\qquad

HUNTERS HILL HIGH SCHOOL EXTENSION 2 MATHEMATICS HSC TRIAL 2017

Hunters Hill
High School

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black pen
- Board-approved calculators may be used
- A Reference Sheet is provided
- In Questions 11-16, show relevant mathenatical reasoning and/or calculations

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1

Which of the following inequalities describes the region above?
(A) $|z-3| \leq 2$
(B) $\quad|z+3| \leq 2$
(C) $\quad|z-3| \leq 4$
(D) $\quad|z+3| \leq 4$
$2 \quad$ What is the value of i^{2017} ?
(A) i
(B) 1
(C) $-i$
(D) -1

3 Multiplying a non-zero complex number by $\frac{1+i}{1-i}$ results in a rotation about the origin on an Argand diagram.
What is the rotation?
(A) Clockwise by $\frac{\pi}{4}$
(B) Clockwise by $\frac{\pi}{2}$
(C) Anticlockwise by $\frac{\pi}{4}$
(D) Anticlockwise by $\frac{\pi}{2}$
$4 \quad$ What is the eccentricity of $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$?
(A) $\frac{7}{16}$
(B) $\frac{\sqrt{7}}{4}$
(C) $\frac{9}{16}$
(D) $\frac{7}{9}$

5 The gradient of the curve $x^{2} y-x y^{2}+6=0$ at the point $P(2,3)$ is equal to:
(A) -5
(B) $\frac{3}{8}$
(C) $\frac{9}{8}$
(D) 1

6 The directrices of the hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$ are
(A) $x= \pm \frac{9}{5}$
(B) $y= \pm \frac{9}{5}$
(C) $y= \pm 5$
(D) $x= \pm 5$

7 Which of the following is the correct expression for $\int \frac{1}{\sqrt{8+2 x-x^{2}}} d x$?
(A) $\sin ^{-1} \frac{x-1}{9}+C$
(B) $\sin ^{-1} \frac{x-1}{3}+C$
(C) $\sin ^{-1} \frac{x+1}{3}+C$
(D) $\sin ^{-1} \frac{x+1}{9}+C$

8 What is the volume of the solid formed when the region bounded by the curves $y=x^{2}, y=\sqrt{30-x^{2}}$ and the y-axis is rotated about the y-axis? Use the method of slicing.

What is the correct expression for volume of this solid using the method of cylindrical shells?
(A) $\quad V=\int_{0}^{\sqrt{5}} 2 \pi\left(x^{2}-\sqrt{30-x^{2}}\right) d x$
(B) $\quad V=\int_{0}^{\sqrt{5}} 2 \pi x\left(x^{2}-\sqrt{30-x^{2}}\right) d x$
(C) $\quad V=\int_{0}^{\sqrt{5}} 2 \pi\left(\sqrt{30-x^{2}}-x^{2}\right) d x$
(D) $\quad V=\int_{0}^{\sqrt{5}} 2 \pi x\left(\sqrt{30-x^{2}}-x^{2}\right) d x$

9 Two equal circles touch externally at B. $X B$ is a diameter of one circle. $X Z$ is the tangent from X to the other circle and cuts the first circle at Y.

Which is the correct expression that relates $X Z$ to $X Y$?
(A) $3 X Z=4 X Y$
(B) $X Z=2 X Y$
(C) $2 X Z=3 X Y$
(D) $2 X Z=5 X Y$

10 What statement is true for these graphs?

(A) $|f(x)|=g(x)$
(B) $g(x)=\ln [f(x)]$
(C) $\quad f(x)= \pm \ln |g(x)|$
(D) $\quad g(x)= \pm \sqrt{f(x)}$

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Find
(i) $\int \frac{\cos \theta}{\sin ^{5} \theta} d \theta$
(ii) $\int \frac{d x}{x^{2}+2 x+2}$
(b) Evaluate $\int_{0}^{1} \frac{2 x+1}{x^{2}+1} d x$
(c) Evaluate the following definite integrals:
(i) $\int_{0}^{1} \cos ^{-1} x d x$
(ii) $\int_{1}^{2} x(\ln x)^{2} d x$
(d) Use the substitution $x=\frac{1}{u}$ to evaluate $\int_{\frac{1}{e}}^{e} \frac{\log _{e} x}{(1+x)^{2}} d x$

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) $P Q$ is a variable chord of the rectangular hyperbola $x y=c^{2}$.

(i) Show that the equation of the normal at the point $P\left(\mathrm{cp}, \frac{c}{p}\right)$ on the rectangular hyperbola $x y=c^{2}$ is given by $p^{3} x-p y=c\left(p^{4}-1\right)$
(ii) Prove that the normal cuts the hyperbola again at the point
$Q\left(\frac{-c}{p^{3}},-c p^{3}\right)$
(iii) If R is the opposite end of the diameter of the hyperbola through P, show that $P R$ is perpendicular to $R Q$.

