HORNSBY GIRLS HIGH SCHOOL

2011
 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time - $\mathbf{5}$ minutes
- Working Time - $\mathbf{3}$ hours
- Write using a black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question
- Begin each question in a new booklet

Total marks (120)

- Attempt Questions 1-8
- All questions are of equal value

BLANK PAGE

Total Marks

Attempt Questions 1-8
All Questions are of equal value
Begin each question in a new booklet, writing your student number and question number in the boxes indicated. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{x^{2}}{\sqrt{8-x^{3}}} d x$.
(b) By completing the square, find $\int \frac{d x}{x^{2}-8 x+20}$.
(c) Evaluate $\int_{0}^{\pi} x \cos x d x$.
(d) (i) Show that $\frac{2}{x^{3}+x^{2}+x+1}=\frac{1}{x+1}-\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1}$.
(ii) Hence, or otherwise, show $\int_{\frac{1}{2}}^{2} \frac{2}{x^{3}+x^{2}+x+1}=\tan ^{-1} 2-\tan ^{-1}\left(\frac{1}{2}\right)$.
(e) Using the substitution $x=\tan \theta$, or otherwise, show

$$
\int_{1}^{\sqrt{3}} \frac{1}{x^{2} \sqrt{1+x^{2}}} d x=\sqrt{2}-\frac{2}{\sqrt{3}}
$$

(a) Write i^{7} in the form $x+i y$ where x and y are real. 1
(b) Let $z=2+2 i$ and $w=2-i$. Find in the form $x+i y$, where x and y are real,
(i) $z \bar{w}$
(ii) $\frac{8}{z}$
(c) It is given that $1+i$ is a root of $P(z)=2 z^{3}-3 z^{2}+r z+s$, where r and s are real.
(i) Explain why $1-i$ is also a root of the equation.

1
(ii) Factorise $P(z)$ over the real field.

2
(d) Find all the solutions of $z^{4}=16$. Express your solutions in the modulus-argument form.
(e) Sketch the region in the complex plane where the inequalities $|z-\bar{z}| \leq 2$ and $|z-i| \leq 4$ hold.
(f) (i) Prove, by Mathematical Induction, that for all integers n,

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

(ii) Hence, find an expression for $\cos 3 \theta$.
(a) The diagram shows the graph of $y=f(x)$. The graph has a horizontal asymptote at $y=0$ and vertical asymptotes at $x= \pm 1$.

Draw neat separate one-third page sketches of the graphs of the following:
(i) $y=\frac{1}{f(x)}$
(ii) $y=f(x)+|f(x)|$
(iii) $y=e^{f(x)}$
(b)

NOT TO SCALE

The points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ lie on the right branch of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. The tangents at P and Q meet at $T\left(x_{0}, y_{0}\right)$.
(i) Show the equation of the tangent at P is $\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$
(ii) Hence show the equation of the chord of contact is $\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=1$.
(iii) The chord PQ passes through the focus $S(a e, 0)$ where e is the eccentricity of the hyperbola. Prove T lies on the directrix of the parabola.
(c) Let α, β, γ be the zeros of the polynomial $P(x)=3 x^{3}+7 x^{2}+11 x+51$.
(i) Find $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$.
(ii) Find $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(iii) Using part (ii), or otherwise, determine how many zeros of $P(x)$ are real. Justify your answer.
(a) A solid of height 2 metres rests on a horizontal surface.

Every horizontal cross-section of the solid, x metres above the surface,
is a square of side $\sqrt{3 x+1}$ metres.
Find the volume of the solid.
(b) Consider the rectangular hyperbola $x y=4$, with points P and Q on different branches of the hyperbola

(i) Prove that the equation of the normal to $x y=4$ at the point $P\left(2 p, \frac{2}{p}\right)$ is $p y-p^{3} x=2\left(1-p^{4}\right)$.
(ii) If this normal meets the hyperbola again at $Q\left(2 q, \frac{2}{q}\right)$, prove that $q=\frac{-1}{p^{3}}$.
(iii) Hence, show that there exists only one chord of the hyperbola which is normal to the hyperbola at P and Q, and find its equation.
(c) The equation $x^{3}+3 x+2=0$ has roots α, β and γ.
(i) Find the polynomial whose roots are α^{2}, β^{2} and γ^{2}.
(ii) Hence, or otherwise, find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(a) Let w be a complex root of unity (w is solution of $z^{3}-1=0$).
(i) Show that $(z-1)\left(z^{2}+z+1\right)=z^{3}-1$.
(ii) Explain why $w^{2}+w+1=0$.
(iii) Hence, other otherwise, show that $(1-w)\left(1-w^{2}\right)\left(1-w^{4}\right)\left(1-w^{8}\right)=9$
(b) Consider $I=\int_{1}^{\infty} \frac{1}{x \sqrt{1+x^{2}}} d x$.
(i) By using a suitable substitution, show that $I=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\sin \theta} d \theta$.
(ii) Hence, or otherwise, evaluate I.
(c) (i) Find real numbers, a and b, such that

$$
x^{4}+x^{3}+x^{2}+x+1=\left(x^{2}+a x+1\right)\left(x^{2}+b x+1\right) .
$$

(ii) Given that $x=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}$ is a solution of $x^{4}+x^{3}+x^{2}+x+1=0$, find the exact value of $\cos \frac{2 \pi}{5}$.
(a) Use the method of cylindrical shells to find the volume of the solid formed when the shaded region bounded by $y=0, y=\frac{\log _{e} x}{x}$ and $x=e$ is rotated about the y-axis.

NOT TO SCALE
(b) (i) Show that $\sin (\alpha+\beta)+\sin (\alpha-\beta)=2 \sin \alpha \cos \beta$.
(ii) Hence, or otherwise, solve the equation

$$
\sin \theta+\sin 2 \theta+\sin 3 \theta+\sin 4 \theta=0 \text { for } 0 \leq \theta \leq 2 \pi .
$$

(c) A stone is projected vertically upwards in the air from a point h metres above the ground at a speed u and experiences a resistance equal to $m k v^{2}$, where m is the mass of the stone, v is the speed after time t and k is a constant.

