Hunters Hill High School

Extension 2, Mathematics

Trial Examination, 2018

Hunters Hill

High School

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- The marks for each question are shown on the paper
- Show relevant mathematical reasoning and/or calculations in Questions 11-16

Total Marks: 100

Section I

Page 3-6
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 7-13

 90 marks- Attempt Questions 11-16
- Begin a new sheet for each question
- Allow about 2 hour 45 minutes for this section

Section I

Total marks - 10
Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

1. Which of the following ellipses has focus $(1,0)$ and directrix $x=4$?
(A) $\quad \frac{x^{2}}{3}+\frac{y^{2}}{4}=1$
(B) $\quad 4 x^{2}+9 y^{2}=36$
(C) $\quad 3 x^{2}+4 y^{2}=12$
(D) $\quad \frac{x^{2}}{4}+\frac{y^{2}}{\sqrt{3}}=1$
2. Find $\operatorname{Arg} z_{1}$ where $z_{1}=(-1+\sqrt{3} i)^{8}$
(A) $\frac{16 \pi}{3}$
(B) $\quad \frac{2 \pi}{3}$
(C) $-\frac{2 \pi}{3}$
(D) $\quad-\frac{\pi}{3}$
3. $\quad P(x)$ is a polynomial of degree 4 with real coefficients. $P(x)$ has $x=2$ as a root of multiplicity 2 , and $x=-i$ as a root.
Which of the following expressions is a factorised form of $P(x)$ over the complex numbers?
(A)

$$
P(x)=(x-2)^{2}(x-1)(x+1)
$$

(B)

$$
P(x)=(x+2)^{2}(x-1)^{2}
$$

(C)

$$
P(x)=(x-2)^{2}(x-i)(x+i)
$$

(D)

$$
P(x)=(x+2)^{2}(x-i)(x+i)
$$

4. The points $P(a \cos \theta, b \sin \theta)$ and $Q(a \cos \phi, b \sin \phi)$ lie on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the chord $P Q$ subtends a right angle at $(0,0)$.
Which of the following expressions is correct?
(A) $\tan \theta \cdot \tan \phi=\frac{a^{2}}{b^{2}}$
(B) $\quad \tan \theta \cdot \tan \phi=-\frac{a^{2}}{b^{2}}$
(C) $\tan \theta \cdot \tan \phi=\frac{b^{2}}{a^{2}}$
(D) $\tan \theta \cdot \tan \phi=-\frac{b^{2}}{a^{2}}$
5. Find $\int x \ln x d x$
(A) $1-x \ln x+c$
(B) $1-\int \ln x d x+c$
(C) $\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+c$
(D) $\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+c$
6. A particle of mass m is undergoing circular motion in a circle of radius r with angular velocity ω. Let the particle's tangential velocity be V and let its tangential acceleration be a.
Which of the following expressions is correct?
(A) $\quad V=r \omega$
(B) $\quad V=m r \omega$
(C) $\quad a=r \omega^{2}$
(D) $\quad a=m r \omega^{2}$
7. The diagram shows a sketch of the curve $y=x f(x)$.

Which of the following best represents $y=f(x)$.
(A)

(B)

(C)

(D)

8. Find $\int \cos x \sin ^{5} x d x$
(A) $\frac{1}{6} \cos ^{6} x$
(B) $\quad-\frac{1}{6} \cos x \sin ^{7} x$
(C) $6 \sin ^{6} x$
(D) $\frac{1}{6} \sin ^{6} x$
9. A particle of mass m is moving in a straight line under the action of a force

$$
F=\frac{m}{x^{3}}(6-10 x)
$$

Which of the following is an expression for it's velocity in any position, if the particle starts from rest at $x=1$?
(A) $\quad v= \pm \frac{1}{x} \sqrt{-6+5 x+x^{2}}$
(B) $\quad v= \pm \frac{2}{x} \sqrt{-6+5 x+x^{2}}$
(C) $\quad v= \pm x \sqrt{-6+5 x+x^{2}}$
(D) $\quad v= \pm 2 x \sqrt{-6+5 x+x^{2}}$
10. If $f(x)=x(x-3)$, which of the following graphs best represents the curve $y^{2}=f(x)$
(A)

(B)

(C)

(D)

End of Section I

Section II

Total marks - 90
Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Begin each question on a NEW sheet of paper.