Question 12 (continued)

(b) In the diagram below, $T P$ is the tangent of the circle at P, and $T Q$ is a secant cutting the circle at R. $S Q$ is a chord of the circle such that $P X$ and $S Y$ are perpendicular to $S Q$ and $P Q$, respectively.

(i) Prove that $\angle T R P=\angle T P Q$
(ii) Explain why $S P Y X$ is a cyclic quadrilateral and state the diameter of the circle.
(iii) Prove $\angle P Y X=\angle P R Q$
(c) If P and Q represent the complex numbers z and w, where

$$
w=\frac{1}{z-2}+\frac{3}{2},
$$

find the Cartesian equation of the locus of Q as P moves on the circle $|z-2|=3$.

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows the graph of the function, which has a horizontal asymptote at $y=0$. On separate diagrams sketch the following graphs, showing clearly any intercepts on the coordinate axes and the equations of any asymptotes:
(i) $y=f\left(x^{2}\right)$
(ii) $y=\frac{1}{f(x)}$
(iii) $\quad y=\ln (f(x))$
(b) Sketch $|y|=x^{2}-4 x$, showing all important features.

4
(c) If $z_{1}=1-i, z_{2}=2 z_{1}$ and $z_{3}=-2 i z_{1}$ clearly on an Argand diagram the points represented by
(iii) z_{1}, z_{2} and z_{3}
(iv) $z_{3}-z_{2}$

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) The equation $x^{4}+2 x^{3}-7 x^{2}-20 x-12=0$ has a double root. Find this root and hence solve this equation.
(b) The equation $x^{3}+p x+5=0$ has roots α, β and γ.
(i) Find in terms of $p, \alpha^{2}+\beta^{2}+\gamma^{2}$
(ii) Show that $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}=p^{2}$
(iii) Find the cubic polynomial with integer coefficients, whose roots are

$$
\frac{\alpha}{\beta \gamma}, \frac{\beta}{\gamma \alpha}, \frac{\gamma}{\alpha \beta} .
$$

(c) Solve the equation $x^{4}+2 x^{3}+x^{2}-1=0$, given that one root is

$$
-\frac{1}{2}+i \frac{\sqrt{3}}{2}
$$

(d) The base of a solid is in the shape of an ellipse with equation $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.

Sections parallel to the y-axis are equilateral triangles, with one side sitting in the base of the solid, as shown in the diagram.

Find the volume of this solid.

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) The region bounded by the curve $y=\frac{1}{x^{2}-1}$ and the x-axis between $x=2$ and $x=4$ is rotated through one revolution about the line $x=2$.

(i) Use the method of cylindrical shells to show that the volume, V, of the solid formed is given by $V=2 \pi \int_{2}^{4} \frac{x-2}{x^{2}-1} d x$.
(ii) Hence find the exact value of V in simplest form.
(b) If $a>0, b>0, c>0$ and $a+b+c=1$, (use in part (ii) only)
(i) show that $(a+b)(b+c)(c+d) \geq 8 a b c$
(ii) hence, or otherwise, prove that

$$
(1-a)(1-b)(1-c) \geq 8 a b c
$$

(c) (i) Prove that $\int_{0}^{a} F(x) d x=\int_{0}^{a} F(a-x) d x$.
(ii) Hence, or otherwise, evaluate $\int_{0}^{\frac{\pi}{4}} \log _{e}(1+\tan \theta) d \theta$

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Twelve different books are made into four parcels of three each. How many different sets of parcels could be made?
(b)

(i) Use the trapezoidal rule with n function values to approximate $\int_{1}^{n} \ln x d x$.
(ii) Show that $\frac{d}{d x}(x \ln x-x)=\ln x$ and hence find the exact value of $\int_{1}^{n} \ln x d x$.
(i) Deduce that $\ln n!<\left(n+\frac{1}{2}\right) \ln n-n+1$.
(b)
$I_{n}=\int_{1}^{e}(1-\ln x)^{n} d x, n=1,2,3, \ldots$
(i) Show $I_{n}=-1+n I_{n-1}, n=1,2,3, \ldots$
(ii) Hence evaluate $\int_{1}^{e}(1-\ln x)^{4} d x$.
(iii) Show that $\frac{I_{n}}{n!}=e-\sum_{r=0}^{n} \frac{1}{r!}, n=1,2,3, \ldots$

MAX TRIAL 2018
SEction 1.

