HORNSBY GIRLS' HIGH SCHOOL

2008
 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time $\mathbf{- 5}$ minutes
- Working Time - $\mathbf{3}$ hours
- Write using a black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question
- Begin each question on a fresh sheet of paper

Total marks (120)

- Attempt Questions 1 - 8
- All questions are of equal value

BLANK PAGE

Total Marks - 120

Attempt Questions 1 - 8

All Questions are of equal value
Begin each question on a NEW SHEET of paper, writing your student number and question number at the top of the page. Extra paper is available.

Question 1 (15 marks) Use a SEPARATE sheet of paper.
(a) Find $\int \frac{d x}{x^{2}-4 x+40}$
(b) Evaluate $\int_{0}^{2} x^{3} e^{x^{2}} d x$.
(c) Find $\int \sin ^{3} x d x$
(d) Evaluate $\int_{0}^{1} \frac{x}{\sqrt{4-x}} d x$
(e) (i) Find the real numbers a, b and c such that

$$
\frac{3 x^{2}+2 x+11}{\left(x^{2}+3\right)(1-x)} \equiv \frac{a x+b}{x^{2}+3}+\frac{c}{1-x} .
$$

(ii) Hence find $\int \frac{3 x^{2}+2 x+11}{\left(x^{2}+3\right)(1-x)} d x$.

Question 2 (15 marks) Use a SEPARATE sheet of paper.
(a) Given z is a complex number such that $z=1+i$
(i) Write z in mod-arg form $\quad 2$
(ii) Evaluate z^{12}
(b) If $P(z)=z^{4}-30 z^{2}+289$
(i) Show that $z=4+i$ is a zero of $P(z) \quad 2$
(ii) Find all zeros of $P(z)$ over the complex field
(c) $\quad P(z)$ is a point on the argand diagram such that

$$
\arg \frac{z-i}{z+2}=\frac{\pi}{2}
$$

Draw and describe the locus of $P(z)$.
(a) The diagram below is a sketch of the function $y=f(x)$

On separate diagrams sketch
(i) $\quad y=|f(x)|$
(ii) $\quad y=f(|x|)$
(b) The graph below represents the derivative $f^{\prime}(x)$ of a certain function $f(x)$.

Given that $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty, f(0)=0$ and $f(1)<0$, sketch the graph of $f(x)$, noting the behaviour as $x \rightarrow \infty$.

(c) (i) Sketch the curve $y=\frac{x^{3}+4}{x^{2}}$, showing any stationary points and asymptotic behaviour.
(ii) Hence or otherwise, deduce the values of k, for which the equation $x^{3}-k x^{2}+4=0$ may have one real root.
(d) (i) If $x=a$ is a multiple root of the polynomial equation $P(x)$ such that $P(x)=0$, prove that $P^{\prime}(a)=0$.
(ii) Find all roots of $P(x)=16 x^{3}-12 x^{2}+1$ given that two of the roots are equal.

Question 4 (15 marks) Use a SEPARATE sheet of paper.
(a) An ellipse has parametric equations $x=\sqrt{2} \cos \theta$ and $y=3 \sin \theta$.

Find the Cartesian equation and the eccentricity of the ellipse.
(b)

The ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ shown in the diagram above has a tangent at the point $P(a \cos \theta, b \sin \theta)$. The tangent cuts the x-axis at T and the y-axis at R.
(i) Show that the equation of the tangent at the point P is

$$
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1 .
$$

(ii) If T is the point of intersection between the tangent at point P and one of the directrices of the ellipse, show that $\cos \theta=e$.
(iii) Hence find the angle that the focal chord through P makes with the x-axis.
(iv) Using similar triangles or otherwise, show that $R P=e^{2} R T$.
(c) The area between the curve $y=\ln (x+1)$ and the x-axis, between
$x=0$ and $x=1$ is rotated about the y-axis.
Find the volume of the solid of revolution formed using the method of cylindrical shells.
(a) (i) Write down the value of $\int_{a}^{a} \sqrt{a^{2}-x^{2}} d x$.
(ii) Explain why $\int_{-a}^{a} x \sqrt{a^{2}-x^{2}} d x$ is equal to zero.
(b)

The base of a solid is the semi-circular region in the $x-y$ plane with the straight edge running from the point $(0,-1)$ to the point $(0,1)$ and the point $(1,0)$ on the curved edge of the semicircle.
Each cross-section perpendicular to the x-axis is an isosceles triangle with each of the two equal side lengths three quarters the length of the third side.
(i) Show that the area of the triangular cross-section at $x=a$ is $\frac{\sqrt{5}}{2}\left(1-a^{2}\right)$.
(ii) Hence find the volume of the solid.
(c) The point $T\left(c t, \frac{c}{t}\right)$ lies on the hyperbola $x y=c^{2}$. The tangent at T meets the x-axis at P and the y-axis at Q. The normal at T meets the line $y=x$ at R.
(i) Prove that the tangent at T has equation $x+t^{2} y=2 c t$.
(ii) Find the coordinates of P and Q.
(iii) Write down the equation of the normal at T.
(iv) Show that the x coordinate of R is $x=\frac{c}{t}\left(t^{2}+1\right)$.
(v) Prove that $\triangle P Q R$ is isosceles.
(a) The equation $x^{3}+2 x-1=0$ has roots α, β, γ.

