Hunters Hill High School Mathematics Extension 2 Trial Examination, 2016

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided
- The marks for each question are shown on the paper
- Show all necessary working in questions 11-16.

Total Marks:
 100

Section I Pages 3-6
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 7-14
90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Section I

10 marks Attempt Questions 1-10
 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1. ω is a non-real root of the equation $z^{5}+1=0$.

Which of the following is not a root of this equation?
(A) $\bar{\omega}$
(B) ω^{2}
(C) $\frac{1}{\omega}$
(D) ω^{3}
2. What is the acute angle between the asymptotes of the hyperbola $\frac{x^{2}}{3}-y^{2}=1$?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$
3. What is the number of asymptotes on the graph of $f(x)=\frac{x^{2}}{x^{2}-1}$?
(A) 1
(B) 2
(C) 3
(D) 4
4. The size of the angle θ in the diagram below is:

(A) 50°
(B) 55°
(C) 60°
(D) 65°
5. The locus of the graph of $\arg \left(\frac{z-2}{z+2 i}\right)=\frac{\pi}{2}$ is
(A) a semicircle passing through the origin
(B) a circle with centre at the origin
(C) an ellipse with a focus at the origin
(D) a hyperbola not passing through the origin
6. The equation of the tangent of the ellipse $x=3 \cos \theta, y=2 \sin \theta$ at the point where $\theta=\frac{\pi}{3}$ is:
(A) $6 \sqrt{3} x-4 y-5 \sqrt{3}=0$
(B) $2 x-3 \sqrt{3} y-12=0$
(C) $2 x+3 \sqrt{3} y-12=0$
(D) $6 \sqrt{3} x+4 y-5 \sqrt{3}=0$
7. The base of a solid is the circle $x^{2}+y^{2}=4$. Every cross section of the solid taken perpendicular to the x-axis is a right-angled, isosceles triangle with its hypotenuse lying on the base of the solid.

Which of the following is an expression for the volume of the solid?
(A) $\frac{1}{4} \int_{-2}^{2}\left(4-x^{2}\right) d x$
(B) $\int_{-2}^{2}\left(4-x^{2}\right) d x$
(C) $2 \int_{-2}^{2}\left(4-x^{2}\right) d x$
(D) $4 \int_{-2}^{2}\left(4-x^{2}\right) d x$
8. $\int x \sin 2 x d x=$
(A) $-\frac{x}{2} \cos 2 x+\frac{1}{4} \sin 2 x+C$
(B) $-\frac{x}{2} \cos 2 x-\frac{1}{4} \sin 2 x+C$
(C) $\frac{x}{2} \cos 2 x+\frac{1}{4} \sin 2 x+C$
(D) $-2 x \cos 2 x+\sin 2 x+C$
9. If $e^{x}+e^{y}=1$, which of the following is an expression for $\frac{d y}{d x}$?
(A) $-e^{x-y}$
(B) e^{x-y}
(C) e^{y-x}
(D) $-e^{y-x}$
10. A particle of mass m moves in a horizontal circle with angular speed ω at a distance h below the point O.

Which of the following reflects the relationship between ω and h ?
(A) $h=\omega^{2} g$

(B) $h=\omega g$
(C) $g=\omega^{2} h$
(D) $g=\omega h$

End of Section I

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hour and 45 minutes for this section
Begin each question on a NEW SHEET of paper.
In questions 11-16 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
a. Factorise $z^{2}+2 i z+15$
b. Let $z=1+i$ and $u=2-i$. Find:
i. $\operatorname{Im}(u z) \quad 1$
ii. $|u-z|$
iii. $-i \bar{u}$

1
c. i. On an Argand diagram sketch the locus of z represented by $|z-3|=3$.
ii. Explain why $\arg (z-3)=2 \arg z$
d. Find
i. $\int \sec ^{3} x \tan x d x$
ii. $\int_{4}^{7} \frac{d x}{x^{2}-8 x+19}$
e. If $z=\cos \theta+i \sin \theta$, use de Moivre's theorem to show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

Question 12 (15 marks) Use a SEPARATE writing booklet.
a. Given the expression $\frac{6 x^{2}+3 x+1}{(x+1)\left(x^{2}+1\right)}$
i. Find numbers A, B and C such that

$$
\frac{6 x^{2}+3 x+1}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}
$$

ii. Find $\int \frac{6 x^{2}+3 x+1}{(x+1)\left(x^{2}+1\right)} d x$
b. i. Express $-\sqrt{3}-i$ in modulus-argument form.
ii. Show that $(-\sqrt{3}-i)^{6}$ is a real number.
c. The diagram below is a sketch of the function $y=f(x)$.