Question 11 (15 marks) Use a NEW sheet of paper.
a. Find $\int \frac{d x}{x^{2}+2 x+3}$
b. Find $\int \cos ^{5} x d x$
c. Using the substitution $t=\tan \frac{x}{2}$, or otherwise, evaluate

$$
\int_{0}^{\frac{\pi}{4}} \frac{d x}{1+\cos x}
$$

d. Find the equation of the tangent to the curve $2 x^{2}+2 x y-y^{2}+1=0$ at the point (1,3).
e. Sketch, on separate Argand diagrams, the locus of all points z such that:
i. $\quad \arg Z=\frac{\pi}{6}$
ii. $\quad \arg \bar{z}=\frac{\pi}{6}$ 1
iii. $\quad \arg (-z)=\frac{\pi}{6}$ 1

End of Question 11

Question 12 (15 marks) Use a NEW sheet of paper.
a. If $z=5-2 i$, find in the form $x+i y$:
i. $\quad z^{2}$
ii. $z+2 \bar{z}$

iii. $\frac{i}{z}$

b. The roots of the polynomial equation $2 x^{3}-3 x^{2}+4 x-5=0$ are α, β and γ. Find the polynomial equation that has roots:
i. $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$
ii. $\quad 2 \alpha, 2 \beta$ and 2γ
c. Find the exact values of x and y, such that $(x+i y)^{2}=7-24 i$, where x and y are real.
d.
i. Find real numbers a and b such that

$$
\frac{x-4}{x^{2}+5 x+4}=\frac{a}{x+4}+\frac{b}{x+1}
$$

ii. Hence evaluate

$$
\int_{2}^{4} \frac{x-4}{x^{2}+5 x+4} d x
$$

End of Question 12

Question 13 (15 marks) Use a NEW sheet of paper.
a. The base of a solid is the segment of the parabola $x^{2}=4 y$ cut off by the line $y=3$. Cross-sections taken perpendicular to the axis of the parabola are rectangle, whose heights are twice their base.

Find the volume of the solid.
b. The diagram shows the graph of $y=f(x)$.

Draw separate one-third page sketches of the graphs of the following:
i. $\quad y=|f(x)|$
ii. $\quad y^{2}=f(x)$
c. Find the cube roots of $1-i$.
d. i. $\quad I_{n}=\int x^{n} e^{a x} d x$, where a is a constant.

$$
\text { Prove that } I_{n}=\frac{x^{n} e^{a x}}{a}-\frac{n}{a} I_{n-1} .
$$

ii. Hence find the value of $\int_{0}^{1} x^{3} e^{2 x} d x$.

Question 14 (15 marks) Use a NEW sheet of paper.
a. A circular flange is formed by rotating the region bounded by the curve $y=\frac{5}{x^{2}+1}$, the x-axis and the lines $x=0$, and $x=3$, through one complete revolution about the line $x=10$.
(All measurements are in centimetres)

i. Use the method of cylindrical shells to show that the volume $V \mathrm{~cm}^{3}$ of the flange is given by

$$
V=10 \pi \int_{0}^{3} \frac{10-x}{x^{2}+1} d x
$$

ii. Find the volume of the flange correct to the nearest cm^{3}.
b. $\quad P\left(3 p, \frac{3}{p}\right)$ and $Q\left(3 q, \frac{3}{q}\right)$ are points on different branches of the hyperbola $x y=9$.
i. Find the equation of the tangent at P.
ii. \quad Find the point of intersection, T, of the tangents at P and Q.
iii. If the chord $P Q$ passes through the point $(0,2)$, find the locus of T.
iv. Find a restriction on the locus of T.
c. On an Argand diagram, sketch the region described by the inequality

$$
\left|1+\frac{1}{z}\right| \leq 1
$$

Question 15 (15 marks) Use a NEW sheet of paper.
a. The polynomial $P(x)=x^{5}+2 x^{2}+m x+n$ has a double zero at $x=-2$.

Find the product of the other three zeros.
b. In the diagram below, $A B$ is a common tangent and $X Y$ is a common chord to the two circles.

Extend $B X$ to meet $A Y$ at Q and extend $A X$ to meet $B Y$ at P.

i. Copy the diagram onto your answer sheet, showing all the information given.
ii. Prove that $P X Q Y$ is a cyclic quadrilateral.
iii. Prove that $A B$ is parallel to $P Q$.
iv. Prove that $X Y$ bisects $P Q$.

Question 15 is continued on the next page

c. A circular drum is rotating with uniform angular velocity round a horizontal axis. A particle P is rotating in a vertical circle, without slipping, on the inside of the drum.