1. D
2. A

$$
2017=4 \times 20+1 .
$$

3. D

$$
\frac{1+i}{1-i} \times \frac{1+i}{1+i}=\frac{2 i}{1+1}
$$

$$
=l
$$

4. B

$$
\begin{aligned}
e^{2} & =1-\frac{b^{2}}{2} \\
& =1-\frac{14}{4} \frac{a}{16} \\
& =\frac{7}{6}
\end{aligned}
$$

5. B

$$
\begin{array}{r}
2 x y+\frac{x^{2} d y}{d x}-y^{2}-2 x y \frac{d y}{d x}=0 \\
\frac{d y}{d x}\left(x^{2}-2 x y\right)=y^{2}-2 x y \\
\frac{d y}{d x}=\frac{3^{2}-2(2)(3)}{2^{2}-2(2)(3)} \\
=\frac{9-2}{4-12} \frac{-\frac{3}{-2}}{2} \\
e^{2}=1+\frac{d 6}{2} \\
=\frac{25}{46}
\end{array} \begin{aligned}
& e=\frac{5}{3}
\end{aligned}
$$

2. B

$$
\begin{aligned}
\frac{1}{\sqrt{8+2 x-x^{2}}} & =\frac{1}{\sqrt{9-1+2 x-x^{2}}} \\
& =\frac{1}{\sqrt{9-(x-1)^{2}}}
\end{aligned}
$$

8. D

$9 . \quad C$

$$
\frac{x y}{x z}=\frac{2}{3}
$$

10. D.

Section II
Question 11
a)

$$
\begin{aligned}
& I=\int \frac{\cos \theta}{\sin ^{5} \theta} d \theta \\
& 1 e+\mu=\sin \theta \\
& d u=\cos \theta d \theta \\
& I=\int a^{-5} d u \\
&=\frac{u^{4}}{-4}+c \\
&=\frac{-1}{4 \sin ^{4} \theta}+c
\end{aligned}
$$

ii.

$$
\begin{aligned}
I & =\int \frac{d x}{x^{2}+2 x+2} \\
& =\int \frac{d x}{(x+1)^{2}+1} \\
& =\tan ^{-1}(x+1)+c
\end{aligned}
$$

b)

$$
\begin{aligned}
\int_{0}^{1} \frac{2 x+1}{x^{2}+1} d x & =\int_{0}^{1}\left(\frac{2 x}{x^{2}+1}+\frac{1}{x^{2}+1}\right) d x \\
& =\left[\ln \left(x^{2}+1\right)+\operatorname{tn}^{-1} x\right]_{0}^{1} \\
& =\ln \left(1^{2}+1\right)+\tan ^{-1} 1-\ln \left(0^{2}+1\right)-\tan ^{1} 0 \\
& =\ln 2+\frac{\pi}{4}
\end{aligned}
$$

c)

$$
\text { i) } \begin{array}{rl}
I & =\int_{0}^{1} \cos ^{-1} x d x \\
l e t x=\cos ^{-1} x & d u=\frac{-1}{\sqrt{1-x^{2}}} d x \\
d v=d x & V=x . \\
& =\left[x \cos ^{-1} x\right]_{0}^{1}+\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} d x
\end{array}
$$

$$
\text { let } u=1-x^{2}
$$

$$
\begin{aligned}
I & =\left(\left\lvert\, \cos ^{-1}\left(-0 \cos ^{-1} 0\right)-\frac{1}{2} \int_{1}^{0} \frac{d u=-2 x d x}{\sqrt{u}}\right.\right. \\
& =\frac{1}{2}\left[\frac{2}{1} u^{\frac{1}{2}}\right]_{0}^{1} \\
& =1
\end{aligned}
$$

ii) $\int_{1}^{2} x(\ln x)^{2} d x$

$$
\begin{aligned}
& I=\int_{0}^{\ln 2} e^{2} x^{u} d u \\
& I=\left[\frac{x^{2}}{2}(\ln x)^{2}\right]_{1}^{2}-\int_{-1}^{2} \frac{2 \ln x}{x} \frac{x^{2}}{2^{2}} d x \\
& =\left[\frac{2^{2}}{2}(\ln 2)^{2}-\frac{1^{2}}{2}(\ln 1)^{2}\right]^{\prime}-\int_{1}^{2} x \ln x d x . \\
& =2(\ln 2)^{2}-\left[\frac{x^{2}}{2} h x\right]_{1}^{2}+\int_{1}^{2} \frac{x^{2}}{2} \frac{d x}{x} \\
& d v=x d x \quad v^{\frac{1}{2}}=\frac{x^{2}}{2} \\
& \text { let } x=(\ln x)^{2} \operatorname{cod} u^{3}=\frac{2 \ln x}{x} d x \\
& u=\ln x \quad d u=\frac{d x}{x} \\
& d v=x d x \quad v=\frac{x^{2}}{2} \\
& =2(\ln 2)^{2}-\frac{2^{2}}{2} \ln 2+\frac{i^{2}}{2} \ln 1+\left[\frac{x^{2}}{4}\right]_{1}^{2}=2(\ln 2)^{2}-2 \ln 2+\frac{3}{4}
\end{aligned}
$$