The lines $x=0, y=0$ and $y=1$ are asymptotes.

Draw separate one-third page sketches of the following curves, clearly indicating any important features such as turning points or asymptotes.
i. $y=\sqrt{f(x)}$
ii. $\quad y=e^{f(x)}$

Question 13 (15 marks) Use a SEPARATE writing booklet.
a. The arc defined by $y=e^{x}, 0 \leq x \leq 1$, is rotated about the x-axis to form a curved bowl.

i. Using the method of cylindrical shells, show that the volume, V, of the solid that makes the bowl is given by

$$
V=\pi e^{2}-2 \pi \int_{1}^{e} y \ln y d y
$$

ii. Find the volume, leaving your answer in exact form.
iii. Hence, evaluate

$$
\int_{0}^{1} e^{2 x} d x
$$

b. i. find all the $5^{\text {th }}$ roots of -1 in modulus-argument form.
ii. Sketch the $5^{\text {th }}$ roots of -1 on an Argand diagram.
c. A particle P of mass m is attached by a string of length l to a point A. The particle moves with constant angular velocity ω in a horizontal circle with centre O which lies directly below A. The angle the string makes with $O A$ is α.

The forces acting on the particle are the tension, T, in the string and the force due to gravity, $m g$.

By resolving the forces acting on the particle in the horizontal and vertical directions, show that

$$
\omega^{2}=\frac{g}{l \cos \alpha}
$$

d. Two circle C_{1} and C_{2} with centres O and N respectively intersect at A and B. P lies on C_{1} and Q lies on C_{2} such that $\angle A O P=\angle A N Q$ and $\angle A O P>\angle A O B$, as shown in the diagram below.

Prove that the points P, B and Q are collinear.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
a. i. Show that $\int_{-a}^{0} f(x) d x=\int_{0}^{a} f(-x) d x$.
ii. Deduce that $\int_{-a}^{a} f(x) d x=\int_{0}^{a}\{f(x)+f(-x)\} d x$.
iii. Show that $\sec ^{2} x-\sec x \tan x=\frac{1}{1+\sin x}$

1
iv. Hence, or otherwise, evaluate $\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{1+\sin x} d x$.
b. i. Prove that $a^{2}+b^{2} \geq 2 a b$
ii. Hence, or otherwise, prove that $(p+2)(q+2)(p+q) \geq 16 p q$ where p and q are positive real numbers.
c. i. Express $(5-i)^{2}(1+i)$ in the form $a+i b$ where a and b are real.
ii. Hence, prove that $\tan ^{-1} \frac{7}{17}+2 \tan ^{-1} \frac{1}{5}=\frac{\pi}{4}$.
d. The base of a solid is the region in the $x y$-plane enclosed by the parabola $y^{2}=4 x$ and the line $x=4$. Each cross section perpendicular to the x-axis is a semicircle.

Find the volume of the solid.

Question 15 (15 marks) Use a SEPARATE writing booklet.
a. A body P of mass 0.5 kg is suspended from a fixed point O by means of a light rod of length 1 metre.
The mass is rotated in a horizontal circle at a constant speed $v \mathrm{~ms}^{-1}$.
The rod makes an angle θ with the downward vertical direction as shown in the diagram below.

The tension in the rod is T newtons and the weight of P is W newtons.
The radius of the circle is r metres.

Assume $g=9.8 \mathrm{~ms}^{-2}$ and $\theta=30^{\circ}$.
i. Show that $\tan \theta=\frac{v^{2}}{r g}$.

ii. Find the tension T.
iii. \quad Find the speed $v \mathrm{~ms}^{-1}$ of P.
iv. Find the period of the motion.
b. Using the substitution $t=\tan \frac{x}{2}$, evaluate

$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\sin x}
$$

c.