The radius of the drum is r metres and its angular velocity is ω radians/second. Acceleration due to gravity is g metres $/$ second 2, and the mass of P is m kilograms.

The centre of the drum is O, and $O P$ makes an angle θ to the horizontal.

The drum exerts a normal force N on P, as well as a frictional force F, acting tangentially to the drum, as shown in the diagram.

By resolving force perpendicular to, and parallel to, $O P$, find an expression for $\frac{F}{N}$ in terms of the data.

End of Question 15

Question 16 (15 marks) Use a NEW sheet of paper.
a. A particle is fired vertically upwards with an initial velocity, V metres per second. The particle is subject to air resistance proportional to its speed and a downward gravitational force, g.
The equation of motion of the particle is $\ddot{x}=-g-k v$, where $k>0$.
Show that the particle reaches a maximum height, H, given by:

$$
H=\frac{V}{k}-\frac{g}{k^{2}} \ln \left(1+\frac{k V}{g}\right)
$$

b. i. Prove that $\frac{1}{2 p+1}+\frac{1}{2 p+2}>\frac{1}{p+1}$, for all $p>0$
ii. Consider the statement

$$
\psi(m): \frac{1}{(m+1)}+\frac{1}{m+2}+\cdots+\frac{1}{2 m} \geq \frac{37}{60}
$$

Show, by mathematical induction, that $\psi(m)$ is true for all integers $m \geq 3$.
iii. The diagram below shows the graph of $x=\frac{1}{t}$, for $t>0$.

By comparing areas, show that $\int_{m}^{m+1} \frac{1}{t} d t>\frac{1}{m+1}$.
iv. Hence, without using a calculator, show that $\log _{e} 2>\frac{37}{60}$.

End of paper

MXX TRIAL 2018-HHHS

$$
1 . C \quad \begin{aligned}
& a\left(2=1+\frac{a}{e}=4\right. \\
& a^{2}=4 \\
& a^{2}=2 \Rightarrow e=\frac{1}{2} \quad \frac{1}{4}=1-\frac{b^{2}}{4} . \\
& b^{2}=3
\end{aligned}
$$

Z \bar{C}.

$$
\frac{2 \pi}{3}-8=\frac{16 \pi}{3}
$$

$$
\text { 3. } C \quad(x-2)^{2}(x-i)(x+i)
$$

4. B

$$
\begin{aligned}
\frac{b \sin \theta-b}{a \cos \theta-0} \cdot \frac{b \sin \phi-\theta}{a \cos \phi-0} & =-1 . \\
\tan \theta \cdot \tan \theta & =\frac{-a^{2}}{b}
\end{aligned}
$$

$\overline{5 .-} \in 1$

$$
\begin{aligned}
& y=x \ln x \\
& u=\ln x \\
& d u=\frac{1}{x} d x \quad v=\frac{x^{2}}{2} \\
& \quad I==\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2 k} d x
\end{aligned}
$$

6. A
$7 \square$

8

$$
\begin{aligned}
& D \quad u=\frac{\sin x}{\cos x d x} \\
& \int u^{5} d u=\frac{u^{6}}{6}
\end{aligned}
$$

9

$$
\begin{aligned}
F & =\frac{\mu}{x^{3}}(6-10 x) \\
a & =\frac{6-10 x}{x^{3}} \\
\int \frac{v d v}{d x} & =\int \frac{6-10 x}{x^{3}} d x \\
\frac{v^{2}}{2} & =\int \frac{6 x^{-3}-10 x^{-2} d x}{} \\
& =-\frac{12 x+10}{x^{2}}+\frac{10}{x}+c \\
0 & =-12+10+c \Rightarrow c=2 \\
\frac{v^{2}}{2} & =\frac{-12}{x^{2}}+\frac{10+2}{x} \\
v^{2} & =\frac{2}{x^{2}}\left(-12+10 x+2 x^{2}\right) \\
& =\frac{4}{x^{2}}\left(-6+5 x+x^{2}\right) \\
v & \left.= \pm \frac{2}{x}\right] \cdots
\end{aligned}
$$

b.

$$
\begin{aligned}
\int & \int \cos ^{5} x d x
\end{aligned}=\int \frac{\sqrt{2}}{\cos ^{4} x \cos x d x} \sqrt{\sqrt{2}}
$$

