Hunters Hill High School Mathematics Extension 2

Trial Examination, 2016

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided
- The marks for each question are shown on the paper
- Show all necessary working in questions 11-16.

Total Marks: 100

- Section I
- 10 marks
- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

- 90 marks
- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Pages 7-14

Pages 3-6

Section I 10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

 ω is a non-real root of the equation $z^5 + 1 = 0$. 1.

Which of the following is not a root of this equation?

- (A) $\overline{\omega}$
- (B) ω^2
- $\frac{1}{\omega}$
- (C)
- (D) ω^3

What is the acute angle between the asymptotes of the hyperbola $\frac{x^2}{3} - y^2 = 1$? 2.

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$

What is the number of asymptotes on the graph of $f(x) = \frac{x^2}{x^2 - 1}$? 3.

- (A) 1
- 2 (B)
- 3 (C)
- (D) 4

HHHS

4. The size of the angle θ in the diagram below is:

- (A) 50°
- (B) 55°
- (C) 60°
- (D) 65°
- 5. The locus of the graph of $\arg\left(\frac{z-2}{z+2i}\right) = \frac{\pi}{2}$ is
 - (A) a semicircle passing through the origin
 - (B) a circle with centre at the origin
 - (C) an ellipse with a focus at the origin
 - (D) a hyperbola not passing through the origin
- 6. The equation of the tangent of the ellipse $x = 3\cos\theta$, $y = 2\sin\theta$ at the point where $\theta = \frac{\pi}{3}$ is:
 - (A) $6\sqrt{3}x 4y 5\sqrt{3} = 0$
 - (B) $2x 3\sqrt{3}y 12 = 0$
 - (C) $2x + 3\sqrt{3}y 12 = 0$
 - (D) $6\sqrt{3}x + 4y 5\sqrt{3} = 0$

The base of a solid is the circle $x^2 + y^2 = 4$. Every cross section of the solid taken 7. perpendicular to the *x*-axis is a right-angled, isosceles triangle with its hypotenuse lying on the base of the solid.

Which of the following is an expression for the volume of the solid?

(A)
$$\frac{1}{4} \int_{-2}^{2} (4 - x^2) dx$$

(B) $\int_{-2}^{2} (4 - x^2) dx$
(C) $2 \int_{-2}^{2} (4 - x^2) dx$
(D) $4 \int_{-2}^{2} (4 - x^2) dx$

8.
$$\int x \sin 2x \, dx =$$

(A)
$$-\frac{x}{2}\cos 2x + \frac{1}{4}\sin 2x + C$$

(B) $-\frac{x}{2}\cos 2x - \frac{1}{4}\sin 2x + C$
(C) $\frac{x}{2}\cos 2x + \frac{1}{4}\sin 2x + C$
(D) $-2x\cos 2x + \sin 2x + C$

- If $e^x + e^y = 1$, which of the following is an expression for $\frac{dy}{dx}$? 9.
 - (A) $-e^{x-y}$
 - (B) e^{x-y} (C) e^{y-x}

 - (D) $-e^{y-x}$

10. A particle of mass m moves in a horizontal circle with angular speed ω at a distance h below the point O.

Which of the following reflects the relationship between ω and h?

- (A) $h = \omega^2 g$
- (B) $h = \omega g$
- (C) $g = \omega^2 h$
- (D) $g = \omega h$

End of Section I

Section II 90 marks Attempt Questions 11–16 Allow about 2 hour and 45 minutes for this section Begin each question on a NEW SHEET of paper.

In questions 11 – 16 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

a.	Facto	rise $z^2 + 2iz + 15$	2
b.	Let z i.	= 1 + i and $u = 2 - i$. Find: Im (uz)	1
	ii.	u-z	1
	iii.	$-iar{u}$	1
C.	i.	On an Argand diagram sketch the locus of z represented by $ z - 3 = 3$.	2
	ii.	Explain why $\arg(z - 3) = 2 \arg z$	1

d. Find
i.
$$\int \sec^3 x \tan x \, dx$$
 2
ii. $\int_4^7 \frac{dx}{x^2 - 8x + 19}$ **3**

e. If $z = \cos \theta + i \sin \theta$, use de Moivre's theorem to show that

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

a. Given the expression
$$\frac{6x^2 + 3x + 1}{(x+1)(x^2+1)}$$

i. Find numbers *A*, *B* and *C* such that

$$\frac{6x^2 + 3x + 1}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}$$

ii. Find
$$\int \frac{6x^2 + 3x + 1}{(x+1)(x^2+1)} dx$$
 3

b. i. Express $-\sqrt{3} - i$ in modulus-argument form.