The point $P\left(c p, \frac{c}{p}\right)$ lies on the hyperbola $x y=c^{2}$. The point T lies at the foot of the perpendicular drawn from the origin O to the tangent at P.
i. Show that the tangent at P has equation $x+p^{2} y=2 c p$.
ii. If the coordinates of T are $\left(x_{1}, y_{1}\right)$ show that $y_{1}=p^{2} x_{1}$.
iii. Show that the locus of T is given by $\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y$.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
a. Consider the integral $I_{n}=\int_{0}^{1} x^{2 n+1} e^{-x^{2}} d x$.
i. Use integration by parts to show that $I_{n}=-\frac{1}{2 e}+n I_{n-1}$, for $n \geq 1$.
ii. Show that $I_{0}=\frac{1}{2}-\frac{1}{2 e}$ and $I_{1}=\frac{1}{2}-\frac{1}{e}$.
iii. Prove by mathematical induction that for all $n \geq 1$,

$$
1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}=e-\frac{2 e I_{n}}{n!}
$$

iv. It is given that $0 \leq I_{n} \leq 1$ because $0 \leq x^{2 n+1} e^{-x^{2}} \leq 1$, for $0 \leq x \leq 1$. [Do NOT prove this]

Use this fact to help evaluate $\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots$, giving your answer in exact form.
b. An object on the surface of a liquid is released at time $t=0$ and immediately sinks. Let x be its displacement in metres in a downward direction from the surface at time t seconds.

The equation of motion is given by

$$
\frac{d v}{d t}=10-\frac{v^{2}}{40^{\prime}}
$$

where v is the velocity of the object.
i. Show that $v=\frac{20\left(e^{t}-1\right)}{e^{t}+1}$.
ii. Use $\frac{d v}{d t}=v \frac{d v}{d x}$ to show that $x=20 \log _{e}\left(\frac{400}{400-v^{2}}\right)$.
iii. How far does the object sink in the first 4 seconds?

End of paper

MXX-2016 TRIAL - SOUTIONS

SEction I
i．C
if ω is a $5^{\text {th }}$ root．then

$$
\omega^{2}, \omega^{3}, \omega^{4}, \omega^{3} \text { are. }
$$

also，roots of unity occur in conjugate pals

2．C．

3． C

4．D

5．A

6 C．$\quad \frac{d x}{d t}=-3 \sin \theta, \frac{d y}{d e}=2 \cos$

$$
\begin{aligned}
\begin{aligned}
\frac{d y}{d x} & =\frac{-2 \cos \theta}{3 \sin \theta} \quad\left(\frac{-d}{d \theta} \times \frac{d \theta}{d x}\right. \\
& =\frac{-2}{3} \cdot \frac{⿳ 亠 口 冋}{3} \\
& =-2 \\
& =\frac{3 \sqrt{3}}{}
\end{aligned} .
\end{aligned}
$$

then pount－gradent

7．B ．

$$
\begin{aligned}
& A=\frac{1}{2}(2 x) y \\
& =\frac{y^{0}}{} \\
& \delta V=\lim _{\delta x \rightarrow 0} \sum_{x \rightarrow x}^{2}\left(4-x^{3}\right) \delta x
\end{aligned}
$$

8．A．$\quad \int x \sin 2 x d x=x\left(-\frac{\cos 2 x}{2}\right)-\int\left(\frac{-\cos 2 x}{2}\right) d x$
9．$\quad A$

$$
\begin{aligned}
\frac{d}{d x}:-\frac{e^{x}+e^{y} \frac{d y}{d x}}{d x} & =0 \\
\frac{d y}{d x} & =\frac{-e^{x}}{e^{y}} \\
& =-e^{x}-e^{-x} \\
& =-e^{2-y}
\end{aligned}
$$

10．C.

$$
\begin{aligned}
& h=9 \\
& w^{3} h=g
\end{aligned}
$$

π
a.

$$
\begin{aligned}
z^{2}+2 i z+15 & =z^{2}+2 i z-15 i^{2} \\
& =(z+5 i)(z-3 i)
\end{aligned}
$$

be $\quad z=1+i, \quad u=2-i$

$$
\begin{aligned}
i \operatorname{lm}(a z) & =\operatorname{lm}((1+i)(2-i)) \\
& =\operatorname{lm}(2+2 i-i+1) \\
& =\operatorname{lm}(3+i) \\
& =1
\end{aligned}
$$

11

$$
\begin{aligned}
|u-z| & =|2-i-(1+i)| \\
& =|2-i-1-i| \\
& =|1-2 i| \\
& =1^{2}+(-2)^{2} \\
& =\sqrt{5}
\end{aligned}
$$

iii.

$$
\begin{aligned}
-i \bar{u} & =-i(2+i) \\
& =-2 i+1 \\
& =1-2 i .
\end{aligned}
$$

