HORNSBY GIRLS' HIGH SCHOOL

2008 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using a black or blue pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question
- Begin each question on a fresh sheet of paper

Total marks (120)

- Attempt Questions 1 8
- All questions are of equal value

BLANK PAGE

Total Marks - 120

Attempt Questions 1 – 8 All Questions are of equal value

Begin each question on a NEW SHEET of paper, writing your student number and question number at the top of the page. Extra paper is available.

Question 1 (15 marks) Use a SEPARATE sheet of paper.		
(a)	Find $\int \frac{dx}{x^2 - 4x + 40}$	2
(b)	Evaluate $\int_{0}^{2} x^{3} e^{x^{2}} dx$.	3
(c)	Find $\int \sin^3 x dx$	2
(d)	Evaluate $\int_{0}^{1} \frac{x}{\sqrt{4-x}} dx$	3
(e)	(i) Find the real numbers a, b and c such that $\frac{3x^2 + 2x + 11}{(x^2 + 3)(1 - x)} \equiv \frac{ax + b}{x^2 + 3} + \frac{c}{1 - x}.$	3
	(ii) Hence find $\int \frac{3x^2 + 2x + 11}{(x^2 + 3)(1 - x)} dx$.	2

Que	estion 2 (15 marks) Use a SEPARATE sheet of paper.	Marks
(a)	Given z is a complex number such that $z = 1 + i$	
	(i) Write z in mod-arg form	2
	(ii) Evaluate z^{12}	2
(b)	If $P(z) = z^4 - 30z^2 + 289$	
	(i) Show that $z = 4 + i$ is a zero of $P(z)$	2
	(ii) Find all zeros of $P(z)$ over the complex field	5

4

(c) P(z) is a point on the argand diagram such that

$$\arg \frac{z-i}{z+2} = \frac{\pi}{2}$$

Draw and describe the locus of P(z).

(a) The diagram below is a sketch of the function y = f(x)

On separate diagrams sketch

(i)
$$y = |f(x)|$$
 2

(ii)
$$y = f(|x|)$$
 1

(b) The graph below represents the derivative f'(x) of a certain function f(x). 3 Given that $f'(x) \to 0$ as $x \to \infty$, f(0) = 0 and f(1) < 0, sketch the graph of f(x), noting the behaviour as $x \to \infty$.

(c) (i) Sketch the curve $y = \frac{x^3 + 4}{x^2}$, showing any stationary 2 points and asymptotic behaviour.

(ii) Hence or otherwise, deduce the values of k, for which the 1
equation
$$x^3 - kx^2 + 4 = 0$$
 may have one real root.

(d) (i) If
$$x = a$$
 is a multiple root of the polynomial equation $P(x)$
such that $P(x) = 0$, prove that $P'(a) = 0$.

(ii) Find all roots of
$$P(x) = 16x^3 - 12x^2 + 1$$
 given that two
of the roots are equal. 3

Marks

(b)

(a) An ellipse has parametric equations $x = \sqrt{2} \cos \theta$ and $y = 3 \sin \theta$. Find the Cartesian equation and the eccentricity of the ellipse.

The ellipse with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ shown in the diagram above has a tangent at the point $P(a\cos\theta, b\sin\theta)$. The tangent cuts the x-axis at T and the y-axis at R.

(i) Show that the equation of the tangent at the point *P* is
$$\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1.$$

(c) The area between the curve y = ln(x + 1) and the x-axis, between 4
 x = 0 and x = 1 is rotated about the y-axis.
 Find the volume of the solid of revolution formed using the method of cylindrical shells.

each of the two equal side lengths three quarters the length of the third side.

(i) Show that the area of the triangular cross-section at
$$x = a$$
 is $\frac{\sqrt{5}}{2}(1-a^2)$.