By considering the forces acting on the stone, show that the maximum height, H, the stone reaches above the ground is given by $H=h+\frac{1}{2 k} \ln \left(1+\frac{k u^{2}}{g}\right)$, where g is acceleration due to gravity
(d) A group of n people are to be seated around a circular table. Find the number of possible arrangements if 3 particular people are to sit together.
(e) Show that ${ }^{n+2} C_{r}={ }^{n} C_{r}+2{ }^{n} C_{r-1}+{ }^{n} C_{r-2}$
(a)

A particle of mass m is lying on an inclined plane and does not move.
The plane is at an angle θ to the horizontal. The particle is subject to a gravitational force $m g$, a normal reaction force N, and a frictional force F parallel to the plane, as shown in the diagram above.

By resolving the forces acting on the particle parallel and perpendicular to the plane, find an expression for $\frac{F}{N}$ in terms of θ.
(b) The polynomial $P(x)=x^{4}-4 x^{3}+3 x^{2}-14 x+10$ has roots $a+i b, a-2 i b$, where a and b are real.
(i) Show that $a=1$, and hence find the value(s) of b.
(ii) Hence, factorise $P(x)$ over the rational field.
(c) (i) If $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$, then show that $I_{n}=\frac{n-1}{n} I_{n-2}$.
(ii) Hence, evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{5} x d x$.
(d) Use Mathematical Induction to prove that for integer values of $n \geq 1$
(a) The function $y=f(x)$ is defined by $f(x)=\sqrt{3-\sqrt{x}}$
(i) State the domain of the function $f(x)$.
(ii) Show that $y=f(x)$ is a decreasing function and determine the range of $y=f(x)$.
(iii) Sketch the graph of $y=f(x)$ for the domain and range determined above.
(iv) Prove that $\int_{0}^{9} \sqrt{3-\sqrt{x}} d x=\frac{24 \sqrt{3}}{5}$
(b) Show that $\frac{d}{d u}(\sec u+\tan u)=\sec u(\sec u+\tan u)$
(c) Consider $f(x)=\cos \frac{x}{2}$.
(i) On the same set of axes, sketch the graph of $y=f(x)$, and hence the graph of $y=\frac{1}{f(x)}$ for the domain $0 \leq x \leq 2 \pi$.
(ii) By considering part (b), find the area bounded by the curve $y=\frac{1}{f(x)}$, the x-axis and the ordinates $x=\frac{\pi}{3}$ and $x=\frac{\pi}{2}$, leaving your answer exact.
(iii) The solid bounded by the curve $y=\frac{1}{f(x)}$, the x - axis and the ordinates $x=\frac{\pi}{3}$ and $x=\frac{\pi}{2}$ is rotated about the y-axis. By using the method of annular discs, find the volume as a definite integral. DO NOT EVALUATE THIS INTEGRAL.

End of paper

HGHS: Ext 2 Trial Solution 2011

Question 1
(a)

$$
\begin{aligned}
\int \frac{x^{2}}{\sqrt{8-x^{3}}} d x & =\frac{1}{3} \int \frac{d u}{u^{1 / 2}} \quad u=8 \\
& =-\frac{1}{3}\left[2 u^{1 / 2}\right]+c \\
& =-\frac{2}{3} \sqrt{8-x^{3}}+C
\end{aligned}
$$

(b) $\int \frac{d x}{x^{2}-8 x+20}=\int \frac{d x}{(x-4)^{2}+4}$

$$
\begin{aligned}
& =\frac{1}{2} \tan ^{-1} \\
& \int_{0}^{\pi} x \cos x d x \\
= & {[x \sin x]_{0}^{\pi}-\int_{0}^{\pi} \sin x d x } \\
= & 0-[-\cos x]_{0}^{\pi} \\
= & 0-[1-1] \\
= & -2
\end{aligned}
$$

(d) (i)RTS

$$
\begin{aligned}
& \text { i) RTS } \frac{2}{x^{3}+x^{2}+x+1}=\frac{1}{x+1}-\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1} \\
& \begin{aligned}
\text { RHS } & =\frac{1}{x+1}-\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1} \\
& =\frac{x^{2}+1-x^{2}-x+x+1}{(x+1)\left(x^{2}+1\right)} \\
& =\frac{2}{x^{3}+x^{2}+x+1} \\
& =\text { LHS as req. }
\end{aligned}
\end{aligned}
$$

$$
\text { (ii) } \left.\begin{array}{rl}
\therefore & \int^{2} \frac{2}{x^{3}+x^{2}+x+1} d x
\end{array}\right)=\left|\left(\frac{1}{x+1}-\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1}\right) d x\right|
$$

(d) (ii) (cont.)
$\rightarrow\left[\ln 3-\frac{1}{2} \ln 5+\tan ^{-1} 2\right]$
$-\left[\ln \frac{3}{2}-\frac{1}{2} \ln \frac{5}{4}+\tan ^{-1} \frac{1}{2}\right]$
$=\ln \left[3 \times \frac{1}{\sqrt{5}} \times \frac{2}{3} \times \frac{\sqrt{5}}{2}\right]+\tan ^{-1} 2+\tan ^{-1} \frac{1}{2}$
$=\ln 1+\tan ^{-1} 2+\tan ^{-1} \frac{1}{2}$
$=\tan ^{-1} \alpha+\tan ^{-1} \frac{1}{2} \propto 0$ req.
$\sqrt{3}$
(e) $\int_{1}^{\frac{\sqrt{3}}{x^{2} \sqrt{1+x^{2}}}}=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sec ^{2} \theta d \theta}{\tan ^{2} \theta \sqrt{1+\tan ^{2} \theta}}$

| $x=\tan \theta$
 $d x=\sec ^{2} \theta d \theta$
 $x=\sqrt{3} \theta=\frac{\pi}{3}$ |
| :--- |$=\frac{\pi / 3}{\frac{\pi}{4}} \frac{\sec ^{2} \theta d \theta}{\sin ^{2} \theta \cdot \operatorname{tec} \theta}$