C. 1.

ii Angle at centre is twice angle at arcanference subtedted by same once
di. $\quad I=\int \sec ^{2} x \cdot \sec x \cdot \operatorname{ten} x d x$
let $u=\sec x$

$$
d u=\sec x \cdot \tan x \cdot d x
$$

$$
\begin{aligned}
I & =\int u^{2} d u \\
& =\frac{1}{3} u^{3}+c \\
& =\frac{1}{3} \sec ^{3} x+c
\end{aligned}
$$

ii. $\int_{-4}^{7} \frac{d x}{x^{2}-8 x+9}=\int_{4}^{7} \frac{d x}{x^{2}-8 x+16+3}$

$$
\begin{aligned}
& =\int_{4}^{\pi} \frac{d x}{(x-4)^{2}+3} \\
& =\left[\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x-4}{\sqrt{3}}\right]_{4} \\
& =\frac{1}{\sqrt{3}}\left(\tan ^{-1} \frac{7-4}{\sqrt{3}}-\tan ^{-1} \frac{4-4}{\sqrt{3}}\right) \\
& =\frac{\pi}{3 \sqrt{3}} .
\end{aligned}
$$

e_{c}

$$
\begin{aligned}
z^{n} & =\cos (n \theta)+i \sin (n \theta) \\
z^{-n} & =\cos (-n \theta)+i \sin (-n \theta) \\
& =\cos (n \theta)-i \sin (n \theta) \\
z^{n}+\frac{1}{z^{n}} & =\cos (n \theta)+i \sin (n \theta)+\cos (n \theta)-i \sin (n \theta) \\
& =2 \cos (n)
\end{aligned}
$$

a. 1.

$$
\begin{align*}
\frac{6 x^{2}+3 x+1}{(x+1)\left(x^{2}+1\right)} & =\frac{1}{x+1}+\frac{B x+C}{x^{2}+1} \tag{2.}\\
6 x^{2}+3 x+1 & =A\left(x^{2}+1\right)+(B x+C)(x+1) \\
& =x^{2}(A+B)+x(B+C)+(A+C)
\end{align*}
$$

comping coeffecents

$$
1=-i i
$$

$$
\begin{array}{rlr}
A+B & =6 & -1 \\
B+C & =3 & -1 \\
A+C & =1 & -11
\end{array}
$$

$$
B-C=5 \quad \text { iv }
$$

$$
\begin{aligned}
& \therefore A=2 B-4 \cdot(-1 \\
& i i \cdot \int \frac{6 x^{2}+3 x+1}{(x+1)\left(x^{2}+1\right)} d x=\int\left(\frac{2}{x+1}+\frac{4 x-1}{x^{2}+1}\right) d x \\
&=\int\left(\frac{2}{x+1}+\frac{4 x}{x^{2}+1}-\frac{1}{x^{2}+1}\right) d x \\
&=2 \ln (x+1)+2 \ln \left(x^{2}+1\right)-\tan ^{-1} x+c
\end{aligned}
$$

b 1 .

$$
\text { i. } \begin{aligned}
& \sqrt{3}-i \\
&=2 \operatorname{cis}\left(-\frac{5 \pi}{6}\right) \\
& \text { ii. } \begin{aligned}
(-\sqrt{3}-1)^{6} & =2^{6} \operatorname{cis} 6\left(-\frac{5 \pi}{6}\right) \quad \frac{2 / 1}{\sqrt{3}} \\
& =2^{6} \operatorname{cis}(-5 \pi) \\
& =2^{6}[\cos (-5 \pi i+i \sin (-5 \pi)] \\
& =4
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
2 B & =8 \\
B & =4 \\
\therefore C & =-1 \\
A & =2 \\
& \therefore A=2 B-4, C-1
\end{aligned}
$$

ci.
iv
ii

$$
2 .
$$

QB. a. ir \quad blues of bowl $=$ cylinder - \& shaded

$$
\begin{aligned}
V & =\pi e^{2}-\frac{\pi}{2}\left(1+e^{2}\right) \\
& =\frac{\pi e^{2}}{2}-\frac{\pi}{2} \\
& =\frac{\pi}{2}\left(e^{2}-1\right) \text { units }
\end{aligned}
$$

iii) $\int_{0}^{1} e^{2 x} d x$.