ii. Show that
$$(-\sqrt{3} - i)^6$$
 is a real number.

c. The diagram below is a sketch of the function y = f(x). The lines x = 0, y = 0 and y = 1 are asymptotes.

Draw separate one-third page sketches of the following curves, clearly indicating any important features such as turning points or asymptotes.

i.
$$y = \sqrt{f(x)}$$

ii.
$$y = e^{f(x)}$$

End of Question 12

2

2

2

3

a. The arc defined by $y = e^x$, $0 \le x \le 1$, is rotated about the *x*-axis to form a curved bowl.

i. Using the method of cylindrical shells, show that the volume, *V*, of the solid that makes the bowl is given by

$$V = \pi e^2 - 2\pi \int_1^e y \ln y \, dy$$

- ii. Find the volume, leaving your answer in exact form.
- iii. Hence, evaluate

$$\int_0^1 e^{2x} dx$$

- **b. i.** find all the 5^{th} roots of -1 in modulus-argument form. **2**
 - ii. Sketch the 5^{th} roots of -1 on an Argand diagram.

Question 13 continued on next page

3

1

1

c. A particle *P* of mass *m* is attached by a string of length *l* to a point *A*. The particle moves with constant angular velocity ω in a horizontal circle with centre *O* which lies directly below *A*. The angle the string makes with *OA* is α .

The forces acting on the particle are the tension, T, in the string and the force due to gravity, mg.

By resolving the forces acting on the particle in the horizontal and vertical directions, show that

$$\omega^2 = \frac{g}{l\cos\alpha}$$

d. Two circle C_1 and C_2 with centres O and N respectively intersect at A and B. P lies on C_1 and Q lies on C_2 such that $\angle AOP = \angle ANQ$ and $\angle AOP > \angle AOB$, as shown in the diagram below.

Prove that the points *P*, *B* and *Q* are collinear.

End of Question 13

HHHS

3

Question 14 (15 marks) Use a SEPARATE writing booklet.

a. i. Show that
$$\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(-x) dx.$$
 2

ii. Deduce that
$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} \{f(x) + f(-x)\} dx.$$
 1

iii. Show that
$$\sec^2 x - \sec x \tan x = \frac{1}{1 + \sin x}$$
 1

iv. Hence, or otherwise, evaluate
$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{1+\sin x} dx$$
. 2

b. i. Prove that
$$a^2 + b^2 \ge 2ab$$

ii. Hence, or otherwise, prove that
$$(p + 2)(q + 2)(p + q) \ge 16pq$$
 2 where *p* and *q* are positive real numbers.

c. i. Express
$$(5 - i)^2 (1 + i)$$
 in the form $a + ib$ where *a* and *b* are real. **1**
ii. Hence, prove that $\tan^{-1} \frac{7}{17} + 2 \tan^{-1} \frac{1}{5} = \frac{\pi}{4}$. **2**

d. The base of a solid is the region in the *xy*-plane enclosed by the parabola $y^2 = 4x$ and the line x = 4. Each cross section perpendicular to the *x*-axis is a semicircle.

Find the volume of the solid.

End of Question 14

- 11 -

1

a. A body *P* of mass 0.5kg is suspended from a fixed point *O* by means of a light rod of length 1 metre.

The mass is rotated in a horizontal circle at a constant speed $v \text{ ms}^{-1}$. The rod makes an angle θ with the downward vertical direction as shown in the diagram below.

The tension in the rod is T newtons and the weight of P is W newtons. The radius of the circle is r metres.

Assume
$$g = 9.8 \text{ ms}^{-2}$$
 and $\theta = 30^{\circ}$.