Find a polynomial equation in x whose roots are:
(i) $-\alpha,-\beta,-\gamma \quad 1$
(ii) $\alpha^{2}, \beta^{2}, \gamma^{2} \quad 2$
(iii) $\pm \alpha, \pm \beta, \pm \gamma$
(b) Find a and b if $(1+i)$ is a root of $x^{2}+(a+2 i) x+5-i b=0$
(c) A body M, of mass 650 g , is fixed to point O by a light wire 0.2 m long.

The body rotates in a horizontal plane at 72 revolutions per minute.
Taking $g=10 \mathrm{~m} / \mathrm{s}^{2}$,

(i) Prove that $\tan \theta=\frac{72 \pi^{2} \sin \theta}{625}$.
x (ii) Find θ to the nearest minute.
rad.?
(iii) The mass of the body is to be doubled but the speed of rotation is to remain the same. What will happen to the value of θ ?
(a) The great pyramid of Cheops at Giza in Egypt is approximately 150 m high and its base is a square with an area of approximately 5 hectares.

(i) Show that the area of the cross section $A(y)$, at y is given by

$$
A(y)=\left(5 \times 10^{4}\right) \times\left(\frac{h-y}{h}\right)^{2}
$$

(ii) Find the volume of the pyramid by using the slicing technique.
(b) A particle of mass 1 kg is projected vertically upwards with an initial velocity of $100 \mathrm{~m} / \mathrm{s}$ in a medium in which the resistance force is equal to 0.01 times the square of the body's velocity, i.e. $0.01 v^{2}$. Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(i) Show that the maximum height reached by the particle is $50 \log _{e} 11$ metres.
(ii) Will the downward velocity of the particle on its return to the point of projection be greater than, less than, or equal to $100 \mathrm{~m} / \mathrm{s}$?

Justify your answer.
(iii) Calculate the actual downward velocity of the particle on its return to the point of projection.
(a) Use the following identity to answer the following questions.

$$
\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta} .
$$

(i) Solve $x^{4}+4 \sqrt{3} x^{3}-6 x^{2}-4 \sqrt{3} x+1=0$.
(ii) Hence show that
(1) $\tan \frac{\pi}{24}+\tan \frac{7 \pi}{24}+4 \sqrt{3}=\tan \frac{5 \pi}{24}+\tan \frac{11 \pi}{24}$
(2) $\tan \frac{\pi}{24} \tan \frac{5 \pi}{24}=\cot \frac{7 \pi}{24} \cot \frac{11 \pi}{24}$

1
(iii) Find the polynomial of least degree that has zeros

$$
\left(\cot \frac{\pi}{24}\right)^{2},\left(\cot \frac{7 \pi}{24}\right)^{2},\left(\cot \frac{13 \pi}{24}\right)^{2},\left(\cot \frac{19 \pi}{24}\right)^{2}
$$

(b) Let $I_{n}=\int_{0}^{1} x\left(x^{2}-1\right)^{n} d x$ for $n=0,1,2, \ldots$
(i) Use integration by parts to show that

$$
I_{n}=\frac{-n}{n+1} I_{n-1} \text { for } n \geq 1
$$

(ii) Hence or otherwise show that

$$
I_{n}=\frac{(-1)^{n}}{2(n+1)} \text { for } n \geq 0
$$

(iii) Explain why $I_{2 n}>I_{2 n+1}$ for $n \geq 0$
(iv) Explain whether or not $I_{n}>I_{n+2}$ for all $n \geq 0$.

End of Examination

2008 Extension 2 Trial Solutions
Q(a) $\int \frac{d x}{x^{2}-4 x+40}=\int \frac{d x}{(x-2)^{2}+36}$

$$
=\frac{1}{6} \tan ^{-1}\left(\frac{x-2}{6}\right)
$$

11) $\int \frac{3 x^{2}+2 x+11}{\left(x^{2}+3\right)(1-x)} d x=\int \frac{x-1}{x^{2}+3}+\frac{4}{1-x} d x$
b)

$$
\begin{aligned}
\int_{0}^{2} x^{3} e^{x^{2}} d x & =\left[\frac{x^{2} e^{x^{2}}}{2}\right]_{0}^{2}-\int_{0}^{2} 2 x \frac{e^{x^{2}}}{2} d x \quad u=x^{2} \quad v=\frac{1}{2} e^{x^{2}} \\
& =\left[\frac{4 e^{4}}{2}-0\right]-\frac{1}{2}\left[e^{x^{2}}\right]_{0}^{2} \quad d u=2 x \quad d v=x e^{x^{2}} \\
& =2 e^{4}-\frac{1}{2}\left(e^{4}-1\right) \\
& =\frac{1}{2}\left(3 e^{4}+1\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
\int \sin ^{3} x d x & =\int \sin ^{2} x \cdot \sin x d x \\
& =\int\left(1-\cos ^{2} x\right) \sin x d x \\
& =\int \sin x-\cos ^{2} x \cdot \sin x d x \\
& =-\cos x+\frac{\cos ^{3} x}{3}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \int_{0}^{1} \frac{x}{\sqrt{4-x}} d x \quad \text { let } u=4-x \Rightarrow x=4-u \\
& =\int_{4}^{3} \frac{4-u}{\sqrt{u}} \cdot-1 d u \\
& d u=-1 \\
& x=0, u=4 \\
& x=1, u=3 \\
& =\left[8 u^{1 / 2}-\frac{2}{3} u^{3 / 2}\right]_{3}^{4} \\
& =\left(8 \sqrt{4}-\frac{2}{3} \cdot 4 \sqrt{4}-\left(8 \sqrt{3}-\frac{2}{3} \cdot 3 \sqrt{3}\right)\right) \\
& =16-\frac{16}{3}=6 \sqrt{3} \\
& =\frac{1}{3}(32-18 \sqrt{3})
\end{aligned}
$$