- (ii) Hence find the volume of the solid.
- (c) The point $T\left(ct, \frac{c}{t}\right)$ lies on the hyperbola $xy = c^2$. The tangent at T meets the x-axis at P and the y-axis at Q. The normal at T meets the line y=x at R.
 - Prove that the tangent at T has equation $x + t^2 y = 2ct$. (i) 2 (ii) Find the coordinates of P and Q. 2 Write down the equation of the normal at T. (iii) 1 Show that the x coordinate of R is $x = \frac{c}{t}(t^2 + 1)$. (iv) 2 Prove that ΔPQR is isosceles. (v) 2 ő

The base of a solid is the semi-circular region in the x - y plane with the straight edge running from the point (0,-1) to the point (0,1) and the point (1,0) on the curved edge of the semicircle.

Each cross-section perpendicular to the x-axis is an isosceles triangle with

▲ 52

Question 5 (15 marks) Use a SEPARATE sheet of paper.

(ii)

(b)

(a) (i) Write down the value of $\int_{-a}^{a} \sqrt{a^2 - x^2} dx$.

Explain why $\int_{-a}^{a} x \sqrt{a^2 - x^2} dx$ is equal to zero.

Marks

1

1

2

- (a) The equation $x^3 + 2x 1 = 0$ has roots α, β, γ . Find a polynomial equation in x whose roots are:
 - (i) $-\alpha, -\beta, -\gamma$ 1 (ii) $\alpha^2, \beta^2, \gamma^2$ 2
 - (iii) $\pm \alpha, \pm \beta, \pm \gamma$ 2
- (b) Find a and b if (1+i) is a root of $x^2 + (a+2i)x + 5 ib = 0$
 - (c) A body M, of mass 650g, is fixed to point O by a light wire 0.2m long. The body rotates in a horizontal plane at 72 revolutions per minute. Taking $g = 10m/s^2$,

(i) Prove that
$$\tan \theta = \frac{72\pi^2 \sin \theta}{625}$$
. 3

 $\begin{array}{c} \times \text{(ii)} & \text{Find } \theta \text{ to the nearest minute.} \\ \text{rad.?} \end{array}$

(iii) The mass of the body is to be doubled but the speed of rotation is to 2 remain the same. What will happen to the value of θ ?

Marks

Question 7 (15 marks) Use a SEPARATE sheet of paper.

Marks

4

4

(a) The great pyramid of Cheops at Giza in Egypt is approximately 150 m high and its base is a square with an area of approximately 5 hectares.

- (i) Show that the area of the cross section A(y), at y is given by $A(y) = (5 \times 10^4) \times \left(\frac{h-y}{h}\right)^2$
- , (ii)

Find the volume of the pyramid by using the slicing technique.

(b) A particle of mass 1 kg is projected vertically upwards with an initial velocity of 100 m/s in a medium in which the resistance force is equal to 0.01 times the square of the body's velocity, i.e. $0.01v^2$. Use $g = 10m/s^2$.

- (i) Show that the maximum height reached by the particle is 4 $50 \log_e 11$ metres.
- (ii) Will the downward velocity of the particle on its return to the point of projection be greater than, less than, or equal to 100m/s?
 Justify your answer.
- (iii) Calculate the actual downward velocity of the particle on its return to the point of projection.

(a) Use the following identity to answer the following questions.

$$\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}.$$

(i) Solve
$$x^4 + 4\sqrt{3}x^3 - 6x^2 - 4\sqrt{3}x + 1 = 0$$
.

(ii) Hence show that

(1)
$$\tan\frac{\pi}{24} + \tan\frac{7\pi}{24} + 4\sqrt{3} = \tan\frac{5\pi}{24} + \tan\frac{11\pi}{24}$$
 1

(2)
$$\tan \frac{\pi}{24} \tan \frac{5\pi}{24} = \cot \frac{7\pi}{24} \cot \frac{11\pi}{24}$$
 1

$$\left(\cot\frac{\pi}{24}\right)^2, \left(\cot\frac{7\pi}{24}\right)^2, \left(\cot\frac{13\pi}{24}\right)^2, \left(\cot\frac{19\pi}{24}\right)^2, \left(\cot\frac{19\pi}{24}\right)^2.$$

(b) Let
$$I_n = \int_0^1 x (x^2 - 1)^n dx$$
 for $n = 0, 1, 2, ...$
(i) Use integration by parts to show that 3
 $I_n = \frac{-n}{n+1} I_{n-1}$ for $n \ge 1$.