$\binom{x=\sqrt{3} \quad \theta=\frac{\pi}{3}}{x=1 \quad \theta=\frac{\pi}{4}}=\int^{\frac{\pi}{3}} \operatorname{cosec} \theta \cdot \cot \theta d \theta$
$\left.x=1 \quad \theta=\frac{\pi}{4}\right)=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \operatorname{cosec} \theta \cdot \cot \theta d \theta$
$=-[\operatorname{cosec} \theta]_{\pi / 4}^{\pi / 3}$.
$=-\left(\frac{2}{\sqrt{3}}-\sqrt{2}\right)$
$=\sqrt{2}-\frac{2}{\sqrt{3}}$

Quentui 2
a)

$$
\begin{aligned}
i^{7} & =i^{2} \cdot i^{2} 2 i^{2} i \\
& =(-1) \cdot(-1)(-1) i \\
& =-i \\
& =0-i
\end{aligned}
$$

$) \quad z=2+20$
$\omega=2-i$
b)

$$
\begin{aligned}
z \bar{m} & =(2+2 i)(2+i) \\
& =4+2 i+7 i+2 c^{2} \\
& =2+6 i
\end{aligned}
$$

1)

$$
\begin{aligned}
& \frac{8}{z}=\frac{8 \bar{z}}{z \bar{z}} \\
& =\frac{8(2-2 i)}{(2+2 i)(2-2 i)} \\
& =\frac{8(2-2 t)}{2^{2}+2^{2}} \\
& =2-2 i
\end{aligned}
$$

$1 \quad P(z)$ hos real coeffecent, henk soob occer in conijugate pais
$i) \quad 1+i+1-i+\alpha=\frac{3}{2}$

$$
\alpha=-\frac{1}{2} .
$$

$$
\begin{aligned}
\therefore P(z) & =2(z-(1+i)(z+(1-i)(z+1) \\
& =\left(z^{2}-2 z+2\right)(2 z+1)^{2}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& z^{4}=16 \\
& \left(z^{2}+4\right)\left(z^{2}-4\right)=0 \\
& z=2,-2 \\
& z^{2}=-4 \\
& z= \pm \sqrt{-4} \\
& z= \pm \sqrt{4 i^{2}} \\
& = \pm 2 i
\end{aligned}
$$

$$
\therefore z=2,-2,2 i,-2 i
$$

e) $\quad \mid=-i) \leq 4$.
crice centhe $(0,1)$
raduis 4.

$$
\begin{aligned}
& |x+i y-(x-i y)| \geq 2 \\
& |2 i y| \leq 2 \\
& -1 \leq y \leq 1
\end{aligned}
$$

if) $(\cos +a+\cos \theta)^{n} \leq \cos \theta+\sin \theta$

$$
\text { Test } 0=0
$$

$$
\begin{aligned}
\angle H S & =(\cos \theta+\sin u)^{\circ} \\
& =1
\end{aligned}
$$

RMS $=$ cosotisino

$$
=1 /
$$

Hone trie $n=k$.

ti) $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$
$\operatorname{tec} A n=1$.
$L H s=\cos \theta+i \sin \theta$
RUS $=\cos \theta+i \sin \theta$
CHS $=$ R HS .
\therefore True for $n=1$.
assume true for $n=k$
i.e. $(\cos \theta+i \sin \theta)^{k}=\cos (k \theta)+i \sin (k \theta)$

Prove force for $n=k+1$

$$
\begin{aligned}
& R+p:(\cos \theta+i \sin \theta)^{k+1}=\cos (k+1) \theta+i \sin (k+1) \theta . \\
&\cos +i \sin \theta)^{k+1}=(\cos \theta+i \sin \theta)(\cos \theta+i \sin \theta)^{k} . \\
&=(\cos \theta+i \sin \theta)(\cos k \theta+i \sin k \theta) . \\
&= \cos \theta \cos k \theta+i \sin k \theta \cos \theta+i \sin \theta \cos k \theta \\
& \theta-\sin \theta \sin k \theta . \\
&= \cos \theta \cos k \theta-\sin \theta \sin k \theta+i(\sin k \theta \cos \theta+\sin \theta \cos k \theta) \\
&= \cos (\theta+k \theta)+i \sin (\theta+k \theta) \\
&= \cos \theta(k+1)+i \sin \theta(k+1) .
\end{aligned}
$$

\therefore if true for $n=1$, it must be the for $n=2, n=3$ and allone positre integers indre $n \geqslant 1$

$$
\begin{aligned}
& C H S=1 \\
& \text { RHO }=1
\end{aligned}
$$

\therefore true for $n=0$.

Start here.
tent for negative integers
qT: $(\cos \theta+i \sin \theta)^{-n}=\cos (-n \theta)+i \sin (-n \theta)$.

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{-n} & =\left((\cos \theta+i \sin \theta)^{n}\right)^{-1} \\
& =(\cos n \theta+i \sin n \theta)^{-1} \\
& =\frac{1}{z} \quad \text { where } z=\cos n \theta+i \sin n \\
& =\frac{\frac{\phi z}{z z}}{z} \quad \cdots \\
& =\frac{\bar{z}}{|z|^{2}} \\
& =\cos n \theta-i \sin n \theta . \\
& =\cos (-n \theta)+i \sin (-n \theta) .
\end{aligned}
$$

\therefore true for all negative integers.
$\therefore(\cos \theta+1 \sin \theta)^{n}=\cos (n \theta)+i s n(n \theta)$ true for all integers
ii)

$$
\begin{aligned}
& \cos \theta+i \sin \theta)^{2}=(\cos 3 \theta+i \sin 3 \theta) \\
& \cos ^{3} \theta+i 3 \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-\cdots
\end{aligned}
$$

equating real part.
$\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$.