i)

$$
\begin{align*}
& \frac{3 x^{2}+2 x+11}{\left(x^{2}+3\right)(1-x)}=\frac{(a x+b)(1-x)+c\left(x^{2}+3\right)}{\left(x^{2}+3\right)(1-x)} \\
& a x-a x^{2}+b-b x+c x^{2}+3 c=3 x^{2}+2 x+11 \\
& c-a=3 \rightarrow a=c-3 \\
& a-b=2 \rightarrow c-3-b=2 \therefore c-b=5 \tag{1}
\end{align*}
$$

(2) +(3): $\quad 4 c=16, c=4 \quad$ ie $a=1, b=-1, c=4$

$$
\begin{aligned}
& \text { in (1) } \quad 4-b=5, b=-1 \\
& \quad a-4-2=1
\end{aligned}
$$

SOLUTIONS QUESTION 2
(a) (i)

$$
\begin{align*}
\text { Given } & z=1+i \\
|z| & =\sqrt{1^{2}+1^{2}} \\
& =\sqrt{2} \\
\arg z & =\tan -\frac{1}{1} \tag{2}\\
& =\frac{\pi}{4} \\
\therefore z & =\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
\end{align*}
$$

(ii)

$$
\begin{aligned}
z^{\prime 2} & =\left[\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]^{12} \\
& =2^{6}(\cos 3 \pi+i \sin 3 \pi) \\
& =64(-1+0) \\
& =-14
\end{aligned}
$$

De Move's The
(2)
(b) $\operatorname{G} p(z)=z^{4}-30 z^{2}+289$
(i) If $P(4+i)=0$ then $4+i$ is a zero of $P(z)$.

$$
\begin{aligned}
& P(4+i)=(4+i)^{4}-30(4+i)^{2}+289 \\
&=\left((4+i)^{2}\right)^{2}-30(15+8 i)+289 \quad \text { substitution } \\
&=(15+8 i)^{2}-450-240 i+289 \quad \text { pathol simp. } \\
&=225+240 i+64 i^{2}-450-240 i+289 \\
&=225+240 i-64-450-240 i+289-(1) \\
&=0 \\
& \therefore(4+i) \text { is a zero of } P(z)
\end{aligned}
$$

(ii) Since $4+i$ is a zero, so also is $4-i$ (complex conj).

$$
\begin{align*}
& \text { re. }[z-(4+i)][z-(4-i)] \text { is a factor } \tag{1}\\
&= {[z-4)-i][(z-4)+i] \text { is a fact } } \\
&=(z-4)^{2}-i^{2} \\
&= z-8 z+17
\end{align*}
$$

(ii) (continued)
$\therefore P(z)$ is a semiairde with $A C$ as diameter and ρ above $A C$. Points A, C are excluded
(c)
(2)

$\arg (3-i)$

$$
\begin{array}{r}
z^{2}-8 z+17 \frac{z^{2}+8 z+17}{z^{4}-50 z^{2}}+289 \tag{1}\\
z^{4}-z^{3}+17 z^{2} \\
8 z^{3}-4 z^{2} \\
\frac{8 z-62 z^{2}+136 z}{11 z^{2}-136 z+289} \\
\frac{17 z^{2}-136 z+289}{0}
\end{array}
$$

$\therefore z^{2}+8_{z}+17$ is a factor of $P(z)$

$$
\begin{align*}
\therefore z^{2}+8 z+17 & =\left(z^{2}+8 z+16\right)+1 \quad \text { (Att :use quad. form) } \\
& =(z+4)^{2}-i^{2} \\
& =(z+4-i)(z+4+i) \\
& =(z-(-4+i)(z-(-4-i)) \tag{1}
\end{align*}
$$

\therefore remameng zero's ore $-4+i,-4-i$
\therefore zeros of $P(z)$ an $4+i, 4-i,-4+i,-4-i$.

Geometrically
$\arg \left(\frac{-z+i}{z+2}\right)=\frac{\pi}{2}$
$\arg (z-i)-\operatorname{ag}(z+2)=\frac{\pi}{2}$
$\quad \& N B \arg (z-i) \operatorname{ang}(z+2$.
From diagram
(ext. angle of 4)

$$
\begin{aligned}
\therefore Q & =\operatorname{agg}(z-i)-\operatorname{ag}(z+2) \\
& =\frac{\pi}{2}
\end{aligned}
$$

Solutions Question 3
(a)

(ii) $y=f(|x|)$
(b)

$$
\begin{aligned}
& f^{\prime}(2)=0 \quad f^{\prime}\left(2^{-}\right)<0 \quad f^{\prime}\left(2^{+}\right)>0 \quad-1+\therefore x=2 \text { is min } \\
& f^{\prime}(-3)=0 \quad f^{\prime}(-3)>0 \quad f^{\prime}\left(-3^{+}\right)<0++^{\circ}-\therefore x=-3 \text { is max }
\end{aligned}
$$

Curve passe through (0,0)
Curve below x axis when $x=1$
as $x \rightarrow \infty, f^{\prime}(x) \rightarrow 0$ ie flattens out to horizontal asymptote.

