+z^{-6}
\end{array} \quad \text { ensmficioint werling } \\
& =2+2 \cos 2 \theta+2 \cos 4 \theta+2 \cos 6 \theta \\
& \therefore 4 \cos \theta \cos 2 \theta \cos 3 \theta \vee 3 . \\
& =1+\cos 2 \theta+\cos 4 \theta+\cos 6 \theta
\end{aligned}
$$

(14)

$$
\therefore V \equiv \sum_{x=-1}^{x=2} 2 \pi(3-x)\left(x+2-x^{2}\right) \sigma x=x+2-x^{2}
$$

$$
V=\lim _{\sigma x \rightarrow 0} \sum_{x=-1}^{x=2} 2 \pi(3 \rightarrow x)\left(x+2-c^{2}\right) \sigma x
$$

$$
v=2 \pi \int_{-1}^{2}(3-x)\left(x+2-x^{2}\right) d x
$$

(c).

$2 y$

$$
\sigma_{v}=\frac{1}{2} 2 y \cdot 2 y \cdot \sin 60^{\circ} \cdot \sigma_{x}
$$

$$
\begin{aligned}
& \quad=y^{2} \sqrt{3} \sigma x \\
& V=\sum_{i=a}^{x} y^{2} \sqrt{3} \sigma_{x} \\
& V=\lim _{x \rightarrow 0} \sum_{x=-a}^{x=a} y^{2} \sqrt{3} \sigma x \\
& =\lim _{\sigma_{x \rightarrow 0} \rightarrow 0} \sum_{x=-a}^{x=a}\left(a^{2}-x^{2}\right) \sqrt{3} \sigma x \\
& =\sqrt{3} \int_{-a}^{a}\left(a^{2}-x^{2}\right) d x \\
& ==\sqrt{3} \int_{-a}^{a}\left(a^{2}-x^{2}\right) d x \\
& =2 \sqrt{3}\left[a^{2} x-\frac{x^{3}}{3}\right]_{0}^{a} 4 \\
& =\frac{4 \sqrt{3}}{3} a^{3}
\end{aligned}
$$

- ansured 0 porly
- could net obtain volume equ in ternes of rofation around $x=3$

$$
\begin{aligned}
& O P=3 \quad\left(b y P_{y}+e_{1}\right) \\
& \therefore b=3 .
\end{aligned}
$$

when P@ $B(a, 0), a=5$
sub $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
eq $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.
fir

$$
\begin{aligned}
\frac{x^{2}}{25}+\frac{y^{2}}{4} & =\frac{5^{2} \cos ^{2} \theta}{25}+\frac{3^{2} \sin ^{2} \theta}{y} \\
& =\cos ^{2} \theta+\sin ^{2} \theta \\
& =1=R_{11} \cdot \text { QED }
\end{aligned}
$$

$x=5 \cos \theta$

$$
\begin{aligned}
& \frac{d x}{d \theta}=-5 \sin \theta \\
& y=3 \sin \theta \\
& \frac{d y}{d \theta}=3 \cos \theta \\
& \frac{d y}{d x}=\frac{d x}{d \theta} \times \frac{d \theta}{d y}=3 \cos \theta \cdot-\frac{1}{5 \sin \theta}
\end{aligned}
$$

when $\theta=\frac{\pi}{6}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-3 \times \frac{-\sqrt{3}}{2}}{5 \times \frac{1}{2}}=\frac{-3 \sqrt{3}}{5} \\
& x=5 \times \frac{\sqrt{3}}{2}=\frac{5 \sqrt{3}}{2} y \\
& y=3 \times \frac{1}{2}=3 / 2 \\
& \therefore y-\frac{3}{2}=-\frac{3 \sqrt{3}}{5}\left(x-\frac{5 \sqrt{3}}{2}\right) \\
& 3 \cdot \sqrt{3} x+5 y-30=0
\end{aligned}
$$

$19(b) \operatorname{jos} \alpha+\beta+\gamma=0$.

$$
\alpha \beta+\alpha \gamma+\beta \gamma=3 b
$$

$$
\therefore \frac{\beta \gamma}{\alpha}+\frac{\alpha \beta}{\gamma}+\frac{\alpha \gamma}{\beta}=\frac{(\beta \gamma)^{2}+(\alpha \beta)^{2}+(\alpha \gamma)^{2}}{\alpha \beta \gamma, k 0}
$$

$$
=\frac{(\beta \cdot \gamma+\alpha \gamma+\alpha \beta)^{2}}{\alpha \beta \gamma}-2\left(\alpha \beta \gamma^{2}+\alpha \beta^{2} \gamma+\beta^{2} \gamma \alpha\right) \text {. Students } \text {. }
$$