d)

$$
\int_{\frac{1}{e}}^{e} \frac{\log _{e} x}{(1+x)^{2}} d x
$$

lel $x=\frac{1}{4}$

$$
\begin{aligned}
\log _{e} x & =\log _{e} \frac{1}{x} \\
& =-\log _{e} u
\end{aligned}
$$

$$
\begin{aligned}
& x=e, \quad u=\frac{1}{e} \\
& I=\int_{e}^{\frac{1}{e}} \frac{-\log _{e} u}{\left(1+\frac{1}{a}\right)^{2}}\left(\frac{-1}{a^{2}}\right) d u \\
& x=\frac{1}{e}, \quad u=e \text {. } \\
& =+\int_{e}^{\frac{1}{e}} \frac{\log _{e} u}{\dot{a}^{2} \frac{1}{a^{2}}(a+1)^{2}} d u \\
& =-\int_{\frac{1}{2}}^{e} \frac{\log _{e} a}{\left((+u)^{2}\right.} d u=-I \\
& 2 I=0 \\
& I=0 \text {. }
\end{aligned}
$$

Question 12
-a) $i^{\text {(}}$

$$
\begin{aligned}
x y & =c^{2} \\
y & =\frac{c^{2}}{x} \\
\frac{d y}{d x} & =\frac{-c^{2}}{x^{2}}
\end{aligned}
$$

at P

$$
\begin{aligned}
m_{1} & =-\frac{c^{2}}{\left(p p^{2}\right.} \quad \Rightarrow m_{N}=p^{2} \\
& =-\frac{1}{p^{2}}
\end{aligned}
$$

lay point -gradient

$$
y-\frac{c}{p}=p^{2}(x-c p)
$$

$$
\begin{aligned}
p y-c & =p^{3} x-c p^{4} . \\
\therefore p^{3} x-p y & =c p^{4}-c . \\
\text { so } p^{3} x-p y & =c\left(p^{4}-i\right) \text { is the equation of }
\end{aligned}
$$ the normal.

ii) $Q\left(\frac{-c}{p^{3}},-c p^{3}\right)$

Test in normal

$$
\begin{aligned}
\text { LH } & =p^{3}\left(\frac{-c}{p^{3}}\right)-p\left(-c p^{3}\right) \\
& =-c+c p^{4} \\
& =c\left(p^{4}-1\right) \\
& =R H \text { Hor }
\end{aligned}
$$

Test in hyperbola.

$$
\begin{aligned}
L H S & =\left(\frac{-c}{p^{3}}\right)\left(-c p^{3}\right) \\
& =c^{2} \\
& =R H S
\end{aligned}
$$

as \dot{Q} satisfies both, it is intersection of normal and hyperbola.
in) as $P \bar{p}\left(c p, \frac{c}{p}\right)+$
R is $\left(-c p,-\frac{c}{p}\right)$

$$
\begin{aligned}
M_{P R} \cdot M_{Q R} & =\frac{\frac{c}{p}-\left(-\frac{c}{p}\right)}{c p-(-c p)} \cdot \frac{-c p^{3}-\left(\frac{c}{p}\right)}{\left.\frac{-c}{p^{3}-(c p}\right)} \\
& =\frac{Q c}{p}\left(\frac{1}{2<p}\right) \cdot \frac{-c p^{4}+c}{-c+c p^{4}} \cdot \frac{\frac{1}{p}}{\frac{1}{p^{3}}} \\
& =\frac{1}{p^{2}}-p^{2} \\
& =-1
\end{aligned}
$$

$$
P R \perp Q R
$$

b)

i) $\ln \triangle T P R$ and $\triangle P Q P$
$\angle T=\angle T$ (common)
$\angle T P R=\angle T Q P$ (angle inctiernate segment)
$\therefore \triangle T P R \| \triangle T Q P$ (equiangular)
and $\angle T R P=\angle T Q$ (corresponding angles of swimmer fringes)
ii) as $\angle S X P=\angle S Y P=90^{\circ}$, S,P, $4, x$ are concyctic, Hence, spulx is a cyglic' quadrilateral with diameter SP.
iii) $\angle P 4 X=180^{\circ}-\angle P 5 x$ (opposite ongles of cydic

Simitrly in SPRQ.

$$
\angle P R Q=180^{\circ}-\angle P S X
$$

Hence $\angle P R Q=\angle P M X$.
c.)