Shaded Volume

$$
=2 \pi \int_{1}^{-l} y^{\ln y d y} .
$$

\therefore Volume of bowl, $V=\pi e^{2}-2 \pi \int_{1}^{r e} y^{l} y d y$
II. $\quad \forall=2 \pi \int_{1}^{e} y \ln y d y=2 \pi\left[\frac{y^{2}}{2} \cdot \ln y\right]_{1}^{e}-\int_{1}^{e} \frac{y^{2}}{2} \cdot \frac{1}{y} d y$

$$
\begin{aligned}
d u=y \cdot d y & =2 \pi\left(\frac{e^{2}}{2} \cdot \ln e-\frac{1^{2}}{1} \cdot \ln 1-\left[\frac{y^{2}}{4}\right]_{1}^{e}\right) \\
& =2 \pi \cdot\left(\frac{e^{2}}{2}-\frac{e^{2}}{4}+\frac{1}{4}\right) \\
& =\frac{\pi}{2}\left(\frac{e^{2}}{4}\left(+e^{2}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\int A=\pi(x y+\partial y)^{2}-y^{2}\right)^{2} \\
& =\pi\left(y^{2}+2 y y+5 y^{2}-y^{2}\right) \\
& =2 y+\delta y \\
& \delta V=2 \pi y \delta y \cdot \ln y \\
& V=\lim _{\delta y \rightarrow 0} \sum_{y=1}^{e} 2 \pi y \ln y \delta y
\end{aligned}
$$

b. i $\begin{aligned} & z^{5}=-1 \\ z^{5} & =r^{5} \operatorname{cis} 5 \theta \\ -1 & =\operatorname{cis} \pi\end{aligned}$
equating

$$
\begin{aligned}
& r^{5}=1 \\
& \therefore r=1 \text {. } \\
& \operatorname{cis} 50=\text { is } \pi \text {. } \\
& 5 \theta=\pi+2 k \pi \text {. } \\
& \theta=\frac{\pi(2 L+1)}{5} \\
& \text { for } k=0, \quad z_{1}=\operatorname{cis} \frac{\pi}{5} \text {. } \\
& k=2 \quad z_{2}=\text { cis } \pi \text {. } \\
& k=3 \text {. } \quad z_{3}=\text { cis } \frac{7 \pi}{5} \\
& =\operatorname{cis}\left(-\frac{3 \pi}{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& k=7, \quad z_{4}=\operatorname{cis} \frac{3 \pi}{5} \\
& k=-1, \quad z_{5}=\operatorname{cis}\left(-\frac{\pi}{5}\right)
\end{aligned}
$$

i

verticaly:
padally.

$$
\begin{aligned}
& \text { ii-i } \quad \frac{7 \sin x}{x \cos x}=\frac{2 / 1 \omega^{2}}{\mu g} \\
& \frac{\varnothing}{l \cos \theta}=\frac{\beta^{2}}{g} \quad \sin \theta=\frac{\Gamma}{l} \\
& \therefore \quad \omega^{2}=\frac{9}{l \cos \alpha}
\end{aligned}
$$

$Q B A=($ obtuse $\angle A B) \times \frac{1}{2} \quad$ (angb at centre twace angle

$$
=(2 \pi-\theta) \times \frac{1}{2}
$$

$$
=\pi-\frac{\theta}{2}
$$

langleat centre tace angle at circunfererence.

$$
\angle P B A+\angle Q B A-\pi-\frac{\theta}{3}+\frac{\theta}{2}
$$

$$
=\pi
$$

$\therefore P B$ and Q ase collincar.

24
a. i. $L H S-\int_{-a}^{0} f(x) d x$.
2.
U.

$$
\begin{aligned}
& \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{1+\sin x} d x=\int_{0}^{\frac{\pi}{6}}\left\{\frac{1}{1 \tan x}+\frac{1}{1+\sin (-x)\}}\right\} \\
&=\int_{0}^{\frac{\pi}{6}}\left\{\sec ^{2} x-\sec x \tan x+\sec ^{2}(-x)-\sec (-x) \operatorname{ld}(-x\right. \\
&=\int_{0}^{\frac{\pi}{6}}\left(\sec ^{2} x-\sec ^{2} \tan x+\sec ^{2} x-\sec x(-\tan x)\right\} d x \\
&=\int_{0}^{\frac{\pi}{6}} 2 \sec ^{2} x d x . \\
&=2[\tan x]_{0}^{\frac{\pi}{6}} \\
&=2\left(\tan \frac{\pi}{6}-\tan 0\right) \\
&=2 .\left(\frac{1}{\sqrt{3}}-0\right) \\
&=2 \\
& \sqrt{3}
\end{aligned}
$$

$$
\text { ii: } \begin{aligned}
\int_{-a}^{a} f(x) d x & =\int_{-a}^{a} f(x) d x+\int_{0}^{a} f(x) d x \\
& =\int_{0}^{a} f(-x) d x+\int_{0}^{a} f(x) d x \\
& =\int_{0}^{a}\{f(x)+f(-x)\} d x
\end{aligned}
$$

$$
\text { 1ii. } \begin{aligned}
\text { LUS } & =\sec ^{2} x-\sec \tan x=\frac{1}{1} \\
& =\frac{1}{\cos ^{2} x}-\frac{1}{\cos x} \frac{\sin x}{\cos x} \\
& =\frac{1-\sin x}{\cos ^{2} x} \\
& =\frac{1-\sin x}{1-\sin ^{2} x} \\
& =\frac{1-\sin x}{(1+\sin x)(1-\operatorname{sen} x)} \\
& =\frac{1}{1}=-x+k
\end{aligned}
$$