$$
\begin{aligned}
& =\frac{(\beta \gamma+\alpha \gamma+\alpha \beta)^{2}-2 \alpha \beta}{\alpha \beta \gamma} \\
& =\frac{(3 p)^{2}-2 q(0)}{-q}
\end{aligned}
$$

$$
=\frac{q p^{2}}{-q}
$$

$$
\begin{aligned}
& \frac{\beta \gamma}{\alpha}+\frac{\alpha \gamma}{\beta}+\frac{\alpha \gamma}{\beta} \cdot \frac{\alpha \beta}{\gamma}+\frac{\beta \gamma}{\lambda} \cdot \frac{\alpha \beta}{\gamma}=\alpha^{2}+\beta^{2}+\gamma^{2} \\
& (\dot{A})=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =0-2 \cdot 3 p=-6 p
\end{aligned}
$$

- Students used can of \tan rather than finding it
- mess alegetora.

150)

$\sqrt{1-x^{2}}=\cos A$ and $\sqrt{1-x^{2}}=\sin B$
LHS $=\sin \left(\sin ^{-1} x-\cos ^{-1} x\right)$
$=\sin (A-B)$
$=\sin A-\cos B-\cos A \sin B$
$=x \cdot x-\sqrt{1-x^{2}} \sqrt{1-x^{2}}$

$$
\begin{equation*}
=x^{2}-\left(1-x^{2}\right)=2 x^{2}-1 \tag{3}
\end{equation*}
$$

Qlof(a) inithal position evigin, + inithal direat ttok

$$
\dot{v}=-g-k v
$$

initial conditions: $t=0, x=0, v=u$.
rehn bet $x+\mu$

$$
\begin{aligned}
& \mu \frac{d u}{d x}=-(g+k u) \\
& -d x=\frac{a d u}{g+k u} \\
& -k d x=\frac{k u d u}{g+k u}, \\
& -k d x=\left[1-\frac{g}{g+k}\right) d u \\
& -k x^{2}+c=k v-g \ln |g+k u| \\
& x=0, u=u \Rightarrow c=k u-g \ln |g+k u| \\
& \therefore x=\frac{u-v}{k}+\frac{g}{k^{2}} \ln \left|\frac{g+k u}{g+k u}\right| \quad /-(1)
\end{aligned}
$$

If particle reaches greatest hergd II at a time T, its speed $w=0$. fom (1)

$$
I t=\frac{u}{k^{2}}+\frac{g}{k^{2}} \ln \left|\frac{g}{g+k a}\right|
$$

Rehn bet $u+t$

$$
\begin{aligned}
& \frac{d u}{d t}=-(g+k u) \\
&-d t=\frac{d u}{g+k u},-k d t=\frac{-k d u}{g+k u} \\
&-k l=\frac{k d u}{g+k u} \quad-k t+c=\ln |g+k u| \\
& \therefore t=-\frac{1}{k} \ln \left(\frac{g+k v}{g+k u}\right) \\
& T=-\frac{1}{k} \ln \left|\frac{g}{g+k u}\right| \text { fom (2) } \\
& \therefore \ln \left|\frac{g}{g+k u}\right|=-k T \\
& \therefore H=\frac{u}{k}-\frac{g k T}{k 2} \\
& \therefore \cdot \mid v=k+t T
\end{aligned}
$$

16b) Let $A=x+y$

$$
\begin{aligned}
& B=x-y \\
& \therefore A+B=2 x \\
& X=\frac{(A+B)}{2} \\
& Y=\frac{(A-B)}{2}
\end{aligned}
$$

arsured n. pooven ondy I shid. got frie mands.
$\therefore \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$. Shidents faved to

$$
\begin{aligned}
& \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \binom{\frac{A-B}{2}}{2} \\
& \frac{\sin A+\sin B}{\cos A+\cos B}=\frac{2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}{2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)}
\end{aligned}
$$

$$
=\tan \left(\frac{A+B}{2}\right)
$$

Now $A+B+C=\pi$

$$
\therefore A+B=\pi-C
$$

(4) - cowed aot wak out $\cot \frac{E}{2}$

LHS $\tan \frac{\pi-c}{2}$

$$
\begin{aligned}
& =\tan \left(\frac{\pi}{2}-\frac{c}{2}\right) \sqrt{2} \\
& =\cot \frac{c}{2} \\
& =1+\frac{2 H}{} \quad Q E D
\end{aligned}
$$