(ii) Hence or otherwise show that

$$I_n = \frac{(-1)^n}{2(n+1)}$$
 for $n \ge 0$.

- (iii) Explain why $I_{2n} > I_{2n+1}$ for $n \ge 0$
- (iv) Explain whether or not $I_n > I_{n+2}$ for all $n \ge 0$.

End of Examination

Marks

3

3

2

1

2008 Education 2 Tril Fold		
$\frac{dx}{\sqrt{2^2-4x+40}} = \int \frac{dx}{(x-2)^2+36}$	$) \int \frac{3x^2 + 2x + 11}{(x^2 + 3x)(x + 1)} dx = ($	$\frac{\chi-1}{2+2}$ + $\frac{4}{2}$ dx
$= \frac{1}{6} \tan^{-1}(\frac{\chi - 2}{6})$	- (x + 3)(1-32)	$\chi^{2+3} = \frac{1-\chi}{2}$
b) $\int_{0}^{2} x^{3} e^{x^{2}} dx = \left[\frac{x^{2} e^{x}}{2}\right]_{0}^{2} - \int \frac{2x e^{x}}{2} dx u = x^{2} v = \frac{1}{2} e^{x^{2}}$		χ^{+}
$= \left[\frac{4e}{2} - 0 \right] - \frac{1}{2} \left[e^{-1} \right]_{0} du = \frac{2\pi}{2} dv = \frac{\pi}{2} e^{-1}$	n a series de la company de	$2 \ln (3(+3) - \sqrt{3} \tan (\sqrt{3}) - 4 \ln (1-x), 2(<1)$
$= 2e^{4} - \frac{1}{2}(e^{4} - 1)$ = $\frac{1}{2}(3e^{4} + 1)$		
c $(sii^3 + dy)$ $(sii^2 + si) + dy$		
$= \int (1 - \cos^2 x) \sin x dx$		
$= \int \sin x - \cos x \cdot \sin x dx$ = $-\cos x + \cos^3 x$		
d) $\int_0^{\infty} \frac{x}{\sqrt{4-x}} dx$ let $u=4-x \Rightarrow x=4-u$		
$= \begin{cases} 3 & 4 - u & -1 du \\ -1 & -1 \\ -1$		
$= \int_{3}^{4} (4u'' - u'') du \qquad x=1, u=3$		
$= \left[8u^{\frac{1}{2}} - \frac{2}{3}u^{\frac{3}{2}} \right]_{3}^{4}$	in a second de la companya de la com Esta companya de la c	
$= (8\sqrt{4} - \frac{2}{3} \cdot 4\sqrt{4} - (8\sqrt{3} - \frac{2}{3} \cdot 3\sqrt{3}))$		
$= \frac{16 - \frac{16}{3}}{- \frac{1}{3} - \frac{16}{3}}$		
3^{2}		
$\frac{3\pi + 2\pi + 11}{(\pi^2 + 3)(1 - \pi)} = \frac{(2\pi + b)(1 - \pi) + c(\pi^2 + 3)}{(\pi^2 + 3)(1 - \pi)}$		
$a_{1}-a_{1}^{2}+b-b_{1}+c_{1}^{2}+3c=3x^{2}+2x+11$ $c-a=3 \Rightarrow a=c-3$ (1)	a an conservera, se a cara a se	
$a-b=2 \rightarrow c-3-b=2 \therefore c-b=5$		3
@+@: 4c=16, c=4 ie $a=1, b=-1, c=4$		
1 ① . A-4-3=1		

, s.