(c) $y=\frac{x^{3}+4}{x^{2}}$
zero's $\begin{aligned} x^{3} & =-4 \\ x & =y=4\end{aligned}$

$$
=x+4 x^{-2}
$$

$$
\text { T. Ps } \quad\left(\frac{d y}{d z}=0\right)
$$

Inflection $\left(\frac{\alpha^{2} y}{d x^{2}}=0\right)$

$$
\frac{d y}{d x}=1-\frac{8}{x^{3}}
$$ $\frac{d^{2} y}{d x^{2}}=\frac{24}{x^{4}}>0 \therefore$ no inflexions.

$\frac{d y}{d x}=0$ when $x=2$ $\frac{\text { test }}{d^{2} y}$ App: $\frac{d^{2} y}{d x^{2}}$ $\therefore \min t . p$.

Asymptotic Behaviour vertical $x=0$

$$
\begin{aligned}
& x \rightarrow 0^{+} y \rightarrow \infty . \\
& x \rightarrow 0^{-} y \rightarrow \infty^{-} .
\end{aligned}
$$

other as $x \rightarrow \infty \therefore y=x$ (oblique oogmptote)

(ii) From the graph $x^{3}-k x^{2}+4=0 \Rightarrow k=\frac{x^{3}+4}{x^{2}}$ what horizontal hie $y=k$ whee only have one solution? any $k=3 \cdot x^{x^{2}}$ (i)
(d) (i). If ' a ' is a mut roof of $p(x)$ then

$$
\begin{aligned}
P(x) & =(x-a)^{r} \cdot Q(x) \\
P^{\prime}(x) & =(x-a)^{\prime} \cdot Q^{\prime}(x)+Q(x) \cdot r(x-a)^{r-1} \\
& =(x-a)^{r-1}\left[(x-a) Q^{\prime}(x)+r Q(x)\right] \\
& =(x-a)^{r-1} S(a) \quad \text { where } S(a)=(x-a) Q^{\prime}(x)+r Q(x) \\
\therefore P^{\prime}(a) & =(a-a)^{r-1} S(a) \\
& =0 \times S(a) \\
& =0 \text { as required. }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& P(x)=16 x^{3}-12 x^{2}+1 \\
& P^{\prime}(x)=48 x^{2}-24 x
\end{aligned}
$$

when $P^{\prime}(x)=0$

$$
\begin{gathered}
48 x^{2}-24 x=0 \\
24 x(2 x-1)=0 \\
\therefore x=0, \frac{1}{2} .
\end{gathered}
$$

Since $P(0)=1$
and $P\left(\frac{1}{2}\right)=0 \quad x=\frac{1}{2}$ is double roof
Now $\quad \alpha+\beta+\gamma=\frac{12}{16} \quad$ but $\alpha=\beta=\frac{1}{2}$

$$
\begin{align*}
\frac{1}{2}+\frac{1}{2}+\gamma & =\frac{12}{16} \\
\gamma & =-\frac{1}{4} \tag{3}
\end{align*}
$$

$\therefore 3$ roots are $\frac{1}{2}, \frac{1}{2},-\frac{1}{4}$

Q4.a)

$$
\begin{array}{ll}
x=\sqrt{2} \cos \theta \quad & y=3 \sin \theta \\
\cos \theta=\frac{x}{\sqrt{2}} \quad & \sin \theta=\frac{y}{3} \\
\left(\frac{x}{\sqrt{2}}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1 \quad\left(\cos ^{2} \theta+\sin ^{2} \theta=1\right) \\
\therefore \quad \frac{x^{2}}{2}+\frac{y^{2}}{9}=1 \quad, a<b \\
a^{2}=b^{2}\left(1-e^{2}\right) \quad, a<b \\
2=9\left(1-e^{2}\right) \\
1-e^{2}=\frac{2}{9} \\
& e^{2}=\frac{7}{9} \\
\therefore e=\frac{\sqrt{7}}{3}
\end{array}
$$

b) i)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \therefore \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=-\frac{2 x}{a^{2}} \times \frac{b^{2}}{2 y} \\
&=-\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

at $P(a \cos \theta, b \sin \theta)$, $\frac{d y}{d x}=\frac{-b^{2} a \cos \theta}{a^{2} b \sin \theta}$

$$
=-\frac{b \cos \theta}{a \sin \theta}
$$

\therefore equation of tangent is $y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta)$ $a \sin \theta y-a b \sin ^{\operatorname{asin} \theta} \theta=-b \cos \theta x+a b \cos ^{2} \theta$ $b \cos \theta x+a \sin \theta y=a b\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$

$$
\therefore \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1-0
$$

ii) at $T, y=0$, T hies an tang $\therefore \frac{x \cos \theta}{a}=1$

$$
\text { ie } x=\frac{a}{\cos \theta}
$$

$\therefore T\left(\frac{a}{\cos \theta}, 0\right)$
equation of directrix is $\quad x=\frac{a}{e}$

$$
\therefore \frac{a}{\cos \theta}=\frac{a}{e}
$$

ie $\cos \theta=e$

4b) iii) suice $\cos \theta=e$, the x-coordinate of P is ae The focus has coordinates $S(a e, 0)$
\therefore The focal chord makes an angle of 90° with x-axis
iv) $\triangle T O R \| I I S T$ (equiangular)
$\therefore \frac{R T}{O T}=\frac{R P}{O S}$ (ratio of intercepts)
$T\left(\frac{a}{e}, 0\right)$ and $S(a c, 0)$
$\therefore O T=\frac{a}{e}$ and $O S=a e$

$$
\begin{aligned}
\therefore \frac{R T}{\frac{a}{e}} & =\frac{R P}{a e} \\
R T & =\frac{R P}{d e} \cdot \frac{\alpha}{e} \\
\therefore R P & =e^{2} R T
\end{aligned}
$$

c)

let $A B C D$ be rectangle of height y and width δx. where $P(x, y)$ is the midpt of the rectangle
let R be outer radius $a r$ be inner radwis.