$$
\begin{aligned}
& \text { (16c) Let } t=\frac{\tan \alpha}{2} \\
& \Rightarrow \cos x=\frac{1-t^{2}}{1+t^{2}} \\
& \therefore\left(1+t^{2}\right) \cos x=1-t^{2} \\
& \therefore t^{2}=\frac{1-\cos \alpha}{1+\cos \alpha}=\frac{1-\tan x \cot y}{1+\tan x \cot y} \\
& t^{2}=\frac{1-\tan x \cot u}{1+\tan x \cot y} \times \frac{\sin y \cos x}{\sin x \cos y} \\
& =\frac{\sin y \cos x-\sin x \cos y}{\sin y \cos x+\sin x \cos y} \\
& =\frac{\sin (y-x) \operatorname{cosec}(y+x)}{\therefore \tan ^{2} \frac{1}{2} \alpha=\sin (y-x) \operatorname{cosec}(y+x)}
\end{aligned}
$$

10) $\frac{1}{9-10 \sin ^{2} x}=\frac{\sec ^{2} x}{9-\tan ^{2} x}$

Since $\sin ^{2} x=\frac{\tan ^{2} x}{1+\tan ^{2} x}$, we get

$$
\begin{aligned}
\frac{1}{9-1-\sin ^{2} x} & =\left[9-10 \frac{\tan ^{2} x}{1+\tan ^{2} x}\right]^{-1} \\
& =\left[\frac{9-\tan ^{2} x}{1+\tan ^{2} x}\right]^{-1} \\
& =\frac{1+\tan ^{2} x}{a-\tan ^{2} x} \\
& =\frac{\sec ^{2} x}{9-\tan ^{2} x}
\end{aligned}
$$

Hence using sub $u=\tan x$

$$
\begin{aligned}
& x=d u=\sec ^{2} x d x \\
& x=0 \quad u=0 \quad x \\
& x=\frac{\pi}{3} \quad u=\sqrt{3} \\
& \vdots \int_{0}^{\frac{\pi}{3}} \frac{1 d x}{9-10 \sin x} x \\
& =\int_{0}^{\sqrt{3}} \frac{1}{9-u^{2}} d u \\
& =\frac{1}{6}\left[\ln \left|\frac{3+4}{3-4}\right|\right]_{0}^{\sqrt{3}} \\
& =\frac{1}{6} \ln \frac{3+\sqrt{3}}{3-\sqrt{3}} \\
& =\frac{1}{6} \ln \left(\frac{3+\sqrt{3}}{3^{2}}\right)^{2}=\frac{1}{6} \ln (2+\sqrt{3}) \\
& =\frac{1}{6} \ln \left(\frac{12+6 \sqrt{3}}{6}\right) \\
& =\frac{1}{6} \ln (2+\sqrt{3})
\end{aligned}
$$

or see student's attemp.

Start here
d. $\int_{0}^{\pi / 3} \frac{1}{9-10 \sin ^{2} x} d x$.

$$
\begin{aligned}
& =\int_{0}^{\pi / 3} \frac{1}{9-10\left(1-\cos ^{2} x\right)} d x \\
& =\int_{0}^{\pi / 3} \frac{1}{-1+\cos ^{2} x} d x \\
& =\int_{0}^{\pi / 3} \frac{1}{\cos ^{2} x-1} d x .
\end{aligned}
$$

let $\left.\begin{aligned} t & =\tan x \\ d t & =\sec ^{2} x d x\end{aligned} \right\rvert\, \begin{aligned} & x=\pi / 3, t=\sqrt{3} \\ & x=0, t=0\end{aligned}$
$d t=\left(1+t^{2}\right) d x$ $d x=\frac{d t}{1+t^{2}}$.

$$
\begin{aligned}
I & =\int_{0}^{\sqrt{3}} \frac{1}{\frac{10}{1+t^{2}}-1} \cdot \frac{d t}{1+t^{2}} \\
& =\int_{0}^{\sqrt{3}} \frac{1}{\frac{10-\left(1+t^{2}\right)}{1+t^{2}}} \cdot \frac{d t}{1+t^{2}} \\
& =\int_{0}^{\sqrt{3}} \frac{1+t^{2}}{4-t^{2}} \cdot \frac{d t}{1+t^{2}} \\
& =\int_{0}^{\sqrt{3}} \frac{1}{4-t^{2}} d t \quad=\frac{1}{t} \frac{1}{(3-t)^{t}(3+t)} d t \\
& =\frac{1}{t}[\ln \ln (3-t)+\ln (3+t)]_{0}^{\sqrt{3}} \\
& =\frac{1}{6}[-\ln (3-\sqrt{3})+\ln (3+\sqrt{3}) \ln (t) \\
& =\frac{1}{6} \ln \frac{3+\sqrt{3}}{3-\sqrt{3}}
\end{aligned}
$$