Question 3
(a) (i)

(iii)

(b) (i) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

$$
\begin{aligned}
\therefore \frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \frac{d y}{d x} & =0 \\
-\frac{2 y}{b^{2}} \frac{d y}{d x} & =-\frac{2 x}{a^{2}} \\
\frac{d y}{d x} & =\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

bi i) (cont.) \therefore gradient at $P\left(x_{1}, y_{1}\right)=\frac{b^{2} x_{1}}{a^{2} y_{1}}$
\therefore equation of tangent at P

$$
\begin{aligned}
& y-y_{1}=\frac{b^{2} x_{1}}{a^{2} y_{1}}\left(x-x_{1}\right) \\
& a^{2} y y_{1}-a^{2} y_{1}^{2}=b^{2} x_{1} x-b^{2} x_{1}^{2} \\
& \therefore b^{2} x_{1} x-a^{2} y_{1} y=b^{2} x_{1}^{2}-a^{2} y_{1}^{2} \\
& \frac{x_{1} x}{a^{2}}-\frac{y_{1} y}{b^{2}}=\frac{x_{1}^{2}}{a^{2}}-\frac{y_{1}^{2}}{b^{2}} \\
& \frac{x_{1} x}{a^{2}}-\frac{y_{1} y}{b^{2}}=1 \quad \begin{array}{l}
\text { since (x, } y_{1} \\
\text { hes on the } \\
\text { Hyperbola }
\end{array}
\end{aligned}
$$

(ii) Eq. of tangent at $P \frac{x_{x} x}{a^{2}}-\frac{y_{1} y}{b^{2}}=1$ sim. Eq, of tangent at $Q \frac{x_{y} x}{a^{2}}-\frac{y_{y} y}{b^{2}}=1$ $T\left(x_{0}, y_{0}\right)$ lies on both

$$
\begin{array}{r}
\therefore \frac{x_{1} x_{0}}{a^{2}}-\frac{y_{1} y_{0}}{b^{2}}=1 \quad P \text { tho' } T \\
\frac{x_{2} x_{0}}{a^{2}}-\frac{y_{2} y_{0}}{b^{2}}=1 \quad Q \text { thru' } T
\end{array}
$$

\therefore Eq. of $P Q$ (chord of contact) is

$$
\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=1 \text { as } \frac{P\left(x, y_{1}\right) \text { and }}{Q\left(x_{2}, y_{2}\right) \text { both }}
$$

satisfy this equation.
(iii) If $P Q$ passes thru' $s(a e, 0)$ then

$$
\begin{array}{r}
\frac{x_{0} a e}{a^{2}}-\frac{y(0)}{b^{2}}=1 \\
x_{0}=\frac{a}{e}
\end{array}
$$

$\therefore T$ lies on the directrix

Question 3

$$
\text { (c) } \begin{aligned}
P(x)=3 x^{3} & +7 x^{2}+11 x+51 \\
\text { (i) } \alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2} & =\alpha \beta \gamma(\alpha+\beta+\gamma) \\
& =-\frac{51}{3} \times \frac{-7}{3} \\
& =\frac{119}{3} \text { or } 39^{2} / 3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =\left(-\frac{7}{3}\right)^{2}-2 \times \frac{11}{3} \\
& =\frac{49}{9}-\frac{22}{3} \\
& =-\frac{17}{9} 01-18 / 9
\end{aligned}
$$

(iii) $\alpha^{2}+\beta^{2}+\gamma^{2}<0 \therefore$ at least one root is unreal. i.e. at least α^{2} or β^{2} or $\gamma^{2}<0$ ado as the coefficients are all real, the roots occur in conjugates so f one root is unreal its conjugate is aldo unreal.
As $P(x)$ is degree 3 there is then only one more zero which must be real. Therefore there is exactly one root of $P(x)$ that is real.

Question' 4.
(6)

$$
\begin{aligned}
& \text { Area }=(\sqrt{3 x+1})^{2} \\
& =3 x+1 \\
& r=\lim _{\Delta x \rightarrow 0} \sum_{x=0}^{2}(3 x+1) d x \\
& =\int_{0}^{2}(3 x+1) d x \\
& =\left[\frac{\left.3 x^{2}+x\right]_{0}^{2}}{}\right. \\
& =\frac{3}{2}(2)^{2}+2 \\
& =8 \mathrm{~m}^{3} .
\end{aligned}
$$

(b)
(1)

$$
\begin{gathered}
y=\frac{4}{x} \\
\frac{d y}{d x}=\frac{-4}{x^{2}}
\end{gathered}
$$

At P,

$$
\frac{d y}{d x}=\frac{-1}{p^{2}}
$$

\therefore gradient of nomal is p^{2}

$$
y-\frac{2}{p}=p^{2}(x-2 p)
$$

$p y-2=p^{3} x-2 p^{4}$
$p y-p^{3} x=2\left(1-p^{4}\right)$
(ii)

$$
\begin{aligned}
& p y-p^{3} x=2-2 p^{4} \\
& \left.\operatorname{sub} Q^{(2 q}, \frac{2}{q}\right) \\
& p \cdot \frac{2}{q}-p^{3} \cdot 2 q=2-2 p^{4} \\
& 2 p-2 p^{3} q^{2}=2 q-2 q p^{4} \\
& p-p^{3} q^{2}-q+q p^{4}=0 \\
& q p^{4}-p^{3} q^{2}+p-q=0 \\
& q p^{3}(p-q)+(p-q)=0 \\
& q p^{3}+1=0 \\
& q p^{3}=-1 \\
& q=-1 \\
& p^{3} .
\end{aligned}
$$

(ii). $q=\frac{-1}{p s}$

$$
\begin{gathered}
p=\frac{-1}{q^{3}} \\
\therefore p q^{3}=q p^{3} \\
p q^{3}-q p^{3}=0 \\
p q\left(q^{2}-p^{2}\right)=0 \\
q^{2}-p^{2}=0 \\
(q-p)(q+p)=0
\end{gathered}
$$