$$
\begin{aligned}
\delta V & =\pi\left(R^{2}-r^{2}\right) \times h \\
& =\pi(R+r)(R-r) \times y \\
& =2 \pi\left(\frac{R+r}{2}\right)(R-r) \times y \\
& =2 \pi \cdot x \cdot \delta x \cdot y
\end{aligned}
$$

$$
\therefore V=\lim _{\delta x \rightarrow 0} \sum_{x=0}^{1} 2 \pi x y \delta x, y=\ln (x+1)
$$

$$
=\int_{0}^{1} 2 \pi x \cdot \ln (x+1) d x
$$

$$
u=\ln (x+1) \quad v=\frac{x^{2}}{2}
$$

$$
d u=\frac{1}{x+1} \quad d v=x
$$

$$
\begin{aligned}
& \left.=2 \pi\left[\frac{x^{2}}{2} \ln (x+1)\right]_{0}^{1}-\int \frac{x^{2}}{2(x+1)} d x\right) \\
& =2 \pi\left(\frac{1}{2} \ln 2-\frac{1}{2} \int_{0}^{1}\left(x-1+\frac{1}{x+1}\right) d x\right) \\
& =2 \pi\left(\frac{1}{2} \ln 2-\frac{1}{2}\left[\frac{x^{2}}{2}-x+\ln (x+1)\right]_{0}^{1}\right) \\
& =2 \pi\left(\frac{1}{2} \ln 2-\frac{1}{2}\left[\frac{1}{2}-1+\ln 2-(0-0+0)\right]\right) \\
\therefore \text { Volume } & =\frac{\pi}{2} \text { units }^{3}
\end{aligned}
$$

Q5 a) i) $\int_{-a}^{a} \sqrt{a^{2}-x^{2}} d x=\frac{1}{2} \cdot \pi \cdot a^{2}$, area of semicircle centre $(0,0)$, raduis a

$$
=\frac{\pi a^{2}}{2}
$$

ii) $4(x) \cdot x \sqrt{a^{2}-x^{2}}$ is an add $f^{n} \therefore \int_{-a}^{0} f(x) d x=-\int_{0}^{a} f(x) d x$

$$
\therefore \int_{-a}^{a} f(x) d x=0
$$

b) i)

$$
\text { h } \begin{aligned}
\frac{3}{2} \sqrt{1-a^{2}} \text { height } & =\sqrt{\frac{9}{4}\left(1-a^{2}\right) \mp\left(1-a^{2}\right)} . \\
& =\sqrt{\frac{5}{4}\left(1-a^{2}\right)}
\end{aligned}
$$

$$
=\frac{\sqrt{5}}{2} \sqrt{1-a^{2}}
$$

$$
\therefore \text { Area of } \Delta=\frac{1}{2} \times 2 \sqrt{1-a^{2}} \times \frac{\sqrt{5}}{2} \sqrt{1-a^{2}}
$$

$$
=\frac{2}{2}\left(1-a^{2}\right)
$$

ii) $\quad V=\int_{0}^{1} \frac{\sqrt{5}}{2}\left(1-x^{2}\right) d x$

$$
=\frac{\sqrt{5}}{2}\left[x-\frac{x^{3}}{3}\right]_{0}^{1}
$$

$$
=\frac{\sqrt{5}}{2}\left(1-\frac{1}{3}\right)^{3}
$$

\therefore Vol $=\frac{\sqrt{5}}{3}$ units 3
c)
i)

$$
\begin{aligned}
x y=c^{2} \rightarrow y & =c^{2} x^{-1} \\
\frac{d y}{d x} & =-c^{2} x^{-2}
\end{aligned}
$$

at $T\left(c t, \frac{c}{t}\right)$
\therefore eqn of tangent io.

$$
\begin{aligned}
& M_{T}=\frac{-c^{2}}{(c t)^{2}}=-\frac{1}{t^{2}} \\
& y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t) \\
& t^{2} y-c t=-x+c t \\
& x+t^{2} y=2 c t
\end{aligned}
$$

ii) at $P \quad y=0$

$$
\therefore x=2 c t \quad \therefore P(2 c t, 0)
$$

$$
\text { at } Q, x=0 \quad \therefore t^{2} y=2 c t \quad \therefore \quad Q\left(0, \frac{2 c}{t}\right)
$$

iii) $M_{N}=t^{2} \therefore$ eqn is $y-\frac{c}{t}=t^{2}(x-c t)$
ie $t y-c=t^{3} x-c t^{4}$

$$
t^{3} x-t y=c t^{4}-c
$$

iv) R. lies on $y=x$ and the nomal at $T, t^{3} x-t y=c t^{4}-c$

$$
\begin{aligned}
\therefore t^{3} x-t x & =c\left(t^{4}-1\right) \\
t x\left(t^{2}-1\right) & =c\left(t^{-}-1\right)\left(t^{2}+1\right) \\
x & =\frac{c}{t}\left(t^{2}+1\right)
\end{aligned}
$$