$-c$

$$
d t=\frac{1}{2} \sec ^{2} \frac{x}{2} d x
$$

$$
\begin{aligned}
& t=\tan \frac{x}{2} \\
& \cos x=\frac{1-t^{2}}{1+t^{2}} \\
& \begin{aligned}
\vec{d} x & =\frac{2 t \cos ^{2} x}{2 d t} \\
& =\frac{2 d t}{1+t^{2}}
\end{aligned} \\
& \begin{aligned}
\vec{d} x & =\frac{2 t \cos ^{2} x}{2 d t} \\
& =\frac{2 d t}{1+t^{2}}
\end{aligned} \\
& +\underbrace{\sqrt{1+t^{2}}} \\
& =2 \int_{0}^{\frac{\pi}{4}} \frac{d x}{1+\tan x} \frac{1}{1+\frac{I+x^{2}}{1+t^{2}}} \frac{d t}{1+t^{2}} \\
& =x \int_{0}^{0} \frac{1+t^{2}}{2} \cdot \frac{d t}{x^{2}} \\
& =[t]_{0}^{+\infty \pi}=\tan \frac{\pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
& d . 2 x^{2}+2 x y \\
& \frac{d}{d x} \quad 4 x+y^{2}+1=0 \\
& \frac{d y}{d x}(2 x-2 y)=-(4 x+2 y) \\
& \frac{d y}{d x}=2 y-2 y \cdot \frac{d y}{d x}=0 \\
&=\frac{-\left(4 x^{2}+2 y\right)}{2 x-2 y} \\
&=\frac{\left(2 x^{2}+y\right)}{x-y}
\end{aligned}
$$

$$
\begin{aligned}
M & =\frac{-(2(1)+3)}{1-3} \\
& =\frac{5}{2}
\end{aligned}
$$

by pont-gradient

$$
\begin{aligned}
& y-3=\frac{5}{2}(x-1) \\
& -2 y-6=5 x-5 \\
& -5 x \cdot-2 y+1=0 \text { is tengent. }
\end{aligned}
$$

e)

ii

iii)

12 a $z=5-2 i$

$$
\text { n } \begin{aligned}
z^{2} & =(5-2 i)^{2} \\
& =25-20 i-4 \\
& =21-20 i \\
\text { ii } \begin{aligned}
\bar{z} & +2 \bar{z}
\end{aligned}=\frac{5}{\bar{z}} & =\frac{i}{5-2 i}+\frac{15+2 i}{} \times \frac{5+2 i}{5+2 i} \\
& =\frac{-2+5 i}{25+4} \\
& =-\frac{2}{29}+\frac{5 i}{29}
\end{aligned}
$$

$12 b$

$$
2 x^{3}-3 x^{2}+4 x-5=0
$$

i) $P\left(\frac{1}{x}\right): 2\left(\frac{1}{x}\right)^{3}-3\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{x}\right)-5=0$

$$
\frac{2}{x^{3}}-\frac{3}{x^{2}}+\frac{4}{x}-5=0
$$

$$
x x^{3}: \quad 2-3 x+4 x^{2}-5 x^{3}=0
$$

$\therefore 5 x^{3}-4 x^{2}+3 x-2 \Rightarrow$ has rods $\frac{1}{\alpha} \cdot \frac{1}{\beta} \cdot \frac{1}{\gamma}$.
ii) $p\left(\frac{x}{2}\right): 2\left(\frac{x}{2}\right)^{3}-3\left(\frac{x}{2}\right)^{2}+4\left(\frac{x}{2}\right)-5=0$

$$
\frac{x^{3}}{4}-\frac{3 x^{2}}{4}+2 x-5=0
$$

$$
\therefore x^{3}-3 x^{2}+8 x-20 \Rightarrow \text { has roots } 2 \times 2,2 p, 2 x \text {. }
$$

c.)

$$
(x+i y)^{2}=7-24 i
$$

$$
x^{2}-y^{2}+\operatorname{dig} y=7-24 e
$$

equating Rem M_{2}

$$
\begin{aligned}
& x^{2}-y^{2}=7 \\
& x^{4}-x^{2} y^{2}=7 x \quad-i \\
& 2 x y=-24 \quad-i
\end{aligned}
$$

subset ii int:

$$
\begin{aligned}
x^{4}-\left(\frac{-24}{2}\right)^{2} & =7 x \\
x^{4}-7 x^{2}-144 & =0 \\
\left(x^{2}-16\right)\left(x^{2}+9\right) & =0 \\
\therefore x & = \pm 4 \text { as } x^{2}-9 \\
y & =\frac{-12}{(\pm 4)} \\
& =\mp 3
\end{aligned}
$$