SOLUTIONS QUESTION 2 (ii) (continued) (a) (i) given Z=1+2 $\frac{3^{2}+8_{2}+17}{3^{2}-8_{3}+17})\frac{3^{4}}{3^{4}}-\frac{30}{3^{2}}\frac{2^{2}}{3^{2}}+\frac{1289}{3^{4}}$ $\left| Z \right| = \sqrt{l^2 + l^2}$ $= \sqrt{2}$ arg $z = \tan^{-1} \frac{1}{7}$ $\frac{83^2 - 643^2 + 1363}{173^2 - 1363} + 289$ $\therefore Z = \sqrt{a} \left(\cos \frac{\pi}{4} + -i \sin \frac{\pi}{4} \right)$ (2)1732-1362+289 $\begin{array}{c} (ii) \quad Z^{\prime 2} = \left[\sqrt{a} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right]^{\prime 2} \\ = a^{6} \left(\cos 3\pi + i \sin 3\pi \right) \\ = 64 \left(-1 + 0 \right) \end{array}$ -: 3 + 83 + 17 is a factor of P(3) Be House's Thm $\frac{3^{2}+8_{3}+17}{=} (3^{2}+8_{3}+14)+1 \quad (Alt: use quad. form)$ $= (3+4)^{2} - i^{2}$ = (3+4-i)(3+4+i) $= (3-(-4+i))(3-(-4-i)) \quad (1)$ (2) (b) gp(=)= Z⁴-30Z²+289 (1) If P(4+i)=0 then 4+i is a zero of P(=). - remaining zero's one - 4+i, -4-i $P(4+i) = (4+i)^4 - 30(4+i)^2 + 289$ - zeros of P(z) are 4+i, 4-i, -4+i, -4-i. Substitution & partial simp. $= \left(\left(4+i \right)^2 \right)^2 - 30 \left(15+8i \right) + 289$ -- (') = (15+82)2 - 450-240 i + 209 (c) P(g) Geometrically = 225+240i+64-i2-450-240i+289 = 225+240i-64-450-240i+289 - (1) $arg(\frac{3-i}{3+2}) = \frac{\pi}{2}$ 2 (312) $arg(3-i) - arg(3+2) = \frac{\pi}{2}$ ·· (4+i) is a zero of P(z) & NB arg(3-i) rag(3+2 From diagram Now Q + arg(2+2) = arg (z-i) (ext. ongle of A) (ii) Since 4+i is a zero, so also is 4-i (complex comj.) 1e. 2 - (4+i) [3 - (4-i)] is a factor = [(3-4)-i][(3-4)+i] is a fack -- P(3) is a semicircle with AC as diameter and P (2).. Q = arg(z-i)-arg(z+2) (2-4) - i2 above AC. Points A, C are excluded -83+17

SOLUTIONS QUESTION 3 (c) $y = \frac{x^3 + 4}{x^2}$ $\frac{2ero's}{x} = \frac{x^{5}}{-4}$ (a) is y = |f(x)| $= \chi + 4\chi^{-2}$ Inflexions (dry =0) T.Ps. (dy =0) $\frac{d^2y}{dx^2} = \frac{d^2y}{x^4} > 0 = no influxions.$ $\frac{dy}{dy} = 1 - \frac{8}{3}$ -2 test top. dy = 0 when x = 2 (1) dzy yo when z=2 V : min t.p at (2,3) y = f(1z1)asymptotic Behaviour (ii) vertical I=0 x >ot y > ~ x >0 y > 10 other as x 300 : y = x (ablique os ympotote -2 (1)(4,3) - yay tote f'(2) = 0 $f'(2^{-}) < 0$ $f'(2^{+}) > 0$ $- \int_{0}^{1+} f'(2^{+}) < 0$ $- \int_{0}^{1+} f'(2^{+}) < 0$ $f'(2^{+}) < 0$ $- \int_{0}^{1+} f'(2^{+}) < 0$ $- \int_{0}^{1+} f'(2^{+}) < 0$ (b)f'(-3) = 0 f'(-3) > 0 $f'(-3^+) < 0$ + p = -3 is max Curve passes through (0,0) Corve below x axis when I=1. as x ->>>, f'(x) ->> ie flattens out to horizontal asymptote. (11) From the graph x - kx + 4 = 0 = k = x + 4 what horizontal mact.p (3, f(3),) Af(I) lie y=k will only have one solution? any ke3. 22 (1) -3 (2,f(2)) min t.p

.