$$
\begin{aligned}
& \omega=\frac{1}{z-2}+\frac{3}{2} \quad \frac{1}{z-2}=\frac{2 \omega-3}{2} \\
& -|z-2|=\left|\frac{2}{2 w-3}\right| \\
& =\frac{1}{z-2} \frac{(\overline{z-2})}{(\overline{z-2})}+\frac{3}{2} \\
& =\frac{x-2-i y}{|z-2|}+\frac{3}{2} \\
& 3=\left|\frac{2}{2 x-3+2 i y}\right| \\
& \frac{3}{2}=\left|\frac{2 x-3}{(2 x-3)^{2}-(2 y)^{2}}=\frac{2 i y}{(2 x-3)^{2}-(2 y)^{2}}\right| \\
& \frac{9}{4}=\frac{(2 x-3)^{2}+\left(2 y^{2}\right)^{2}}{\left((2 x-3)^{2}+(2 y)^{2}\right)^{2}} \\
& (2 x-3)^{2}+(2 y)^{2}=\frac{4}{9} \\
& \left(x-\frac{3}{2}\right)^{2}+y^{2}=\frac{1}{9} .
\end{aligned}
$$

Question B
a)
) $y=f\left(x^{2}\right)$

b)

C

b). $\quad \begin{aligned} y & =x^{2}-4 x \\ & =x(x-4)\end{aligned}$
x-ints $x=0,4$.
y-int 0 .

c)
$z_{1}=1-i, z_{2}=2 z_{1}, z_{3}=-2 l z_{1}$.
III)

10)

Question 14

$$
\text { a) } \begin{gathered}
(x) P(x)=x^{4}+2 x^{3}-7 x^{2}-20 x-12 \\
P^{\prime}(x)=4 x^{3}+6 x^{2}-14 x-20
\end{gathered}
$$

test for roots in $P^{\prime}(x)$

$$
\begin{aligned}
P^{\prime}(2) & =4(2)^{3}+6(2)^{2}-14(2)-20 \\
& =8 \\
P^{\prime}(-2) & =4(-2)^{3}+6(-2)^{2}-14(-2)-20 \\
& =0
\end{aligned}
$$

tent $x=2$ is $P(x)$

$$
\begin{aligned}
P(-2)^{2} & =(-2)^{2}+2(-2)^{3}-7(-2)^{2}-2(-2)-12 \\
& =0
\end{aligned}
$$

$\therefore x=-2$ is the double root as it

$$
\begin{gathered}
\text { satisfies } P(x)=0 \text { and } P^{\prime}(-x)=0 \\
\begin{array}{c}
\left.x^{2}-2 x-3 x+7\right) \\
\frac{x^{4}+2 x^{3}-7 x^{2}-20 x-12}{x^{4}-4 x^{3}+4 x^{2}} \\
-2 x^{3}-1 x^{2}-20 x \\
-3 x^{2}-8 x \\
-3 x^{2}-12 x-12 \\
-3 x^{2}-\frac{12 x-12}{0}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
\therefore x^{4}+2 x^{3}-7 x^{2}-20 x-12 & =(x+2)^{2}\left(x^{2}-2 x-3\right. \\
& =(x+2)^{2}(x-3)(x+1) \\
\therefore(x+2)^{2}(x-3)(x+1) & =0 \\
x & =-2,-1,3 \text {. is the solution. }
\end{aligned}
$$

b) $x^{3}+p x+5=0$ roots are α, β, γ.
i)

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\
& =\left(\frac{-0}{1}\right)^{2}-2\left(\frac{p}{1}\right) \\
& =-2 p
\end{aligned}
$$

ii)

$$
\begin{aligned}
\lambda^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2} & =(\alpha \beta)^{2}+(\beta \gamma)^{2}+(\gamma \alpha)^{2} \\
& =(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}-2(\alpha \beta \cdot \beta \gamma+\beta \gamma \cdot \gamma \alpha+\gamma \alpha \alpha \beta) \\
& =(\alpha \beta-\beta \gamma+\gamma \alpha)^{2}-2 \alpha \beta \gamma(\alpha \alpha \beta+\gamma) \\
& =(p)^{2}-2\left(\frac{-5}{1}\right)(0) \\
& =p^{2}
\end{aligned}
$$

iii) roots $\frac{\alpha}{\beta \gamma}, \frac{\beta}{\gamma \alpha}, \frac{\gamma}{\alpha \beta}$.
sum of roots:

$$
\begin{aligned}
\frac{\alpha+\beta}{\beta \gamma}+\frac{\gamma}{\gamma \alpha \beta} & =\frac{\alpha^{2}+\beta^{2}+\gamma^{2}}{\alpha \beta \gamma} \\
& =\frac{-2 p}{-5} \\
& =\frac{2 p}{5}
\end{aligned}
$$

sum 22 of roots:

$$
\begin{aligned}
& \frac{\alpha}{\beta \gamma} \cdot \frac{\beta}{\gamma \alpha}+\frac{\beta}{\gamma \alpha} \cdot \frac{\gamma}{\alpha \beta}+\frac{\gamma}{\alpha b} \cdot \frac{\alpha}{\beta \gamma} \\
= & \frac{1}{\gamma^{2}}+\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}} \\
= & \frac{\alpha^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha}{\alpha^{2} \beta^{2} \gamma^{2}} \\
= & \frac{p^{2}}{(-5)^{2}} \\
= & \frac{p^{2}}{25}
\end{aligned}
$$