v) R lies an $y=x \therefore$ coordinates of $R\left(\frac{c}{t}\left(t^{2}+1\right), \frac{c}{t}\left(t^{2}+1\right)\right)$
 $P(2 c t, 0) \quad Q\left(0, \frac{z t}{t}\right)$ Midpt of $P Q$ is $\left(\frac{\text { 2ct+o }}{2}, \frac{0+\frac{20}{2}}{2}\right)$
$=$ (ct, $\frac{c}{t}$), which is the point T. \therefore any point on the normal at T will lie on the perpendicular bisector of $P Q$.
$\therefore \triangle P R Q$ is is osceles

Question 6 Solutions
(a) (i) let

$$
\begin{align*}
& (-x)^{3}+2(-x)-1=0 \\
& -x^{3}-2 x-1=0 \\
& \therefore x^{3}+2 x+1=0 \tag{1}
\end{align*}
$$

(iii) let $x= \pm X$ (Note $x=-x$) in pat (i) and $x=X$ is
$\therefore\left(x^{3}+2 x-1\right)\left(x^{3}+2 x+1\right)=0$ must have $x= \pm x^{\text {Original equation }}$

$$
\therefore\left(x^{3}+2 x-1\right)\left(x^{3}+2 x+1\right)=0
$$

$$
\begin{equation*}
x^{6}+4 x^{4}+4 x^{2}-1=0 \tag{2}
\end{equation*}
$$

(b) Note $1-i$ is NOT a root of $x^{2}+(a+2 i) x+5-i b=0$. since all coefficients ane NOT real
$1+i$ is a root of $x^{2}+(a+2 i) x+5-i b=0$ (given)

$$
\begin{align*}
& \quad \therefore(1+i)^{2}+(a+2 i)(1+i)+5-i b=0 \\
& \therefore 1+2 i-1+a+2 i+a i-2+5-i b=0 \\
& (a+3)+(4+a-b) i=0 \\
& \therefore a+3=0 \quad \text { as } \operatorname{Re}=0
\end{align*}
$$

(c)

$$
\text { (i) } \begin{aligned}
T \sin \theta & =m r \omega^{2} \quad \text { (hor.) } \\
T \cos \theta & =m g \quad \text { (vert) } \\
\therefore \tan \theta & =\frac{r \omega^{2}}{y} \\
\therefore \tan \theta & =\frac{\sin \theta}{5} \times \frac{144 \pi^{2}}{25} \times \frac{1}{10} \\
& =\frac{72 \pi^{2} \sin \theta}{625} \text { as reg. }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sin \theta}{5} .
\end{aligned}
$$

$\omega=\frac{22 \times 2 \pi}{6 n}=\frac{12 \pi}{5} \mathrm{rad} / \mathrm{s}$
(ii)

$$
\text { (ii) } \begin{align*}
\tan \theta & =\frac{72 \pi^{2} \sin \theta}{625} \text { from (i) } \\
\frac{\sin \theta}{\cos \theta} & =\frac{72 \pi^{2} \sin \theta}{625} \\
\therefore \quad \cos \theta & =\frac{625}{72 \pi^{2}} \\
\theta & =28^{\circ} 25^{\prime} \tag{2}
\end{align*}
$$

(ii) from (i) $\tan \theta=\frac{r w^{2}}{g}$

$$
\frac{r}{n}=\frac{r w^{2}}{g}
$$

$h=\frac{g}{2 \omega^{2}}$ as can be ocean h depends on g a constand and w which is the same os clefure $\therefore h$ remains the same \therefore double mass \Rightarrow no effect on θ.

Since a square pyramid
If $d_{1}: d_{2}$ then $l_{1}^{2}: l_{2}^{2}$

$$
\begin{align*}
\frac{A(y)}{A} & =\frac{(h-y)^{2}}{h^{2}} \\
\therefore A(y) & =\frac{5 \times 10^{4}}{y^{2}} \tag{}
\end{align*}
$$

similar areas (all as saves)
(ii)

$$
\begin{aligned}
\text { Volume } & =\sum_{0}^{h} A(y) \delta y \\
& =\int_{0}^{h} A(h-y)^{2} d y \\
& =\left[-\frac{A}{h^{2}} \frac{(h-y)^{3}}{h^{2}}\right]_{0}^{h} \\
& =-\frac{A}{3 h^{2}}\left(0-h^{3}\right) \\
& =\frac{A h}{3} \\
& =\frac{50000 \times 150}{3} \\
& =2500000 \mathrm{~m}^{3}
\end{aligned}
$$