$\therefore \quad x=4, y=-3$ and $x=-4, y=3$ are solutions
d.

$$
\begin{aligned}
& \frac{x-4}{x^{2}+5 x+4} \equiv \frac{a}{x+4}+\frac{b}{x+1} \\
& \therefore \frac{x-4}{}=a(x+1)+b(x+4) \\
& \text { for } x-1 \\
& \text { for } x-4
\end{aligned}
$$

$$
\begin{gathered}
-8=-3 a+b(0) \Rightarrow a=\frac{8}{3} \\
\therefore a=\frac{8}{3}, b=\frac{-5}{3}
\end{gathered}
$$

$$
\text { ii. } \begin{aligned}
\int_{2}^{4} & \left(\frac{8}{3(x+4)}-\frac{5}{3(x+1)}\right) d x \\
& =\frac{1}{3}[8 \ln (x+4)-5 \ln (x+1)]_{2}^{4} \\
& =\frac{1}{3}(8 \ln 8-5 \ln 5-8 \ln 6+5 \ln 3) \\
& =-0.08422384641
\end{aligned}
$$

$B a$

$$
\begin{aligned}
7 x & \quad \delta V=32 y \cdot \delta y \\
V & =\lim _{\delta y \rightarrow 0} \sum_{y=0}^{3} 32 y \delta y \\
& =32 \int_{0}^{3} g d y \\
& =32\left[\frac{y^{2}}{2}\right]_{0}^{3}=32\left(\frac{9}{2}-\frac{0}{2}\right)=144 \mathrm{cmit}^{2}
\end{aligned}
$$

C)

$$
\begin{aligned}
& z^{3}=1-1 \\
& \therefore 5^{3} \cos 3 \theta=\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)
\end{aligned}
$$

equating mad $+\arg$

$$
\begin{aligned}
r^{3}=\sqrt{2}, \quad \cos 38 & =\operatorname{cis}\left(-\frac{\pi}{4}\right) \\
r=\sqrt{2}, & 3 \theta \\
= & -\frac{\pi}{4}+2 k \pi \\
0 & =\frac{(8 k-1) \pi}{12}
\end{aligned}
$$

for $k=0, \theta=-\frac{\pi}{2}$

$$
\begin{aligned}
& k=1, \quad \theta=\frac{7 \pi}{12} \\
& k=2, \quad \theta=\frac{\frac{15 \pi}{12}=-\frac{9 \pi}{12}}{} \\
& \therefore z=\sqrt[6]{2} \text { cis }\left(-\frac{\pi}{12}\right), \sqrt[6]{2} \text { as }\left(\frac{17}{2}\right), \sqrt[6]{2} \text { is }\left(-\frac{9 \pi}{12}\right)
\end{aligned}
$$

d) it

$$
I_{n}-\int x^{n} e^{a x} d
$$

let $u=x^{n}$

$$
d a=n x^{n-1} d x
$$

$$
\begin{aligned}
& d v=\frac{e^{a x} d x}{v}=\frac{e^{a x}}{a}
\end{aligned}
$$

$$
\begin{aligned}
I_{n} & =x^{n} \frac{e^{a x}}{a}-\int \frac{e^{a x}}{a} \cdot n x^{n-1} d x \\
& =\frac{x^{n} e^{a x}}{a}-\frac{n}{a} \int x^{n-1} e^{a x} d x \\
& =\frac{x^{n} e^{a x}}{a}-\frac{n}{a} I_{n-1}
\end{aligned}
$$

ii) let $I_{3}=\int_{0}^{1} x^{3} e^{2 x} d x$

$$
\begin{aligned}
& =\left[\frac{x^{3} e^{2 x}}{2}\right]_{0}^{1}-\frac{3}{2} I_{2} \\
& =\frac{1^{3} e^{2(1)}}{2}-\frac{3_{0}^{2(x)}}{2}-\frac{3}{2} I_{2} \\
& =\frac{e^{2}}{2}-\frac{3}{2} I_{2} \\
I_{2} & =\left[\frac{x^{2 x}}{2}\right]_{0}^{1}-\frac{2}{2} I_{1} \\
& =\frac{e^{2}}{2}-I_{1} \\
I_{1} & =\left[\frac{x e^{2 x}}{2}\right]_{0}^{1}-\frac{1}{2} I_{0} \\
& =\frac{e^{2}}{2}-\frac{1}{2} I_{0} \\
I_{0} & =\int_{0}^{1} \frac{e^{2 x} d x}{2} \\
& =\left[\frac{e^{2 x}}{2}\right]_{0}^{1} \\
& =\frac{e^{2}}{2}-\frac{1}{2} \\
& =\frac{e^{2}-1}{2} \\
I_{1} & =\frac{e^{2}}{2}-\frac{1}{2}\left(\frac{e^{2}-1}{2}\right) \\
& =\frac{e^{2}+1}{4} \quad \\
I_{0} & =\frac{e^{2}}{2}-\frac{e^{2}+1}{4} \quad I_{3}=\frac{e^{2}}{2}-\frac{3}{2}\left(\frac{e^{2}-1}{4}\right) \\
& =\frac{e^{2}-1}{4} \quad=\frac{e^{2}+3}{4}
\end{aligned}
$$