- i. Show that $\tan \theta = \frac{v^2}{rg}$.
- **ii.** Find the tension *T*.
- iii. Find the speed $v \text{ ms}^{-1}$ of P.
- iv. Find the period of the motion.
- **b.** Using the substitution $t = \tan \frac{x}{2}$, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sin x}$

Question 15 continued on next page

4

3

1

1

1

W

The point $P\left(cp, \frac{c}{p}\right)$ lies on the hyperbola $xy = c^2$. The point *T* lies at the foot of the perpendicular drawn from the origin *O* to the tangent at *P*.

- i. Show that the tangent at *P* has equation $x + p^2 y = 2cp$. **2**
- **ii.** If the coordinates of *T* are (x_1, y_1) show that $y_1 = p^2 x_1$. **1**
- iii. Show that the locus of *T* is given by $(x^2 + y^2)^2 = 4c^2xy$.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.

a. Consider the integral $I_n = \int_0^1 x^{2n+1} e^{-x^2} dx$.

i. Use integration by parts to show that $I_n = -\frac{1}{2e} + nI_{n-1}$, for $n \ge 1$. 2

ii. Show that
$$I_0 = \frac{1}{2} - \frac{1}{2e}$$
 and $I_1 = \frac{1}{2} - \frac{1}{e}$. 1

iii. Prove by mathematical induction that for all $n \ge 1$, $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} = e - \frac{2eI_n}{n!}$ 3

iv. It is given that $0 \le I_n \le 1$ because $0 \le x^{2n+1}e^{-x^2} \le 1$, for $0 \le x \le 1$. [Do NOT prove this]

Use this fact to help evaluate $\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$, giving your answer in exact form. **1**

b. An object on the surface of a liquid is released at time t = 0 and immediately sinks. Let x be its displacement in metres in a downward direction from the surface at time t seconds.

The equation of motion is given by

$$\frac{dv}{dt} = 10 - \frac{v^2}{40'}$$

where v is the velocity of the object.

i. Show that
$$v = \frac{20(e^t - 1)}{e^t + 1}$$
.

ii. Use
$$\frac{dv}{dt} = v \frac{dv}{dx}$$
 to show that $x = 20 \log_e \left(\frac{400}{400 - v^2}\right)$.

iii. How far does the object sink in the first 4 seconds?

End of paper

MXX-2016 TRIAL - SOLUTIONS SECTION J R ~. if w is a 5th root, then w?, w?, w? are abo, roots of unity occur in conjugate (palls i. C $\frac{H}{2} = \frac{1}{2} (2y) \cdot y$ = $\frac{y^2}{2} + \frac{y^2}{2}$ SV = 1, ~ 5 (4-2) SI 2. C. 牛賣 **२**, 87570 200-ANA SI > sindada = x (--(0527 4 (csxx)3. - 20 $\frac{d}{dx} = \frac{e^2 + e^2 dy}{dx} = 0$ $\frac{dy}{dx} = -e^{2}$ $\frac{dy}{dx} = -e^{2}$ $= -e^{2} \cdot e^{2}$ $= -e^{2} \cdot e^{2}$ 4. 9 D Ð DIG Ð 150-(30+0) -20+0 ι 20-= 30 5. A 10. h= g SR Ca $\frac{dy}{d\theta} = 2\cos^2\theta$ 6 -- 35mQ, dat wh = q $\frac{-d\varphi \times d\theta}{dx}$ $\frac{dg}{dx} = -2\cos \Theta}{3\sin \Theta}.$ -12(120) -12(12) = -2 35 then perst-gradent

Angle at centre is twice angle at "circanference subteded by same 11 4 2+2iz+15 = 2+2iz - 15i2 orce a. =(2.+5i)(7-3i sein secretor x che I= dì. Z= 1+2, n=2-i let n= secx du = secx. tenx. day (1+i)(2-i) Im(n7) = 1. {. ada I-= 1m(2+2i-i+1 = 1m (3+1 $= \frac{1}{3} \frac{1}{4} \frac{$ 5 = 1 Sec X + c. u-2l = (2-i-(l+i))N. 1. = 12-2-1-2 = 11-22 . ^ dor da = [12+62]2 н. 72-87-98 4 22-82+16 -3 du (x-4)2+3 iW . -10 = -1 (2+1) = { +~ '>-4 = -2i+1 5 53 - 1-21 tan' 7-4 - tan' 53 R Im <u>~ (1)</u> 3<u>1</u>3. C. 1. $e_{e} = 2^{2} = cos(n\theta) + isin(n\theta)$ 28 $= \cos(-n\theta) + l \sin(-n\theta)$ = $\cos(n\theta) - i \sin(n\theta)$ $\frac{1}{2^{n}} + \frac{1}{2} = \cos(n\theta) + i\sin(n\theta) + \cos(n\theta) - i\sin(n\theta)$ $\frac{1}{2^{n}} = 2\cos(n\theta)$