(b)
(i) $\downarrow_{m g} \downarrow_{\frac{v^{2}}{100}}$
note $m=1 \mathrm{ky}$)

$$
\begin{align*}
& \begin{aligned}
m \ddot{x} & =-10 m-\frac{n v^{2}}{100} \\
\therefore \ddot{x} & =-\left(10+\frac{v^{2}}{100}\right) \\
v \frac{d v}{d x} & =-\left(\frac{1000+v^{2}}{100}\right)
\end{aligned} \\
& \frac{d v}{d x}=-\left(\frac{1000+v^{2}}{100 v}\right) \\
& \therefore \frac{d x}{d 11}=-\frac{100 \mathrm{~V}}{1 \operatorname{son} \cos 2} \tag{4}\\
& m \ddot{x}=-10 m-\frac{m v^{2}}{100} \quad(m=1 \mathrm{~kg}) \\
& \therefore \ddot{x}=-\left(10+\frac{v^{2}}{100}\right) \quad \nabla \therefore x=-50 \ln \left(1000+v^{2}\right) \\
& \text { when } x=0 \quad v=100 \text {. } \\
& \therefore c=50 \ln 11000 \\
& \therefore x=50 \ln (11000) \\
& \text { when } v=0 \text { (gist } \rho t \text {) } \\
& x=50 \ln 11
\end{align*}
$$

(ii) The downward velocity will less than $100 \mathrm{~m} / \mathrm{s}$ (its
original). For example consider a speargun being original). For example consider a speargun being
fined upends in water from low in the ocean then fired upourds in water from low in the ocean then offer reaching its kegheot point, slowly drifting back downwards.

OR move everyday
A football beng kicked from a boot directly upends high veloaty at inyact, highest point zero veloclet. person is able to catch it on return (lower velocity at return, otherwise unable to catch it.)
(iii)

$$
\begin{aligned}
\downarrow_{m g} \prod_{10} \frac{v^{2}}{100} & =10-\frac{v^{2}}{100} \quad(n=1) \\
={ }_{10} \quad \ddot{x} & =\frac{1000-v^{2}}{100} \\
v \frac{d v}{d x} & =\frac{1000-v^{2}}{100} \\
\frac{d v}{d x} & =\frac{1000-v^{2}}{100 v} \\
\frac{d x}{d v} & =\frac{100 v}{1000-v^{2}} \\
x & \left.=-50 \ln \left(1000-v^{2}\right)+c \quad \text { (at top } x=0 \quad v=0\right)
\end{aligned}
$$

$$
x=50 \ln \frac{1000}{1000-v^{2}}
$$

$$
/ 1=\frac{1000}{1000-v^{2}}
$$

$$
\begin{aligned}
& 11000-1110 v^{2}=1000 \\
& 10000=11 v^{2}
\end{aligned}
$$

$$
10000=11 v^{2}
$$

$$
v^{2}=\frac{10000}{11} \quad r=\frac{100}{\sqrt{11}} \mathrm{~m} / \mathrm{s}=\frac{100 \sqrt{11}}{11} \mathrm{~m} / \mathrm{s}
$$

Q(A. a) i) $\quad \tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}$
let $x=\tan \theta$ and $\tan 4 \theta=\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
& \therefore \frac{4 x-4 x^{3}}{1-6 x^{2}+x^{4}}=\frac{1}{\sqrt{3}} \\
& \therefore x^{4}+4 \sqrt{3} x^{3}-6 x^{2}-4 \sqrt{3} x+1=0
\end{aligned}
$$

$\tan 4 \theta=\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
4 \theta & =n \pi+\frac{\pi}{6} \\
\theta & =\frac{n \pi}{4}+\frac{\pi}{24}, n=0,1,2,3
\end{aligned}
$$

$n=0, \quad \theta=\frac{\pi}{24} \quad$ so $x=\tan \frac{\pi}{24}$

$$
n=1, \quad \theta=\frac{\pi}{4}+\frac{\pi}{24}=\frac{7 \pi}{24}, \quad x=\tan \frac{7 \pi}{24}
$$

$$
\left.n=2, \quad \theta=\frac{\pi}{2}+\frac{\pi}{24}=\frac{13 \pi}{24}, \quad x=\tan \frac{13 \pi}{24} \quad \text { (or }-\tan \frac{11 \pi}{24}\right)
$$

$$
n=3, \theta=\frac{3 \pi}{4}+\frac{\pi}{24}=\frac{19 \pi}{24}, \quad x=\tan \frac{19 \pi}{24} \quad\left(\operatorname{or}-\tan \frac{5 \pi}{24}\right)
$$

ii) (1) from (i) $\tan \frac{\pi}{24}+\tan \frac{7 \pi}{24}-\tan \frac{5 \pi}{24}-\tan \frac{11 \pi}{24}=-4 \sqrt{3}$ (sun of roots)

$$
\therefore \tan \frac{\pi}{24}+\tan \frac{7 \pi}{24}+4 \sqrt{3}=\tan \frac{5 \pi}{24}+\tan \frac{11 \pi}{24}
$$

(2)

$$
\begin{gathered}
\left(\tan \frac{\pi}{24}\right)\left(\tan \frac{7 \pi}{24}\right)\left(-\tan \frac{5 \pi}{24}\right)\left(-\tan \frac{11 \pi}{24}\right)=1 \text { (product of roots) } \\
\tan \frac{\pi}{24} \tan \frac{5 \pi}{24}=\frac{1}{\tan \frac{7 \pi}{24} \cdot \tan \frac{11 \pi}{24}} \\
\therefore \tan \frac{\pi}{24} \tan \frac{5 \pi}{24}=\cot \frac{7 \pi}{24} \cot \frac{11 \pi}{24}
\end{gathered}
$$