$14 a$
i)

$$
\begin{aligned}
S A & =\pi\left((10-x+\delta x)^{2}-(10-x)^{2}\right) \\
& =\pi((10-x+\delta x-(10-x))(10-x+\delta x+(10-x)) \\
& =\pi \delta x(10-x+\delta x) \\
& =2 \pi \cdot(10-x) \delta x \quad \delta x^{2} \neq 0
\end{aligned}
$$

$$
\begin{aligned}
\delta V & =2 \pi \cdot(10-x) \delta x \cdot g \\
& =2 \pi(10-x) \delta x \cdot \frac{s}{x^{2}+1} \\
V & =\lim _{\delta x \rightarrow 0} \sum_{\pi=0}^{3} \frac{10 \pi(10-x)}{x^{2}+1} \delta x \\
& =10 \pi \int_{0}^{3} \frac{10-x}{x^{2}+1} d x
\end{aligned}
$$

ii)

$$
\begin{aligned}
V & =100 \pi \int_{0}^{3} \frac{d x}{x^{2}+1}-\frac{10 \pi}{2} \int_{0}^{3} \frac{x}{x^{2}+1} d x \\
& =100 \pi\left[\tan ^{-1} x\right]_{0}^{3}-5 \pi\left[\ln \left|x^{2}+1\right|\right]_{0}^{3} \\
& =\frac{100 \pi \tan ^{-1} 3-5 \pi \ln 10}{356.2303802} \\
& =3
\end{aligned}
$$

b) i

$$
x y_{d}=9
$$

$$
\begin{aligned}
\frac{d}{d x} \cdot x \frac{d y}{d x}+y & =0 \\
\frac{d y}{d x} & =-\frac{y}{x} .
\end{aligned}
$$

at $T, \quad m=\frac{-\frac{3}{p}}{3 p}$

$$
=\frac{-1}{p^{2}}
$$

If point-gradiant

$$
\begin{aligned}
y-\frac{3}{p} & =-\frac{1}{p}(x-3 p) \\
p^{2} y-3 p & =-x+3 p \\
\therefore x+p^{2} y-6 p & =0 \quad \text { is equation of tangent af } p
\end{aligned}
$$

ii. Similarly, tangent at Q.

$$
x+q^{2} y-6 z=0 \quad-i i
$$

"inri

$$
\begin{aligned}
\left(q^{2}-p\right) g-(6 q-6 p) & =0 \\
y & =\frac{6(q-p)}{(q-p)(q+p)} \\
& =\frac{6}{q+p}
\end{aligned}
$$

Sub into \because

$$
\begin{aligned}
x+q^{2} \frac{6}{q+p}-6 q & =0 \\
x & =-\frac{6 q^{2}+6 q(q+p)}{q+p} \\
& =\frac{6 p q}{q+p}
\end{aligned}
$$

\therefore Intersector at T is $\left(\frac{6 p q}{p+q}, \frac{6}{p+q}\right)$
iii) choid $P Q$ by two-pinit formula

$$
\begin{aligned}
y-\frac{3}{p} & =\frac{\frac{3}{q}-\frac{3}{p}}{3 q-3 p} \cdot(x-3 p) \\
& =\frac{3(p-q)}{3 p q(q-p)}(x-3 p) \\
y-\frac{3}{p} & =\frac{-1}{p q}\left(x^{2}-3 p\right) \\
p q y-3 q & =-x^{2}+3 p
\end{aligned}
$$

at (0.2)

$$
\begin{aligned}
2 p q-3 q & =0^{2}+3 p \\
2 p q & =3(p+q) \\
\therefore \frac{p q}{p+q} & =\frac{3}{2}
\end{aligned}
$$