1.

b. i. $(a-b)^{2} \geqslant 0$

$$
\begin{gathered}
a^{2}-2 a b+b^{2} \geqslant 0 \\
\therefore a^{2}+b^{2} \geqslant 2 b
\end{gathered}
$$

$$
\text { ii. } \begin{aligned}
p+2=(\sqrt{p})^{2}+(\sqrt{2})^{2} & \geqslant 2 \sqrt{p} \sqrt{2} . \\
q+2=(\sqrt{q})^{2}+(\sqrt{2})^{2} & \geqslant 2 \sqrt{q} \sqrt{2} . \\
& \geqslant 2 \sqrt{p q} \\
\therefore(p+2)(q+2)(p+q) & \geqslant 2 \sqrt{p} \sqrt{2} \cdot 2 \sqrt{q} \cdot \sqrt{2} \cdot 2 \sqrt{p} \sqrt{q} \\
& \geqslant 16 p q
\end{aligned}
$$

c. i. $(5-i)^{2}(1+i)=(25-10 i+(-1))(1+i)$

$$
\begin{aligned}
& =(24-10 i)(1+i) \\
& =24-10 i+24 i+10 \\
& =34+14 i
\end{aligned}
$$

$$
\begin{aligned}
&\arg (z \omega))=\arg (i)+\operatorname{cig}(-1) \\
& \therefore \arg (34+14 i)=\arg (24-\operatorname{tai})+\arg (1+i) \\
& \therefore-=1 \operatorname{cog}(5-i)^{2}+\arg (1+i) \\
& \tan ^{-1} \frac{7}{17}=2 \cdot \tan ^{-1}\left(-\frac{1}{5}\right)+\tan ^{-1} \frac{1}{1} \\
&=-2 \tan ^{-1} \frac{1}{5}+\frac{\pi}{4} \\
& \therefore \tan ^{-1} \frac{7}{17}+2 \tan ^{-1} \frac{1}{5}=\frac{\pi}{4}
\end{aligned}
$$

d

$\delta V=\frac{\pi}{2} y^{2} \delta x$.

$$
-\frac{\pi}{2} 4 r-x \delta_{3}
$$

$$
=2 d \pi x \delta x
$$

$$
\begin{aligned}
V & =\lim _{x_{x \rightarrow 0}} \sum_{x=0}^{4} \pi \pi x d x \\
& =2 \pi \int_{0}^{4} x d x \\
& =2 \pi\left[\frac{x^{2}}{2}\right]^{4} \\
& =2 \pi\left(\frac{4^{2}}{2}-\frac{0^{2}}{2}\right) \\
& =16 \pi \pi^{2} u^{2} 5^{3}
\end{aligned}
$$

$$
1 W
$$

i.
vertically: $T \cos \theta=m g$ (1) $\$ \cos \theta$ 位
radially: $T \sin \theta=\frac{\mu J^{2}}{r}(-2)$

$$
\begin{array}{r}
(\theta) \div(1) \quad \frac{X_{\sin } \theta}{X \cos \theta}=\frac{\mu^{\prime} \nu^{2}}{\mu^{\prime} g} \\
\therefore \tan \theta=\frac{\nu^{2}}{r g}
\end{array}
$$

11. from (1)

$$
\begin{aligned}
T \cos \theta & =\operatorname{lng} \\
T & =\frac{\cos \theta}{\cos \theta} \\
& =\frac{0.5 \times 9.8}{\cos 30^{\circ}} \\
& =5.658032638 \text { Newtans }
\end{aligned}
$$

$$
\begin{aligned}
& m=0.5 \mathrm{ky} \\
& O P=1 \mathrm{~m} \\
& W=m g .
\end{aligned}
$$

$$
\text { ii. } \quad \begin{aligned}
\tan \theta & =\frac{v^{2}}{r g} \\
v^{2} & =\operatorname{rg} \tan \theta \\
& =\sin 30^{\circ} \times 9.8 \times \tan 30^{\circ} \\
& =\frac{49}{10 \sqrt{3}} \\
v & =1.68196799 \mathrm{~ms}^{-1}
\end{aligned}
$$