product of roots:

$$
\begin{aligned}
\frac{\alpha}{\beta \gamma} \cdot \frac{\beta}{\gamma \alpha} \cdot \frac{\gamma}{\alpha \beta} & =\frac{1}{\alpha \beta \gamma} \\
& =\frac{1}{(-5)} \\
& =-\frac{1}{5}
\end{aligned}
$$

polynomial is

$$
\begin{aligned}
& x^{3}+\left(\frac{-2 p}{5}\right) x^{2}+\frac{p^{2}}{25} x+\left(\frac{1}{5}\right)=0 . \\
& -25 x^{3}-10 p x^{2}+p^{2} x+5=0
\end{aligned}
$$

is the polynomial with rods $\frac{\alpha}{\beta \gamma}, \frac{\beta}{\gamma \alpha}, \frac{\gamma}{\alpha \beta}$
c) $\quad x^{4}+2 x^{3}+x^{2}-1=0$
as $-\frac{1}{2}+i \frac{\sqrt{3}}{2}$ is a root, so is $-\frac{1}{2}-i \frac{\sqrt{3}}{2}$.

$$
\begin{aligned}
& \left(x-1\left(-\frac{1}{2}+e \frac{\sqrt{3}}{2}\right)\right)\left(x-\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)\right) \\
& \quad=\left(\left(x+\frac{1}{2}\right)-\frac{i \sqrt{3}}{2}\right)\left(\left(x+\frac{1}{2}\right)+\frac{i \sqrt{3}}{2}\right) \\
& \left.\quad=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right) \\
& =x^{2}+x+\frac{1}{4}+\frac{3}{4}
\end{aligned}
$$

$=x^{2}+x+1$ is a factor of polynomial

$$
\begin{aligned}
& 0-x^{2}+x+1 \frac{x^{2}+x-1}{x^{4}+2 x^{3}+x^{2}-1} \\
& \frac{x^{4}+\frac{x^{3}+x^{2}}{x^{3}}}{x^{3}+} \\
& \frac{x^{3}+\bar{x}^{2}+\dot{x}}{-x^{2}-x-i} \\
& \frac{-x^{2}-x-1}{0} \\
& \therefore\left(x^{2}+x+1\right)\left(x^{2}+x-1\right)=0 \\
& x^{2}+x-1=0 \\
& x=\frac{-1 \pm \sqrt{1^{2}-4(1)(-1)}}{24)} \\
& =\frac{-1}{2} \pm \frac{\sqrt{5}}{2} \\
& \therefore x=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2},-\frac{1}{2} \pm \frac{\sqrt{5}}{2}
\end{aligned}
$$

d) $\quad \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

$$
\begin{aligned}
A & =\frac{1}{2} b L \\
& =\frac{1}{2} \times 2 y \times \sqrt{3} y \\
& =\sqrt{3} y^{2}
\end{aligned}
$$

$$
\begin{aligned}
S V & =\sqrt{3} y^{2} \delta x \\
& =\sqrt{3} \frac{4}{9}\left(9-x^{2}\right) \delta x \\
V & =\lim _{8 x 0} \sum_{x=-3}^{3} \frac{4 \sqrt{3}}{9}\left(9-x^{2}\right)^{2} \delta x \\
& =\frac{4 \sqrt{3}}{7} \int_{-3}^{3}\left(9-x^{2}\right) d x \\
& =\frac{4 \sqrt{3}}{9} 2 \int_{0}^{3}\left(9-x^{2}\right) d x \\
& =\frac{8 \sqrt{3}}{9}\left[9 x-\frac{x^{3}}{3}\right]_{0}^{3} \\
& =\frac{8 \sqrt{3}}{9}\left(9(3)-\frac{3^{3}}{3}-9(0)+\frac{0^{3}}{3}\right) \\
& =\frac{8 \sqrt{3}}{9}(27-9)^{3} \\
& =16 \sqrt{3}\left(4 n i+s^{3}\right.
\end{aligned}
$$

$$
f(x)=9-x^{2} \text { is suen }
$$

Question 15.
a)