-

A 2

$$\begin{array}{c} (25 \ A) & (25$$

•

10.00

Question 6 Solutions iv) R'lies on y=x and the normal at T, t3x-ty=ct4-c $t^{3}x - tx = c(t^{4} - 1)$ (a) i) let x = -X (ii) let x = 1x $\pm \chi(\pm^2 - 1) = \zeta(\pm^2 - 1)(\pm^2 + 1)$ $(-x)^{2} + 2(-x) - 1 = 0$ $(\sqrt{x})^3 + 2\sqrt{x} - 1 = 0$ $\chi = f(t^2+1)$ -------x'-2x-1=0 $X\sqrt{X} + 2\sqrt{X} = J \quad (sq. 6.5)$ -'x + 2x+1=0 (1) $x^{2} + 4x^{2} + 4x = 1$ V) R lies an y=x .: coordinates of R ({{t2+1}, {{t2+1}}) P(2ct,0) Q(0, 2) $\therefore x^{3} + 4x^{2} + 4x - 1 = 0 \quad (2)$ P Midpt of PQ is $(\frac{24+0}{2}, \frac{0+\frac{2}{2}}{2})$ (iii) let $x = \pm X$ (Note x = -X) in pat(i) and x = X is $(X^{3}+2X-1)(X^{3}+2X+1)=0$ must have $x=\pm X$ original equation = (ct, =), which is the point T. . any point on the normal at T will lie $(x^3+2x-1)(x+2x+1)=0$ on the perpendicular bisector of PQ. $\chi^{6} + 4z^{4} + 4z^{2} - 1 = 0$ (2) . APRQ is isosceles (b) Note 1-1 15 NOT a root of x2+(a+2i)x+5-ib=0. since all coefficients are NOT real 1+1 is a root of 22+ (a+2i)x+5-ib=0 (given) $(1+i)^{2} + (a+2i)(1+i) + 5 - ib = 0$ · 1+2i-1+a+2i+ai-2+5-ib=0 (a+3) + (4+a-b) = 0-- a+3=0 ao Re=0 =)a=-3 4+a-b=0 as $Im=0 \implies b=1$ (3) an lengths foras C) (1) TSIN O=Mrw2 (hor.) TCOSO = mg (vert) ···· h mg $:= \tan \Theta = rw^2$ $\therefore fam \Theta = \frac{\sin \Theta \times 144 \pi^2 \times 1}{5}$ mrw2 = $72\pi^2 \sin\theta$ as reg. $\Gamma = 0.2 \sin \theta$ (3) W = 12 x 2 x = 12 17 rad/s

Question 7 Solutions (ii) $\tan \theta = 72 \pi^2 \sin \theta$ from (i) <u>625</u> Ance a square pyramid If A: A. then li?: l2 (a)(i) $\frac{5\pi \Theta}{\cos \Theta} = \frac{72\pi^2 \sin \Theta}{625}$ $\frac{A(y)}{A} = \frac{(h-y)^2}{h^2}$ similar areas (all II's are) $cos \Theta = \frac{625}{72\pi^2}$ 50 000m2 $A(y) = A(y)^{2} (h-y)^{2} (h)$ O=28°25' (2)(ii) Volume = ZA(y) Sy 1 (iii) from (i) $\tan \Theta = \frac{r\omega^2}{2}$ = $\int A(h-y)^2 dy$ $\frac{\Gamma}{h} = \frac{\Gamma \omega}{2}$ $= \left[\frac{-A}{3h^2}(h-y)^3\right]^2$ as can be seen h depends h = q on g a constand and w which is the same as $= -\frac{4}{3h^2}\left(0-h^3\right)$ before :- h remains the same . double mass = no effect on o. = Ah(2) = 50 000 × 150 = 2500 000 m³ (b) (i) 1 1 $m\tilde{\chi} = -10 m - mV^{2}$ (m = 1 kg) $\therefore \dot{\chi} = -\left(10 + \frac{v^2}{100}\right)$ 17 .: X = - 50 ln (1000+22) note m=1kg) when z=0 v=100 $\frac{V dv}{dx} = -\left(\frac{1600 + v^2}{160}\right)$ -" C = 50-ln 11000 : x = 50 ln (1000 (1000+v2) $\frac{dv}{dv} = -\left(\frac{1000 + v^2}{100v}\right)$ when v=o (night pt) $\frac{dx}{dx} = -\frac{100V}{100V}$ x = 50 ln 11 (4)