\therefore Locus of T

$$
\begin{aligned}
x & =\frac{67 q}{p+q} \\
& =6\left(\frac{3}{2}\right) \\
& =9 .
\end{aligned}
$$

P cannot have $y=2$, this gives no chord. $\left(p \neq \frac{3}{2}\right)$ \qquad

Reventanally, chord becomes tangent. to curve as Pdrops bolas

$$
g=2
$$

restriction: tyent-of $>$ pint of tangent $>$ chord.

$$
\begin{aligned}
& \frac{6 p}{p^{2}}>2 \\
& \therefore \frac{p}{p}>2
\end{aligned}
$$

hence $P><3$
C. $\quad\left[\left.1+\frac{\bar{z}}{z} \right\rvert\, \leqslant 1\right.$

$$
\left|1+\frac{1}{x+y y}\right| \leqslant 1
$$

$$
\left|\frac{x+1+l y}{x+i y}\right| \leqslant 1
$$

$$
|x+1+e y| \leqslant|x+e y|
$$

squaring

$$
\begin{align*}
(x+1)^{2}+y^{2} & \leqslant x^{2}+y \tag{2}\\
2 x+1 & \leqslant 0 \\
x & \leqslant-\frac{1}{2}
\end{align*}
$$

Q15 a $\quad P(x)=x^{5}+2 x^{2}+m x+n$.

$$
P(-2)=P^{\prime}(-2)=0
$$

$P(x)=5 x^{4}+4 x+m$
$P(2): \quad(-2)^{5}+2(-2)^{2}-2 m+n=0$

$$
P(-2): \quad 5(-2)^{4}-2(4)+m=0
$$

$$
m=-72 .
$$

from ;

$$
\begin{aligned}
8-2(-72)+n & =0 \\
n & =152
\end{aligned}
$$

product of froots:

$$
\begin{aligned}
\alpha \beta \gamma(-2)^{2} & =\frac{-n}{1} \\
4 \alpha \beta \gamma & =-152 . \\
\therefore \alpha \beta \gamma & =-38
\end{aligned}
$$

b. i.

ii). $\angle A B Q=\angle B Y X$. langk in alternate segment) simikrly,

$$
\begin{aligned}
& \angle B A P=\angle A Y X \\
& \angle B A P+\angle A D Q+\angle A Y B=180^{\circ} \\
& \therefore \quad \angle A Y X+\angle B Y X+\angle Q X P=180^{\circ} \\
& \therefore \angle Q Y P+\angle Q X P=180^{\circ}
\end{aligned}
$$

Cangle sum of trangle $A \times y=$ (vertically ops. $\angle A M B=$ CQXA)

QXPY is a cyclic quad (oppangles suppluentay)
iii) $\angle P Y Y=\angle X Q P \quad$ (angles in same segrent, cirde $X O Y P$.)

$$
\therefore \angle A B Q=\angle X Q P
$$

$P Q \| B A$ (alterrate angles equal.)
iv) Extend $4 x$ to meet $A B$ at S.
$A S^{2}=S X .57$. (square of tangent equals product ofseant Simikisly

$$
\begin{aligned}
& B S^{2}=S x \cdot 5 y \\
& \therefore H S^{2}=B S^{2}
\end{aligned}
$$

$$
=1
$$

$$
\therefore 2 T=P T
$$

and $X Y$ bisects $P Q$.
c)

perpendicular: $F-m g \cos \theta=0$ Parallel: $N+M g \sin \theta-M \min ^{2}=0$

$$
\begin{aligned}
& F=m g \cos \theta \\
& N=m \omega^{2}-m g \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
\frac{F}{N} & =\frac{m g \cos \theta}{m\left(r \omega^{2}-g \sin \theta\right)} \\
& =\frac{g \cos \theta}{1 \omega^{2}-g \sin \theta}
\end{aligned}
$$

06

$$
\begin{aligned}
\vec{x} & =-g-k v \\
\int \frac{v d v}{d x} & =-g-k v \\
-\frac{v d v}{g+k v} & =\int b \\
x & =-\int \frac{v d v}{g+k v} \\
& =-\frac{1}{k} \int \frac{k v}{g+k v} \\
& =-\frac{1}{k} \int \frac{g+k v}{}-g \frac{d v}{g+k v} \\
& =-\frac{1}{k} \int\left(\frac{1}{-} \frac{g}{g+k v}\right) d v \\
& \left.=-\frac{1}{k} \int v-\frac{g}{k} \ln (g+k v)\right)+(\\
& =-\frac{v}{k}+\frac{g}{k} \ln (g+k v)+c .
\end{aligned}
$$