$x+2 x+2 x$

$$
\begin{aligned}
\delta A & =\pi\left[(x-2+\delta x)^{2}-(x-2)^{2}\right] \\
& =\pi\left[(x-2)^{2}+2(x-2) \delta x+\delta x^{2}-(x-2)^{2}\right] \\
& =2 \pi(x-2) \delta x \\
\delta V & =2 \pi(x-2) \delta x \cdot y \\
& =2 \pi(x-2) \delta x \cdot \frac{1}{x^{2}-1} \\
& =2 \pi \frac{x-2}{x^{2}-1} \cdot \delta x
\end{aligned}
$$

$$
\begin{aligned}
V & =\lim _{\delta x \rightarrow 0} \sum_{x=2}^{4} 2 \pi \frac{x-2}{x^{2}-1} \delta x \\
& =2 \pi \int_{2}^{4} \frac{x-2}{x^{2}-1} d x
\end{aligned}
$$

ii) $V=\pi \int_{2}^{4} \frac{2 x}{x^{2}-1} d x-4 \pi \int_{2}^{4} \frac{1}{(x-1)(x+1)} d x$.

$$
\begin{aligned}
\frac{1}{(x-1)(x+1)} & \equiv \frac{A}{x-1}+\frac{B}{x+1} \\
& \equiv A(x+1)+B(x-1) \Rightarrow
\end{aligned} \begin{array}{ll}
x=1, & A=\frac{1}{2} \\
& x=-1, \\
B=-\frac{1}{2}
\end{array}
$$

$$
\begin{aligned}
V & =\pi \int_{2}^{4} \frac{2 x}{x^{2}-1} d x-\frac{4 \pi}{2} \int_{2}^{4}\left(\frac{1}{x-1}-\frac{1}{x+1}\right) d x \\
& =\pi\left[\ln \left(x^{2}-1\right)\right]_{2}^{4}-2 \pi[\ln (x-1)-\ln (x+1)]_{2}^{4} \\
& =\pi(\ln (5-\ln B)-2 \pi(\ln 3-\ln (5)-(\ln 1(x-\ln 3)) \\
& =\pi \ln 5-2 \pi(2 \ln 3-\ln 5) \\
& =\pi\left(\ln 5-\ln \frac{9^{2}}{5^{22}}\right) \\
& \left.=\pi\left(\ln \cdot \frac{5^{3}}{3^{4}}\right)\right)
\end{aligned}
$$

b). $a>0, b>0, c>0 \quad a+b+c=1$.

$$
\begin{aligned}
& (x-y)^{2} \geqslant 0 \\
& x^{2}-2 x y+y^{2} \geqslant 0 \\
& \therefore \quad x^{2}+y^{2} \geqslant 2 x y
\end{aligned}
$$

let $x=\sqrt{a}$ and $y=\sqrt{b}$.

$$
\text { so } a+b \geqslant 25 a b
$$

similarly, $b+c \geqslant 2 \sqrt{b c}$

$$
c+a \geqslant 2 \sqrt{c} a .
$$

1x"x゙11

$$
\begin{aligned}
(a+b)(b-c)(c+a) & \geqslant 2 \sqrt[3]{a b b c c a} \\
& \geqslant 8 \sqrt{a^{2} b^{2} c^{2}} \geqslant 8 a b c
\end{aligned}
$$

$i 1$

$$
\begin{aligned}
a+b+c & =1 \\
\text { so } a+b & =1-c \\
b+c & =1-a \\
c+a & =1-b \\
\text { so }(1-a)(1-b)(1-c) & =(b+c)(c+a)(a+b) \\
& \geqslant 8 a b c .
\end{aligned}
$$

c). i)

$$
\begin{aligned}
\text { LHS } & =\int_{0}^{a} F(x) d x \\
& =[f(x)]_{0}^{a} \text { where } \frac{d}{d x} f(x)=f(x) \\
& =f(a)-f(0) \\
R H S & =\int_{0}^{a} F(a-x) d x \\
& =[(-1) f(a-x)]_{0}^{a} \\
& =-f(a-a)-(-f(a-0)) \\
& =-f(0)+f(a) \\
& =\text { LHS }
\end{aligned}
$$

ii)

$$
\begin{aligned}
I & =\int_{0}^{\frac{\pi}{4}} \log _{e}(1+\tan \theta) d \theta \\
& =\int_{0}^{\frac{\pi}{4}} \log _{e}\left(1+\tan \left(\frac{\pi}{4}-\theta\right)\right) d \theta \quad \text { using (1) } \\
& =\int_{0}^{\frac{\pi}{4}} \log _{e}\left(1+\frac{\tan \frac{\pi}{4}-\tan \theta}{1+\tan \frac{\pi}{4} \cdot \tan \theta}\right) d \theta .
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}} \log _{e}\left(1+\frac{T-\tan \theta}{1+\tan \theta}\right) d \theta \\
& =\int_{2}^{\frac{\pi}{4}} \log _{e}\left(\frac{2}{1+\tan \theta}\right) d \theta . \\
& =\int_{0}^{\frac{\pi}{4}} \log _{e} 2 d \theta-\int_{0}^{\frac{\pi}{4}}(1+\tan \theta) d \theta . \\
& =\int_{0}^{\frac{\pi}{4}} \log _{e} 2 d \theta-I \\
2 I & =[\log 2 \times \theta]_{0}^{\frac{\pi}{4}} \\
I & =\frac{\pi}{8} \ln 2 .
\end{aligned}
$$