QR. 6x +3x+1 = H + Barl = 2° (cos(-11) + 1 sin (-1 α. 2. ١. (x+1)(x+1) 7771 = 26 (-1-0) 741 = -64 31 $\frac{62^{2}+32+1}{2} = A(2+1)^{-1} (B_{2}+()(2+1))$ $= 2^{2}(A+B) + 2(B+C) + (A+C)$ Cì. compairing coefficients y= fu A+B Ë = 6 -1 -2 B+(=3 2 -1 $t \leq 1$ A 1-4-11 8-0=5 yella) QB = -8 ji+10 B = 4. . · · C = -1 1º A= 2 -: A=2,B=4, (--1 2-6x2-3x+1 dx = ã. 4-1-1) 2. 2 1 えれ (x+1)(x2+1) -2 1 di Τ4 241 241 72+1 = 2/1/2+1)+2/1/2+1) - t=1'>1 +1 -2 2 b 1. J3-i 2. = 2 cis(-5) 2/F 11. (-5-2)= 2° cis 6(-5+ $= 2^{6} (\cos(-5\pi) + \lambda \sin(-5\pi))$ $= 2^{6} [\cos(-5\pi) + \lambda \sin(-5\pi)]$

•

QB. a. 1. Where of boul = cylorder - & shaded $V = \pi \varrho^2 - \pi \left((+ \varrho^2) \right)$ Q $= \frac{\pi^2}{2} - \pi$ $\frac{-\pi}{2}\left(\frac{e^{2}-1}{e^{2}-1}\right)$ writ Shaded Volume. SH=TI((agridy) - of ear $\frac{1}{10}$ = T (27+2924 + SA = 24 T Say Volume of bow also equal to T(?(ex) dx. height (x) = hy when rotated about x-axis, shock perpendicular SV= 2my Sy. hy toexis $\frac{1}{2} \cdot \pi \int e^{2\pi} dx = \pi \left(e^{2\pi} \right) dx$ 2 2m y lay by V = 1/mSy=20 $\frac{1}{2} \left(\frac{1}{2} \frac$ cylinder = TT. e. 1 = 211 glay dy = 3.194528049 $\frac{7^{2} = -1}{7^{2} = 1^{2} cisso.}$ b. - Volume of boust, V=TTe? - 2" (" ylnydy cis m equating 1 = 1 y. 1 dy 2. v g? Ing [.: r = (, ìt VE 27 (ylnydy = 27 CISSO = us TT 50 = T + 2KT. du= y.dy dv= Inyda $= 2\pi \left(\frac{e^2 \ln e - 1^2 \ln 1}{2} \right)$ 25 4 $\frac{\Theta}{\Sigma} = \frac{\pi (2L_{41})}{\Sigma}$ $= \frac{2\pi}{2} \cdot \frac{2^{2}}{2} - \frac{2^{2}}{4} + \frac{1}{4}$ $= \frac{\pi}{2} \left(\frac{2}{4} + \frac{2}{4} \right)$ for k=0, = cis =. k=2 22= cis T1. $\frac{2}{3} = \cos \frac{7\pi}{5}$ $= \cos \left(-\frac{5\pi}{5}\right)$ · K=Z.