$q=p, \quad q=p$.
\therefore when $q=p$

$$
p^{4}=-1
$$

Novel

$$
\begin{aligned}
& q=-p \\
& -p=-1 \\
& p= \pm 1
\end{aligned}
$$

$\operatorname{sun} p=1$

$$
\begin{aligned}
& y-x=0 \\
& y-x
\end{aligned}
$$

sub $p=-1$

$$
-y+x=0
$$

$$
y=x
$$

\therefore Nomad io $y=x$

Question 5
a) RB: $(z-1)\left(z^{2}+z+1\right)=z^{3}-1$

$$
\begin{aligned}
\text { LH } & =(z-1)\left(z^{2}+z+1\right) \\
& =z^{3}+z^{2}+z-z^{2}-z-1 \\
& =z^{3}-1
\end{aligned}
$$

ii) w is a complex not of unity

$$
\begin{aligned}
& \quad w^{3}-1=0 \\
& \therefore(w-1)\left(w^{2}+w+1\right)=0
\end{aligned}
$$

But $\omega \neq 1, \omega \in \mathbb{C}$

$$
\therefore \quad w^{2}+w+1=0
$$

ii) ers: $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{8}\right)=9$.

LHS $=(1-w)\left(1-w^{2}\right)\left(1-w^{4}\right)\left(1-w^{\alpha}\right)$

$$
\begin{array}{rlr}
w^{4} & =w^{3} \cdot w & w^{2}+w+1=0 \\
& =w & w^{2}=-w-1 \\
w^{8} & =w^{3} \cdot w^{3} \cdot w^{2} & \omega+1=-w^{2}
\end{array}
$$

$$
=w^{2}
$$

$$
L H=(1-w) 2\left(1-w^{2}\right)^{2}
$$

$$
=\left(1-2 w+w^{2}\right)\left(1-2 w^{2}+w^{4}\right)
$$

$$
=(1-2 w-w-1)(1-2(-w-1)+w)
$$

$$
=(-3 w)(1+2 w+2+w)
$$

$$
=(-3 \omega(3+3 \omega)
$$

$$
=-3 w\left(-3 w^{2}\right)
$$

$$
=9 w^{3}
$$

$$
=9
$$

c) (i)

$$
\begin{aligned}
x^{4}+x^{3}+x^{2}+x+1 & =\left(x^{2}+a x+1\right)\left(x^{2}+b x+1\right) \\
& =x^{4}+b x^{3}+x^{2}+a x^{3}+a b x^{2}+a x+x^{2}+b x+1 \\
& =x^{4}+x^{3}(a+b)+x^{2}(2+a b)+x(a+b)+1
\end{aligned}
$$

$$
\cos \frac{2 \pi}{5}=-\frac{1-\sqrt{5}}{4} \quad \text { or } \cos \frac{2 \pi}{5}=\frac{-1+\sqrt{5}}{4}
$$

$$
\therefore(a+b)=1
$$

But $\cos \frac{2 \pi}{5}>0$

$$
2+a b=1
$$

$$
a b=-1
$$

$$
\begin{equation*}
\therefore \quad \cos \frac{2 \pi}{5}=\frac{-1+\sqrt{5}}{4} \tag{2}
\end{equation*}
$$

$$
a-\frac{1}{a}=1
$$

$$
a^{2}-1=a
$$

$$
a^{2}-a-1=0
$$

$$
a=\frac{1 \pm \sqrt{1-4 \cdot-1} \cdot 1}{2}
$$

$$
=\frac{1 \pm \sqrt{5}}{2}
$$

$\therefore a=1 \frac{1}{2}, b=1-\frac{\sqrt{5}}{2} \quad$ [by symmetry of equation].
iii) $\therefore \cos \frac{2 \pi}{5}+i \sin \frac{21}{5}$ is a sorn of $x^{2}+a x+1$ ar $x^{2}+b x+1$.
$(\cos 2 \pi+i \sin 2 \pi)^{2}+a\left(\cos \frac{2 \pi}{5}+i 4 i 2 \pi\right)+1=0$
$\cos \frac{4 \pi}{5}+\pi y \sin \frac{4 \pi}{5}+a \cos 2 \pi+a \cos 2 \pi \frac{5}{5}=-1$
equating neal
$\cos 4 \pi+\cos \frac{2 \pi}{5}=-1 \quad \because \quad \cos 2 \theta=2 \cos ^{2} \theta-1$.
$2 \cos \frac{2}{5} \pi=-1+\operatorname{acos} \frac{2 \pi}{3}=-1$

$$
\cos \frac{2 \pi}{5}\left(2 \cos \frac{2 \pi}{5}+a\right)=0
$$

$\therefore \cos \frac{2 \pi}{5}=\frac{-a}{2}$ (or $-b$)

Question 6

(a)

Area of Annulus $=\pi x^{2}-\pi(x-\Delta x)^{2}$

$$
=\pi x^{2}-\pi\left(x^{2}-2 x \Delta x+(\Delta x)^{2}\right)
$$

$$
=2 \pi x \Delta x
$$

$$
\begin{aligned}
& \uparrow \\
& \text { to } \\
& \text { spinal }
\end{aligned}
$$