- for $x=0, v=V$

$$
\begin{aligned}
& c=\frac{V}{k}-\frac{g}{k^{2}} \ln (g+k V) \\
& \text { So } x=-\frac{V}{k}+\frac{V}{k}+\frac{g}{k^{2}} \ln (g+k V)-\frac{g}{k^{2}} \ln (g+k V)
\end{aligned}
$$

for max hight, $v=0$

$$
\begin{aligned}
H & =\frac{V}{k}+\frac{g}{k^{2}} \ln (g)-\frac{g}{k^{2}} \ln (g+k V) \\
& =\frac{v}{k}-\frac{g}{k^{2}} \ln \left(\frac{g+k V}{g}\right) \\
& =\frac{v}{k}-\frac{g}{k^{2}} \ln \left(1+\frac{k v}{g}\right)
\end{aligned}
$$

b.)

$$
\begin{aligned}
& \text { if } \frac{2 p+1}{2 p+1}>\frac{1}{2 p+2} \\
& \frac{1}{2 p+2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 p+1}+\frac{1}{2 p+2}>\frac{1}{2 p+2}+\frac{1}{2 p+2} \\
&>\frac{2}{2 p+2} \\
&>\frac{1}{p+!}
\end{aligned}
$$

ii) $\psi(m): \frac{1}{m+1}+\frac{1}{m+2}+\cdots+\frac{1}{2 m} \geqslant \frac{37}{60}$

Provetiue for $m=3$

$$
\begin{aligned}
\text { LIS } & =\frac{1}{3+1}+\frac{1}{3+2}+\frac{1}{3+3} \\
& =\frac{1}{4}+\frac{1}{5}+\frac{1}{6} \\
& =\frac{37}{60}=\text { RUS } \quad \therefore \text {. Fine for } m=3
\end{aligned}
$$

Assume fire for $n=k$.

$$
\therefore \quad \frac{1}{k+1}+\frac{1}{k+2}+\frac{1}{k+3}+\cdots+\frac{1}{2 k} \geqslant \frac{37}{60}
$$

Prove tie for $n=k+1$. ie.

$$
\begin{aligned}
\text { LH } & =\frac{1}{k+e}+\frac{1}{k+2}+\frac{1}{k+3}+\cdots+\frac{1}{2 k+2} \geqslant \frac{37}{60} \\
& =\frac{1}{k+1}+\frac{1}{k+2}+\frac{1}{k+3}+\cdots+\frac{1}{2 k}+\frac{1}{2 k+1}+\frac{1}{2 k+1}+\frac{1}{2 k+2}-\frac{1}{k+1} \\
& \geqslant \frac{37}{60}+\frac{1}{2 k+1}+\frac{1}{2 k+2}-\frac{1}{k+1} \quad \text { by induction hypothés } \\
& \geqslant \frac{37}{60}+\frac{1}{k+1}-\frac{1}{k+1} \quad \text { by past (bi) } \\
& \geqslant \frac{37}{60}
\end{aligned}
$$

\therefore Statements tine, by mathematical induction.
iii) loo rectangle $<\int_{M}^{m+1} \frac{1}{t} d t<$ high rectongb
 area of low rectangle $=1 \cdot \frac{1}{m+1}$

$$
\int_{m}^{1} \frac{1}{7} d t>\frac{1}{m+1}
$$

iv)

$$
\begin{aligned}
\int_{\mu}^{2 \mu} \frac{1}{t} d t & =\int_{\mu}^{\mu+1} \frac{1}{t} d t+\int_{M+1}^{M+2} \frac{1}{t} d t+\ldots t \int_{2 M-1}^{2 \mu} \frac{1}{t} d t \\
& >\frac{1}{m+1}+\frac{1}{m+2}+\ldots+\frac{1}{\partial M} \text { from ni) } \\
& >\frac{37}{60} \text { from ii) }
\end{aligned}
$$

$$
\begin{aligned}
\text { AFso } \int_{m}^{2 m}-\frac{1}{t} d t & =[\ln t]_{m}^{2 m} \\
& =\ln 2 m-\ln m \\
& =\ln \left(\frac{2 m}{m}\right) \\
& =\log _{2} 2 \\
-\log _{2} 2 & >\frac{37}{60}
\end{aligned}
$$