tan 40 = 4tan 0-4tan 30 1-6tan 20+ tan 40 Qa.a)i) (ii) The downword velocity will less than 100 m/s (its original). For example consider a speargun being fired upwords in water from low in the ocean then ofter reaching its highest point, slowly drifting back downwords. let x=tand and tan 40= 13 $\frac{4x-4x^3}{1-6x^2+x^4} = \frac{1}{\sqrt{3}}$ downwords . ·: x4 + 453 x3 - 6x2 - 453x +1=0 OR more everyday tan 40= 12 40= nT + E A football being kicled from a boot derectly yourds 0 = 1+ + = + = + , n=0,1,2,3 high velocity at impact, highest point zero velocity. person is able to catch it on return (lower velocity at return, otherwise unable to catch it.) N=0, 0= = + so x= tan =+ N=1, O: #+===== , x= tan 24 N=2, O= =+=+===== , x=tan === (or - tan ===) n.3, 0= 34+24= 191, x= tan 24 (or - tan 54) (2)(111) $m_{\chi}^{\circ} = 10 - V^{L} \qquad (m=1)$ ii)(1)from (i) tan I4 + tan I4 - tan I4 - tan I4 = -4/3 (sum of roots) mg 100 .: tan =+ + tan == + 453: tan == + tan == $\chi = 1000 - v^2$ 100 (tan = 1) (tan = 1) (- tan = 1) (- tan = 1 (product of roots) 前(2) v du = 1000-12 tan I4 tan I4 = _____ tan III - tan I4 tan III dx 100 dv = 1000 - v2 ... tan "It tan "IT = cot II cot "II dx 100 V $\frac{dx}{dv} = \frac{100 v}{1000 - v^2}$ let a=tan 24 (mi $\frac{1}{\alpha^2} = \left(\cos \frac{\pi}{24} \right)^2$ let 12 = x 30 x = 172 $\chi = -50 \ln (1000 - V^2) + c$ (at top x=0 v=0) (点)++453(点)-6(点)2-453(点)+1=0 .: C=50 ln 1000 X = 50 lm 1000-V2 $\frac{1}{2^2} + \frac{43}{25^2} - \frac{6}{2} - \frac{45}{52} + 1 = 0$ when z = 50 ln 11 (destance of reform) from highest pt x2 - 4/3x5x - 6x + 4/3 5x + 1 = 0 $\frac{11}{1000} = \frac{1000}{1000} v^{2}$ $\frac{11000}{1000} = \frac{11}{1000} v^{2} = 1000$ $\frac{10000}{10000} = \frac{11}{1000} v^{2}$ $4\sqrt{3}\sqrt{2}(\chi -1) = \chi^2 - 6\chi + 1$ 48 x (x-1)2 = (x2-6x+1)2 48x3-96x2+48x = x4-12x3+2x2+36x2-12x+1 V= = 10 000 $V = \frac{100}{\sqrt{11}} \text{ m/s} = \frac{100\sqrt{11}}{11} \text{ m/s}.$ ie $x^4 - 60x^3 + 134x^2 - 60x + 1 = 0$ (4)