\therefore Volume of Shell $=2 \pi x \Delta x y$
\therefore Volume of Solid $=\lim _{\Delta x \rightarrow 0} \pi \sum_{1}^{e} 2 x y \Delta x$

$$
=2 \pi I I
$$

$$
=2 \pi \times 1
$$

$$
=2 \pi \text { units }^{3}
$$

(b) $\operatorname{RTS} \sin (\alpha+\beta)+\sin (\alpha-\beta)=2 \sin \alpha \cos \beta$

$$
\begin{aligned}
\text { LAts } & =\sin (\alpha+\beta)+\sin (\alpha-\beta) \\
& =\sin \alpha \cos \beta+\cos \alpha \sin \beta+\sin \alpha \cos \beta-\cos \alpha \sin \\
& =2 \sin \alpha \cos \beta \\
& =\text { Rus as required. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \operatorname{tin} \theta+\sin 2 \theta+\sin 3 \theta+\sin 4 \theta \\
& =\sin (2 \theta-\theta)+\sin (3 \theta-\theta)+\sin (2 \theta+\theta) \\
& t \sin (3 \theta+\theta) \\
& =\operatorname{an}(2 \theta+\theta)+\sin (2 \theta-\theta)+\sin (3 \theta+\theta)+\sin (3 \theta-\theta \\
& =2 \sin 2 \theta \cos \theta+2 \sin 3 \theta \cos \theta \\
& =2 \cos \theta(\sin 2 \theta+\sin 3 \theta) . \\
& =2 \cos \theta\left(\sin \left(\frac{5 \theta}{2}-\frac{\theta}{2}\right)+\sin \left(\frac{5 \theta}{2}+\frac{\theta}{2}\right)\right) \\
& =2 \cos \theta \times 2 \sin \frac{5 \theta}{2} \cos \frac{\theta}{2} \\
& =4 \cos \theta \sin \frac{5 \theta}{2} \cos \frac{\theta}{2} \\
& \begin{array}{ll}
\therefore 4 \cos \theta \sin \frac{5 \theta}{2} \cos \frac{\theta}{2}=0 \quad & 0 \leqslant \theta \leqslant 2 \pi \\
& 0 \leqslant \frac{\theta}{2} \leqslant \pi \\
& 0 \leqslant \frac{5 \theta}{2} \leqslant 5 \pi
\end{array} \\
& \text { When } \cos \theta=0 \\
& \cos \frac{\theta}{2}=0 \\
& \theta=\frac{\pi}{2}, 3 \frac{\pi}{2} \\
& \frac{\theta}{2}=\frac{\pi}{2} \\
& \theta=\pi
\end{aligned}
$$

$$
\begin{aligned}
\sin \frac{5 \theta}{2} & =0 \\
\frac{5 \theta}{2} & =0, \pi, 2 \pi, 3 \pi, 4 \pi, 5 \pi \\
5 \theta & =0,2 \pi, 4 \pi, 6 \pi, 8 \pi, 10 \pi \\
\theta & =0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \frac{6 \pi}{5}, \frac{8 \pi}{5}, 2 \pi
\end{aligned}
$$

\therefore Solutions for θ are

$$
0, \frac{2 \pi}{5},-\frac{\pi}{2}, \frac{4 \pi}{5}, \frac{\pi}{-}, \frac{6 \pi}{5}, \frac{3 \pi}{2}, \frac{8 \pi}{5}, 2 \pi
$$

Forces
$m \ddot{x}$
(c)

$$
\begin{gathered}
m \ddot{x}=-m g-m k v^{2} \\
\therefore \ddot{x}=-g-k v^{2} \\
\frac{v d v}{d x}=-g-k v^{2} \\
\frac{v d v}{-g-k v^{2}}=d x \\
-\int \frac{v d v}{g+k v^{2}}=\int_{D}^{H} d x \\
u
\end{gathered}
$$

$$
\therefore H-h=\left[\frac{1}{2 k} \ln \left(g+k v^{2}\right)\right]_{0}^{u}
$$

$$
=\frac{1}{2 k}\left[\ln \left(g+k u^{2}\right)-\ln g\right]
$$

$$
=\frac{1}{2 k}\left[\ln \frac{9+k u^{2}}{g}\right]
$$

$$
=\frac{1}{2 k}\left[\ln \left(1+\frac{k u^{2}}{g}\right)\right]
$$

$$
\therefore \quad H=h+\frac{1}{2 k} \ln \left(1+\frac{b u^{2}}{g}\right)
$$ as required

1 package
(d) 3people together
$n-3$ people $=n-3$ packages

$$
\therefore 1 \text { package }+n-3 \text { package }
$$

$$
=n-2 \text { pectrages of people }
$$

$$
\begin{aligned}
& \text { no. of ways }=\frac{3!\times(n-2)!}{(n-2) \text { _ divide }} \\
& \begin{aligned}
\text { 3particuler } \\
\text { people sit } \\
\text { together. }
\end{aligned} \\
&=3!(n-3)!\text { circle. } \\
&=6(n-3)!
\end{aligned}
$$

(e) RTS ${ }^{n+2} c_{r}={ }^{n} c_{r}+2^{n} c_{r-1}+{ }^{n} c_{r-2}$

$$
\begin{aligned}
\text { LIt } & ={ }^{n+2} c_{r} \\
& =\frac{(n+2)!}{r!(n-r+2)!}
\end{aligned}
$$

$$
\begin{aligned}
R H S & ={ }^{n_{c}}+2{ }^{n^{n} c_{r-1}}+{ }^{n_{c}}{ }_{r-2} \\
& =\frac{n!}{r!(n-r)!}+\frac{2 n!}{(r-1)!(n-r+1)!} \frac{n!}{(r-2)!(n-r+2)!}
\end{aligned}
$$

$$
=\frac{n!(n-r+1)(n-r+2)+2 n!(n-r+2) r+n!r(r}{r!(n-r+2)!}
$$

$$
=\frac{n!\cdot\left[n^{2}-r r+2 n-n r+r^{2}-2 r+2-r+n+2 r n-2 r^{2}+4 r+r^{2}-r\right.}{r!(n-r+2)!}
$$

$$
=\frac{n!\left[n^{2}+3 n+2\right]}{r!(n-r+2)!}
$$

$$
=\frac{n!(n+2)(n+1)}{r!(n-r+2)!}
$$

$$
=\frac{(n+2)!}{r!(n-r+2)!}
$$

$=$ hits wo required.