P L=7, $r_{4} = cis \frac{3\pi}{5}$ 8 В マテニ ぶら (- 聖 k=-1. ō Q -... (3)(3) cis(3) (given LAOP = LANQ -- 0 > Re $ABA = (abhise \angle ASP) \times \frac{1}{2}$ = $(2\pi - \Theta) \times \frac{1}{2}$. (angle at centre twee angle at a rounderene) Eis(nit) (is(-#) LIS(-3m) LOBA = LONA = large at centre tace ande A at circunterence = 0 C, 8 L7BA+LQBH - T- 0+0 TSINR: e = 17 Mg ... P.B and Q are collinear TSING = MIW verhally. - I -'., ' padalli TSINGE MIN 1 -1 Trond May sin@=f = 1/22 8 losa g $\therefore u^2 = g$ l.ost

11.¹⁰.¹⁰.

214. TT G. / LHS- P fliddse. 2 - dre -Qu. IV. 2 TE HOW (+sin(-x) Honx FG 7 Spin-section + sector)-sectateda -= F(0) - F(-a) RHS= (fax) du Seix-secretenx+seix -secx(-tenx) & dy FER (= 2 sec x che. ____ = $= -F(-\alpha) - (-F(0))$ せる -- 2 tense = F(3) - F(-a)=LHS ten = ten o = 21 flx) dx f(x)dx + faidre= ÌII . =2. 19 f(-x)dre -Mª (Wabe = <u>5</u> ffx) effex} b. i. (a-b) 20 1. a-2abrb >0 mi. LAS= Sec²x - sectorx = · 2-15 7 26 Isin p-12= (JF) + (J) ≥ 2JF J2. 2, 1(-SINT (05 Z COST COST q+2= (5q)+ (2) > 259 5 -5-175 (05-5) 2 2 JPg. 1-SIND <u>,</u> Ptg 1-51/35 ·. (2+2)(q+2)(2+q) > 2F 52. 259.52.25759 LISING ------(1+5·17-)(1-5·47) >16PZ -I == ZHS =

P(1+i) = (25-10i+(-1))((+i))(5-1 C. I. = (24 - 10i)(1 - i)= 24 - 10i + 24i + 10 = 34 + 14i - 1 11 . 34 R. (34-1141 SU- My Sx. 2. $arg(34+14x) = \frac{1}{34} + \frac{14}{34}$ 14 =-ten⁻¹ 7 17. 34. = DATT X Sx. V= 11m 2772 82 ang (20)=ang (2) + ang (2) =27+(4) : crg(34.14i) - arg(24-bi) + arg(1+i) . $= \frac{10}{2} \frac{1}{12} \frac{1}{12}$ = ' : targ (5-2) + arg (1+2) tr'? '= 2. tr'(-1) + ten $=2\pi(4^2-2^2)$ =-2+=+= = 16. T units $\frac{1}{17} + \frac{2}{5} + \frac{1}{5} = \pi$

Q15a	$\lim tan \theta = j^2$	N.
Q.\	rq	3001
M=D.Sk-1	V= MENQ	R_
OP = 1m	J	r_5,733
$(\square P W = Mq.$	= 51/32 × 9.8× +2/32	
	= 49	
VW	ACI	
	U = 1.68196799 MS	(
	·	
Verheally: Toose-ma FD t - 0	$\omega = V$	· · · · · · · · · · · · · · · · · · ·
	<u>۲</u> ′	
radially: TSIND= MJ2 (2) TSIND	PSION = 2TT.	
A) = (D) Tong = Mis?	> 271	
Troso Mig	4 <u>4</u> 2	•
	$= 2\pi \sin 3^{\circ}$	
$-\frac{1}{2}$	1.68	
M	= 1.967807635 5.	
		-
11. from (1)	b. $t = \tan 2t$	
$Tco_3\Theta = Mq$		
T = Mq	<u> </u>	
(058)	Sinz = 2t	
= 0.5 × 9.8	1+t2,	
(05 33)	oft = 1 sec 24 obx.	
= 5.658832633 Newtons	ako	ular
	$dx = 2dt .cos^{2}$	(=0, f=t=0)
	= 22H. 1	= 0
· ·	147 -	上王, 七十五王
· · · · · · · · · · · · · · · · · · ·	= 2df	= (
	1+12	

. .