Questran 16
a) 12! wags of arranging all boeks 3! for each package, 4!. packagos

$$
\begin{aligned}
\operatorname{\omega og} s & =\frac{12!}{(3!)^{4}-4!} \\
& =15400
\end{aligned}
$$

b) each trapezia wodth is $\frac{n-1}{n-1}=1$

$$
\begin{aligned}
\int_{1}^{n} \ln x d x & =\frac{1}{2}[\ln (t \ln (n)+2(\ln 2+\ln 3+\ln 4+\ldots+\ln (n-1))] \\
& =\frac{1}{2}[0+\ln (n)+2 \ln (2 \cdot 3 \cdot 4+\cdots(n-1))]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}[\ln n+2 \ln (n-1)!] \\
& =\frac{1}{2}[2 \ln (n!)-\ln (n)] \\
& =\ln (n!)-\frac{1}{2} \ln (n)
\end{aligned}
$$

(1.)

$$
\begin{aligned}
\frac{d}{d x}(x \ln x-x) & =x \cdot \frac{1}{x}+1 \cdot \ln x-1 \\
& =\ln x \\
\int_{1}^{n} \ln x d x & =[x \ln x-x]_{1}^{n} \\
& =n \ln (n)-n-(1 \cdot \ln (1)-1) \\
& =n \cdot \ln (n)-n+1
\end{aligned}
$$

iii) as $y=\ln x$ is concave down, the sum of areas of tropezur will be less that the exsect ocrea of under the curve.

Hence

$$
\begin{aligned}
\ln (n!)- & \frac{1}{2} \ln (n)<n \cdot \ln (n)-n+1 \\
\ln (n!) & <\frac{1}{2} \ln (n)+n(\ln (n)-n+1 \\
& <\left(n+\frac{1}{2}\right) \ln (n)-n+1
\end{aligned}
$$

c) i)

$$
\begin{aligned}
& I_{n}=\int_{1}^{e}(1-\ln x)^{n} d x . \\
& l e t a=(1-\ln x)^{n}, \quad d u=n(1-\ln x)^{n-1} \cdot\left(-\frac{1}{x}\right) d x \\
& d v=d x \quad \\
& I_{n}=[x(1-\ln x)]_{1}^{e}-\int_{1}^{e} x \cdot n\left((-\ln x)^{n-1} \cdot\left(-\frac{1}{x}\right) d x\right. \\
&=\left[e((-\ln e)-1(1-\ln 1))_{1}+n \int_{1}^{e}(1-\ln x)^{n-1} d x\right. \\
&=e(1-1)-1(1-0)+n I_{n-1} \\
&=-1+n I_{n-1}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& I_{3}=-1+3 I_{2} \\
& I_{2}=-1+2 I_{1} \\
& I_{1}=-1+I_{0} \\
& I_{0}=\int_{1}^{e}(1-\ln x)^{0} d x \\
&=[x]_{1}^{e} \\
&=e-1 \\
& I_{1}=-1+e-1 \\
&=e-2 \\
& I_{2}=-1+2(e-2) \\
&=2 e-5 \\
& I_{3}=-1+3(2 e-5) \\
&=6 e-16
\end{aligned}
$$

iii) Shoo $\frac{I_{n}}{n!}=e-\sum_{r=0}^{n} \frac{1}{r!}, n=1,23, \ldots$

Prose true for $n=1$

$$
\begin{aligned}
& \text { IHS }=\frac{I}{1!} \\
&=\frac{e-2}{1} \\
&=e-2 \\
&=e-\left(\frac{1}{0!}+\frac{1}{1!}\right) \\
&=e-\left(\frac{1}{1}+\frac{1}{1}\right) \\
&=e-2 \\
&=\text { LH S }
\end{aligned}
$$

\therefore True for $n=1$
Assumetrae for $n=k$.

$$
\therefore \frac{I_{k}}{k!}=e-\sum_{k=0}^{k} \frac{1}{r!}
$$

Prove true for $n=k+l$

$$
\begin{aligned}
L H S & =\frac{I_{k+1}}{(k+1)!}=e-\sum_{i=0}^{k+1} \frac{1}{r!} \\
& =\frac{-1+(k+1) I_{n}}{(k+1)!} \\
& =\frac{-1}{(k+1)!}+\frac{I_{n}}{k!} \\
& =\frac{-1}{(k+1)!}+e-\sum_{r=0}^{k} \frac{1}{r!} \\
& =e-\left(\sum_{k=0}^{k} \frac{1}{r!}+\frac{1}{(k+1)!}\right) \\
& =e-\sum_{r=0}^{k+1} \frac{1}{r!}=\text { RUS }
\end{aligned}
$$

Sta by auction. statement istria-