iii) let $\alpha=\tan \frac{\pi}{24}$

$$
\frac{1}{\alpha^{2}}=\left(\cot \frac{\pi}{24}\right)^{2}
$$

let $\frac{1}{\alpha^{2}}=x$ so $\alpha=\frac{1}{\sqrt{x}}$

$$
\begin{aligned}
& \left(\frac{1}{\sqrt{x}}\right)^{4}+4 \sqrt{3}\left(\frac{1}{\sqrt{x}}\right)^{3}-6\left(\frac{1}{\sqrt{x}}\right)^{2}-4 \sqrt{3}\left(\frac{1}{\sqrt{x}}\right)+1=0 \\
& \frac{1}{x^{2}}+\frac{4 \sqrt{3}}{x \sqrt{x}}-\frac{6}{x}-\frac{4 \sqrt{3}}{\sqrt{x}}+1=0 \\
& x^{2}-4 \sqrt{3} x \sqrt{x}-6 x+4 \sqrt{3} \sqrt{x}+1=0 \\
& 4 \sqrt{3} \sqrt{x}(x-1)=x^{2}-6 x+1 \\
& 48 x(x-1)^{2}=\left(x^{2}-6 x+1\right)^{2} \\
& 48 x^{3}-96 x^{2}+48 x=x^{4}-12 x^{3}+2 x^{2}+36 x^{2}-12 x+1 \\
& \text { ie } \quad x^{4}-60 x^{3}+134 x^{2}-60 x+1=0
\end{aligned}
$$

28b) i) $\operatorname{In} \int_{0}^{1} x\left(x^{2}-1\right)^{n} d x$

$$
=\left[\frac{x^{2}}{2}\left(x^{2}-1\right)^{n}\right]_{0}^{1}-\int_{0}^{1} \frac{x^{2}}{2} \cdot n\left(x^{2}-1\right)^{n-1} \times 2 x d x
$$

$$
=\left[\frac{1}{2} \times 0-0\right]-n \int_{0}^{1} x^{3}\left(x^{2}-1\right)^{n-1} d x
$$

$$
=-n \int_{0}^{1} \frac{x^{3}\left(x^{2}-1\right)^{n}}{x^{2}-1} d x
$$

$$
=-n \int_{0}^{1}\left(x+\frac{x}{x^{2}-1}\right)\left(x^{2}-1\right)^{n} d x
$$

$$
=-n\left[\int_{0}^{1} x\left(x^{2}-1\right)^{n} d x+\int_{0}^{1} \frac{x}{x^{2}-1}\left(x^{2}-1\right)^{n} d x\right]
$$

$$
=-n \int_{0}^{1} x\left(x^{2}-1\right)^{n} d x-n \int_{0}^{1} x\left(x^{2}-1\right)^{n-1} d x
$$

$\therefore I_{n}=-n I_{n}-n I_{n-1}$
$(1+n) I_{n}=-n I_{n-1}$
$I_{n}=\frac{-n}{(n+1)} I_{n-1}$ for $n \geqslant 1$
ii) "Hence": $\quad I_{n}=\frac{-n}{n+1} I_{n-1}$

$$
\begin{aligned}
&=\frac{-n}{n+1} \cdot \frac{-n+1}{n} \cdot \frac{-n+2}{n-1} \cdots \frac{-3}{4} \cdot \frac{-2}{3} \cdot \frac{-1}{2} I_{0} \\
& I_{0}=\int_{0}^{1} x\left(x^{2}-1\right)^{0} d x \\
&=\left[\frac{x^{2}}{2}\right]_{0}^{1} \\
&=\frac{1}{2}
\end{aligned}
$$

So $I_{n}=(-1)^{n} \frac{n}{n+1} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n-1} \cdots \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{2}$

$$
=\frac{(-1)^{n}}{2(n+1)} \quad, n \geqslant 0
$$

"Otherwise": $\quad I_{n}=\int_{0}^{1} x\left(x^{2}-1\right)^{n} d x$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{1} 2 x\left(x^{2}-1\right)^{n} d x \\
& =\frac{1}{2}\left[\frac{\left(x^{2}-1\right)^{n+1}}{n+1}\right]_{0}^{1} \\
& =\frac{1}{2(n+1)}\left(0-(-1)^{n+1}\right) \\
& =\frac{(-1)^{n}}{2(n+1}, n \geqslant 0
\end{aligned}
$$

iii) $\quad I_{0}=\frac{1}{2}, I_{1}=-\frac{1}{4}, \quad I_{2}=\frac{1}{6}, I_{3}=\frac{-1}{8}, \quad I_{4}=\frac{1}{10}, \quad I_{3}=-\frac{1}{12}$
ie. $I_{2 n}>0$ and $I_{2 n+1}<0$
so $I_{2 n}>I_{2 n+1}$
OR: $\quad I_{2 n}=\frac{(-1)^{2 n}}{2(2 n+1)}$

$$
\begin{aligned}
= & \frac{1}{2(2 n+1)} \\
& >0 \\
I_{2 n+1} & =\frac{(-1)^{2 n+1}}{2((2 n+1)+1)} \\
& =\frac{-1}{4(n+1)} \\
& <0
\end{aligned}
$$

So $I_{2 n}>I_{2 n+1}$
iv) from (iii), if n is even, $I_{n}>I_{n+2}$ ie $I_{2=} \frac{1}{6}>I_{4}=\frac{1}{10}>I_{6}=\frac{1}{14,8}$ if n is odd, $I_{1}=-\frac{1}{4}<I_{3}=-\frac{1}{8}<I_{s}=-\frac{1}{12}$
$\therefore I_{n} \ngtr I_{n+2}$ Sos all $n \geqslant 0$