Q 7
(a)

(b) $P(x)=x^{4}-4 x^{3}+3 x^{2}-14 x+10$
(i) Roots $a+i b, a-i b, a-2 i b, a+2 i b$.
sum of moots

$$
\begin{aligned}
4 a & =\frac{-(-4)}{1} \\
& =4 .
\end{aligned}
$$

Product of Roots:

$$
\begin{aligned}
& (1+i b)(1-i b)(1-2 i b)(1+2 i b)=10 \\
& \left(1+b^{2}\right)\left(1+4 b^{2}\right)=10 \\
& 1+4 b^{2}+b^{2}+4 b^{4}=10 \\
& 4 b^{4}+5 b^{2}-9=0 \\
& 4 b^{4}+9 b^{2}-4 b^{2}-9=0 \\
& \left.b^{2}\left(4 b^{2}+9\right)-4 b^{2}+9\right)=0 \\
& \left(b^{2}-1\right)\left(4 b^{2}+9\right)=0 \\
& b^{2}=1 \quad[b \text { real }] \\
& b= \pm 1 .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& (z-\alpha)(z-\bar{\alpha})=z^{2}-z(\alpha+\bar{\alpha})+\alpha \bar{\alpha} \\
& (z-\beta)(z-\bar{\beta})=z^{2}-z(\beta+\bar{\beta})+p \bar{\beta}
\end{aligned}
$$

$\therefore\left(z^{2}-2 z+2\right)\left(z^{2}-2 z+5\right)$ is the factored form of $p(x)$ over the rational field.

Question 7
(c) (i)

$$
\begin{aligned}
\Pi_{n} & =\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x \\
& =\int_{0}^{\frac{\pi}{2}} \cos x \cos ^{n-1} x d x
\end{aligned}
$$

let

$$
\begin{array}{ll}
t & v^{\prime}=\cos x \\
u^{\prime}=\cos ^{n-1} x & (n-1) \cos ^{n-2} x-\sin x
\end{array} \quad v=\sin x .
$$

$$
\therefore \quad \Pi_{n}=\left[s_{\pi / 2} x \cos ^{n-1} x\right]_{0}^{\pi / 2}
$$

$$
-{ }^{\pi / 2}
$$

$$
\begin{aligned}
& -\int_{0}^{\pi / 2} \sin x(n-1) \cos ^{n-2} x \cdot(-\sin x) d x \\
& =0+(n-1)^{\frac{\pi}{2}} \cos ^{n-2} x \cdot \sin ^{2} x d x \\
& =
\end{aligned}
$$

$$
=(n-1)_{0}^{\frac{\pi}{2}} \int_{0}^{0} \cos ^{n-2} x\left(1-\cos ^{2} x\right) d x
$$

$$
=(n-1)^{\frac{\pi^{0}}{2}} \int_{0}^{\cos ^{n-2}} x d x-(n-1)_{0}^{\frac{\pi}{0}}\left(\cos ^{n} d x\right.
$$

$$
=(n-1) I_{n-2}-(n-1) I_{n}
$$

$$
\therefore n \ddot{\pi}_{n}=(n-1) \mathbb{\Pi}_{n-2}
$$

$$
\therefore I_{n}=\frac{n-1}{n} \mathbb{I}_{n-2}
$$

as required.

$$
\begin{aligned}
& \text { (ii) } \therefore \int_{0}^{\frac{\pi}{2}} \cos ^{5} x d x=\mathbb{I}_{5} \\
& =\frac{4}{5} I_{3} \\
& =\frac{4}{5}\left(\frac{2}{3} I_{1}\right) \\
& =\frac{4}{5} \times \frac{2}{3} \times 1 \\
& =\frac{8}{15}
\end{aligned}
$$

(d) RTP $1 \times!!+2 \times 2!+3 \times 3!+\cdots+n \times n!=(n+1)!-1$ for $n \geqslant 1$
step 1 prove for $n=1$

$$
\begin{aligned}
\text { LAtS } & =\mid \times 1! & \text { RUS } & =(1+1)!-1 \\
& =|x| & & =2!-1 \\
& =1 & & =1
\end{aligned}
$$

$$
\therefore \angle H S=\text { RHS } \therefore \text { true for } n=1
$$

step 2 assume true for $n=k$
ie. $1 \times 1!+2 \times 2!+\cdots+n \times n!=(k+1)!-1$

$$
\begin{aligned}
& \text { step } 3 \text { prove for } n=k+1 \\
& \text { le. } k \times 1!+2 \times 2!+\cdots+(k+1)-(k+1)!=[(k+1)+1]! \\
& \text { LH }=k 1!+2 \times 2!+\cdots+k \times k!+(k+1) \times(k+1)! \\
&=(k+1)!-1+(k+1)(k+1)! \\
&=(k+1)!+(k+1)!(k+1)-1 \\
&=(k+1)!(1+(k+1)]-1 \\
&=(k+1)!(k+2)-1 \\
&=(k+2)!-1 \\
&=[(k+1)+1]!-1 \\
&=\text { RUS. }
\end{aligned}
$$

\therefore result is true for $n=k+1$
Step 4. Anne result is true for $n=1$, it is also true for $n=2$. Anne it is true for $n=2$ it is also true for $n=3$ and so on.
\therefore Atatement is true \forall positive integral values of n :

Question 8
(a) $f(x)=\sqrt{3-\sqrt{x}}$
(i)

Domain $3-\sqrt{x} \geqslant 0$ and $\sqrt{x} \geqslant 0$

$$
-\sqrt{x} \geqslant-3 \quad x \geqslant 0
$$

$$
\sqrt{x} \leq 3
$$

$$
x \leq 9
$$

$$
\therefore \quad 0 \leqslant x \leqslant 9
$$

(ii) $f(x)=\left(3-x^{1 / 2}\right)^{1 / 2}$

$$
\begin{aligned}
\therefore f^{\prime}(x) & =\frac{1}{2}\left(3-x^{2}\right)^{-1} 2 x-\frac{1}{2} x^{-1 / 2} \\
& =\frac{-1}{4 \sqrt{x} \sqrt{3-\sqrt{x}}}
\end{aligned}
$$