N.

$$
\omega=\frac{v}{r}
$$

pesiod $=\frac{2 \pi}{\omega}$

$$
\begin{aligned}
& =\frac{2 \pi r}{\psi} \\
& =\frac{2 \pi \sin 30^{\circ}}{1.68} \\
& =1.867807635 \mathrm{~s} .
\end{aligned}
$$

b. $\quad *=\tan \frac{x}{2}$

$$
\begin{aligned}
\sin x & =\frac{2 t}{1+t^{2}} \\
d t & =\frac{1}{2} \sec ^{2} \frac{x}{2} d x \\
d x & =2 d t \cdot \cos ^{2} \frac{x}{2} \\
& =2 d t \cdot \frac{1}{1+t^{2}} \\
& =\frac{2 d t}{1+t^{2}}
\end{aligned}
$$

abo, when

$$
\begin{aligned}
x=0, t & =\tan 0 \\
& =0 \\
x=\frac{\pi}{2}, t & =\tan \frac{\pi}{4} \\
& =1
\end{aligned}
$$

bypont-gradent

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\operatorname{sinx}} & =\int_{0}^{1} \frac{1}{1+\frac{2 t}{1+t^{2}}} \cdot \frac{2 d t}{1+t^{2}} \\
& =\int_{0}^{1} \frac{1+t^{2}}{1+t^{2}+2 t} \cdot \frac{2 d t}{1+t^{2}} \\
& =\int_{0}^{-1} \frac{2 d t}{(1+t)^{2}} \\
& =2\left[\frac{(1+t)^{-1}}{-1}\right]_{0}^{1} \\
& =2\left(-\frac{1}{1+1}-\left(-\frac{1}{1+0}\right)\right) \\
& =2\left(-\frac{1}{2}+1\right) \\
& =1
\end{aligned}
$$

ii
$O T \perp P T$
So, gradient if oT: is $p^{2} \quad\left(m, m_{2}=-1\right)$ posing though $(0,0)$
by point-gradied.

$$
\begin{gathered}
y-0=p^{2}(x-0) \\
y=p^{2} x
\end{gathered}
$$

as T satisfies line

$$
y_{1}=p^{2} x_{1}
$$

c. i. $\quad x y c^{2}$

$$
\begin{aligned}
\frac{d}{d x}: \quad \log +x \frac{d y}{d x} & =0 \\
x \frac{d y}{d x} & =-y \\
\frac{d y}{d x} & =-\frac{y}{x}
\end{aligned}
$$

at P

$$
\begin{aligned}
m & =-\frac{\frac{c}{p}}{c p} \\
& =-\frac{1}{P^{2}}
\end{aligned}
$$

$16 a$ a. $\quad I_{n}=\int_{0}^{1} x^{2 x+1} e^{-x^{2}} d x$

1. $=\int_{0}^{1} x^{2 n} \cdot x e^{-x^{2}} d x$
let $i=x^{2 n} \quad d n=2 n x^{2 n-1} d x \cdot$
$d v=x e^{-x^{2}} d x, \quad v=\frac{-1}{2} e^{-x^{2}} \quad r$

$$
\begin{aligned}
I_{n} & =\left[x^{2 n}\left(-\frac{1}{2} e^{-x^{2}}\right]_{0}^{1}-2 n \int_{0}^{1} x^{2 x-1} \cdot e^{-x^{2}} d x\right. \\
& =\left(-\frac{1-2 n}{\left(-\frac{1}{2} e^{-x^{2}}-0^{2 n} \cdot \frac{1}{2} e^{0}\right)+1 \int_{0}^{1} x^{2(x-1)+1} \cdot e^{-x^{2}} d x}\right. \\
& =-\frac{1}{2 e}+n I_{n-1}
\end{aligned}
$$

2.

$$
\text { ii. } I_{0}=\frac{1}{2} \int_{0}^{1}-2 x \cdot e^{-x^{2}} d x
$$

$$
=-\frac{1}{2}\left[e^{-x^{2}}\right]_{0}^{1}
$$

$$
=-\frac{1}{2}\left(e^{-1}-e^{-0}\right)
$$

$$
=-\frac{1}{2 e}+\frac{1}{2}
$$

$$
=\frac{1}{2}-\frac{1}{2 e}
$$

$$
\begin{aligned}
I_{1} & =-\frac{1}{2 e}+(h) I_{0} \\
& =-\frac{1}{22}+\frac{1}{2}-\frac{1}{22} \\
& =\frac{1}{2}-\frac{1}{e}
\end{aligned}
$$

iii. Prose tie for $n=1$

$$
\begin{aligned}
L H S=1+\frac{1}{1!} \quad R H S & =e-\frac{2 e I_{1}}{1!} \\
& =2 \\
& =e-\frac{2 e\left(\frac{1}{2}-\frac{1}{e}\right)}{2} \\
& =e-\frac{2 e}{R}+\frac{2 d}{e} \\
& =2 \\
& =\text { LH }
\end{aligned}
$$