by point-goodent y- =- (x-cp) 4 5 TT IZ 211 doc 1+ 2+ +5,12 1++2 pq- pc=->c+cp ··· X+Py= 2ap. 211 = 1++++2+ - 1-tz $\frac{\text{OT } + \text{PT}}{\text{SD, grad.ent}} \xrightarrow{\text{GA-O}} \frac{\text{OT } \cdot \text{Sp}^2}{\text{pessing through (0,0)}}$ $\frac{\text{bg point-grad.ed.}}{\text{grad.ed.}}$ $\frac{\text{g-O} = p^2(\text{x-O})}{\text{g-P}^2\text{x}}$ ù. 2df (1++)? $(M, M_{\alpha} = -1)$ = =21 (1++) --(Ю =2 as T satisfies line $y_{i} = p^{2}rc,$ $\frac{\chi + p^{2}y_{i}}{also} = 2cp$ $\frac{\chi + p^{2}y_{i}}{z} = 2cp$ (+) 1+0 -1 +1 = 2 ----ш xyc ì. C. di the leytxdy = 0 <u>\$9</u>7 x+ 4.4=2c/2 $\frac{\chi dq}{dx} = -q$ $\chi^2 + g^2 = 2c \int xg$ • dy = -y dx x (x+y)=4cxy P at = - 1

n e obi Ĩũ. I__= 2. 16 a. Prose true, for n=1 a. RHS= e- 2e.I.) o () c. re che LHS= 1+1 ~ ١. =2 = e - 2e $\frac{10!}{dv = x^{2n}} \frac{du = 2nx^{2n-1}dx}{v = -1} \frac{dv}{v}$ = e - 2e + 24 $\frac{-2n\left(\frac{1}{x}-\frac{1}{e^{-\chi}}c\right)}{(-2)}$ = 2 = LHS .) = 2(x-1)+1 = -2 (1)2(x-1)+1 = -2 ()2(x-1)+1 = -2 (x-1)+1 = -2 (x-1)+ $= \frac{1}{2} \frac{$ for n=1 $+ \wedge$. true $= - \underline{1} + n \overline{1}_{n-1}$ 2e.Assume the for not. 141 $= e - 2e I_E$ + . . . + | $\frac{1}{11} = \frac{1}{2} - \frac{1}{2} \cdot \frac{1$ 1 2 3! 14 2 Prose the for n= L+1 i.e. 1 + 1 31 -1 + ... T + 1 = R- 2e TKH (e--e-) = -1/2 11 (ku)! K! (k+1)! $= -\frac{1}{2e} + \frac{1}{2}$ LHS= e- 2e Ik.+ 1 Ze. <u>k</u>[(K-11)! $= \frac{1}{2} - \frac{1}{2e}$ = e - 2e I (k+1)+ E! Et! 1,20 (K+1)! 2e $\overline{L}_1 = - \underline{L}_{2\ell} + (\overline{p} \overline{L}_0)$ but I have - 1 + (kai) T + 2e (k+1)] (k+1) I 45 20 = e + 2e (-(+41))! = -1 + 1 - 122 + 2 + 22= R # - De Ikt (k+1)! = RHS $= \int - \int \frac{1}{e}$.". by induction, this is the.

) (20-V 20-V))>
$1 - \ln (20 - v) + \ln (20 + v) = 1 + 7^{+}$
$-\ln(20-v) + \ln(20+v) - (-\ln(20-0) + \ln(20+0)) = +-0$
$\ln (20+1), 26 = 1$.
(20-1),20
$20 + v = p^{\pm}$
20-J.
$20+y = e^{+}(2y-y)$
$= 20e^{t} - ve^{t}$.
$Ve^{t} + V = 20e^{t} - 20$
$y(e^{t}+1) = 2y(e^{t}-1)$
$v = 20(e^{t}-1)$
.0 ⁺ +1
$\frac{11}{10} \frac{1}{10} $
dre dre 40.
40 Jobs = dr
$\int 0400 - v^2 \int 0$
$-2(n(400-3^2)) = -2($
$\frac{1}{2} = -20 \ln (400 - \sqrt{3}) + 20 \ln (400 - \sqrt{3}) + 20 \ln (400 - 0)$
$= \overline{\partial D} \ln (400)$
(400-3 ²)

A at. t=4 āi V= 20 (e-1) e41. = 19.2805516 . x= 20 m 400 400-18-28-= 5.3000109189 : object sinks 5.3 m ÷ 4

.

.

3