<0 for $0<x<9$.
and grad undefined for $x=0$ and $x=9$ (ie. vertical)
$\therefore f(x)$ is a decreasing function.
at $x=0 \quad f(0)=\sqrt{3}$
at $x=9 \quad f(9)=0$

$$
\because \quad 0 \leqslant f(x) \leqslant \sqrt{3}
$$

(iii)
(iv) $\int_{0}^{9} \sqrt{3-\sqrt{x}} d x=\int_{3}^{0} \sqrt{u}(-2)(3-u) d u$

$$
\begin{aligned}
\text { let } \begin{array}{rl}
u=3-\sqrt{x} & =2\left[\left(3 u^{1 / 2}-u^{3 / 2}\right) d u\right. \\
\sqrt{x}=3-u & 0 \\
x=(3-u)^{2} & =2\left[2 u^{3 / 2}-\frac{2 u^{5 / 2}}{5}\right]_{0}^{3} \\
d x=-2(3-u) d u & \\
x=0 u=3 & =4\left[3 \sqrt{3}-\frac{9 \sqrt{3}}{5}\right] \\
x=9 u=0 & \\
& =4 \sqrt{3}\left[3-\frac{9}{5}\right] \\
& =4 \sqrt{3} \times \frac{6}{5}
\end{array} .
\end{aligned}
$$

$$
=\frac{24 \sqrt{3}}{5} \text { as required }
$$

Question: 8
b) RTS: $\frac{d}{d u}(\sec u+\tan u)=\sec u(\sec u+\tan u)$

$$
\begin{aligned}
L H S & =\frac{d}{d u}(\sec u+\tan u) \\
& =\frac{d}{d u}\left((\cos u)^{-1}+\tan u\right) \\
& =-(\cos u)^{-2} x-\sin u+\sec ^{2} u \\
& =\frac{\sin u}{\cos u} \frac{1}{\cos u}+\sec ^{2} u \\
& =\sec u \cdot \tan u+\sec { }^{2} u \\
& =\sec u(\sec u+\tan u)
\end{aligned}
$$

c) (i)

(ii) $A=\int_{\pi / 3}^{\pi / 2} \sec \frac{x}{2} d x$

Let $u=\frac{x}{2}$

$$
\frac{d u e}{d x}=\frac{1}{2}
$$

$$
=2 \int_{\pi / 6}^{\pi / 4} \sec u d x
$$

$$
2 d u=d x
$$

when $x=\pi / 3$

$$
u=11 / 6
$$

$=2 \int_{\pi / 6}^{\pi / 4} \frac{\sec u(\sec u+\tan u)}{\sec u+\tan u}$.

$$
\begin{aligned}
& x=\pi / 2 \\
& u=\pi / 4 .
\end{aligned}
$$

$$
\begin{aligned}
& =2[\ln (\sec u+\tan u)]_{\pi / 6}^{\pi / 4} \\
& =2\left[\ln \left(\sec \frac{\pi}{4}+\tan \frac{\pi}{4}\right)-\ln \left(\sec \pi / 6+\tan \frac{\pi}{6}\right)\right. \\
& =2\left[\ln (\sqrt{2}+1)-\ln \left(\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}\right)\right. \\
& =2\left[\ln (\sqrt{2}+1)-\ln \left(\frac{3}{\sqrt{3}}\right)\right. \\
& =2 \ln \left(\frac{\sqrt{2}+1}{\sqrt{3}}\right) \text { units }^{2} .
\end{aligned}
$$

(iii)

when $x=17_{2}$

$$
\begin{aligned}
& y=\frac{c b}{\cos \pi / 4} \\
& =\frac{1}{\frac{1}{\sqrt{2}}} \\
& =\sqrt{2}
\end{aligned}
$$

when $x=\pi / 3$

$$
y=\frac{1}{\cos \pi}
$$

$$
\begin{aligned}
V_{1} & \left.=\pi\left(\frac{\pi}{2}\right)^{2}-\left(\frac{\pi}{3}\right)^{2}\right) \times \frac{2}{\sqrt{3}} \\
& =\pi\left(\frac{\pi^{2}}{4}-\frac{\pi^{2}}{9}\right) \times \frac{2}{\sqrt{3}} \\
& =\pi\left(\frac{5 \pi^{2}}{36}\right) \times \frac{2}{\sqrt{3}} \\
& =\frac{10 \pi^{3}}{36 \sqrt{3}} \text { un }^{3}
\end{aligned}
$$

$$
=\frac{1}{\frac{\sqrt{5}}{2}}
$$

$$
\begin{aligned}
& A_{2}=\pi\left(\frac{p^{2}-x^{2}}{4}\right) \\
& r_{2}=\sum_{y=\frac{2}{\sqrt{3}}}^{\sqrt{2}} \pi\left(\frac{\pi^{2}}{4}-x^{2}\right) \Delta y \\
& =\int_{\frac{2}{3}}^{\sqrt{2}}\left(\frac{\left.\pi^{2}-x^{2}\right) d y}{4}\right.
\end{aligned}
$$

But, $y=\frac{1}{\cos \frac{x}{2}}$

$$
\begin{aligned}
& \frac{1}{y}=\cos \frac{x}{2} \\
& \frac{x}{2}=\cos ^{-1}\left(\frac{1}{y}\right) \\
& x=2 \cos ^{-1}\left(\frac{1}{y}\right) \\
& \therefore v_{2}=\int_{\frac{2}{\sqrt{3}}}^{\sqrt{2}}\left(\frac{\pi^{2}}{4}-4\left[\cos ^{-1}\left(\frac{1}{y}\right)\right]^{2}\right) d y \\
& \therefore V=\frac{10 \pi^{3}}{36 \sqrt{3}}+\int_{\frac{2}{3}}^{\sqrt{2}}\left[\frac{\pi^{2}}{4}-4\left[\cos ^{-1}\left(\frac{1}{y}\right)\right]^{2}\right) d y
\end{aligned}
$$