\therefore true for $n=1$
Assure the for $n=k$.

$$
1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{k!}=e-\frac{2 e I_{k}}{k!}
$$

Prove the for $n=k+1$ i.e. $1+\frac{1}{1!}+\frac{x!}{2!}+\frac{1}{3!}+\cdots \frac{1}{k!}+\frac{1}{(k-1)!}=e-\frac{2 e I_{k+1}}{(k+1)!}$

$$
\begin{aligned}
L H S & =e-\frac{2 e I_{k}}{k!}+\frac{1}{(k+1)!} \\
& =e-\frac{2 e}{k!} I_{k} \frac{(k+1)+}{1} \cdot \frac{1}{(k+1)!2 e} \\
& \left.=e+\frac{2 e}{(k+1)!}\left(-(k+1) I_{k}+\frac{1}{2 e}\right) \quad \text { but } I_{k+1}=\frac{-1}{2 e}+(k+1)\right) \\
& =e+\frac{2 e}{(k+1)!}\left(-I_{k+t+1)}\right) \\
& =e+\frac{2 e I_{k+1}}{(k+1)!}
\end{aligned}
$$

$$
=R H S
$$

\therefore by induction, this is tree.
10. $\quad 0 \leqslant I_{n} \leqslant 1$

$$
\begin{aligned}
& \text { as } n \rightarrow \infty, \frac{2 e I_{n}}{n!} \rightarrow 0 \\
& \therefore 1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots=l_{1}
\end{aligned}
$$

$$
\text { and } \frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots=e-!
$$

bo i $\quad \frac{d v}{d t}=\frac{10-v^{2}}{40}$

$$
=\frac{400-y^{2}}{40}
$$

$$
\int_{1}^{1} \frac{40 d v}{400-v^{2}}=\int d t
$$

$$
\begin{aligned}
& \frac{40}{(20-v)(20+1)}=\frac{A}{20-1}+\frac{B}{20+5} \\
& 40=A(20+v)+B(20-0) \\
& \text { at } 1=20 \\
& 40=A(20+20)+B(0) \\
& A=1 \\
& \text { at } v=-20 \\
& 40=A(0)+B(20-(-20) \\
& B=1
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{v}\left(\frac{1}{20-v}+\frac{1}{20+v}\right) d v=\int_{0}^{1} d t \\
& {[-\ln (20-v)+\ln (20+v)]_{0}^{v}=[t]_{0}^{1}} \\
& -\ln (20-v)+\ln (20+v)-(-\ln (20-v)+\ln (20+0))=+-0 \\
& \ln (20+v) \cdot 26 \\
& \frac{(20-v) 20}{20}=1 .
\end{aligned}
$$

$$
\begin{aligned}
\frac{20+v}{20-v} & =e^{t} \\
20+v & =e^{t}(20-v) \\
& =20 e^{t}-v e^{t} \\
v e^{t}+v & =20 e^{t}-20 \\
v\left(e^{t}+1\right) & =20\left(e^{t}-1\right) \\
v & =\frac{20\left(e^{t}-1\right)}{e^{t}+1}
\end{aligned}
$$

iI

$$
\begin{array}{rl}
v d v & =10-\frac{v^{2}}{d x} \\
\int \frac{v}{d x} \frac{40 v d v}{} & =\int_{0}^{x} d x \\
\left.\int_{0} \frac{400-v^{2}}{\left[-2 \ln \left(400-v^{3}\right)\right]}\right]_{0}^{u} & x \\
x & =-20 \ln \left(400-v^{2}\right)+20 \ln (400-0) \\
& =20 \ln \left(\frac{400}{400-v^{2}}\right)
\end{array}
$$

iii. $a^{t} \cdot t=4$

$$
\begin{aligned}
V & =\frac{20\left(e^{4}-1\right)}{e^{4}+1} \\
& =19.2805516 \\
x & =201 \sim\left(\frac{400}{400-19.28^{2}}\right) \\
& =5.300010989
\end{aligned}
$$

\therefore object sinks 5.3 m

