

Hunters Hill

High School

2020 Trial Examination

Mathematics Extension 2

General	Reading time -5 minutes
Instructions	Working time -3 hours Write using black pen Calculators approved by NESA may be used
	A reference sheet is provided at the back of this paper In Questions 11-16, show relevant mathematical reasoning and/or calculations
Total Marks:	Section I - 10 marks (pages 3-7) Attempt all Questions 1-10 Allow about 15 minutes for this section
	Section II - 90 marks (pages 8-13) Attempt Questions 11-16 Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Question 1-10.

1. Imagine ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{2020}$ is equal to
(A) $-2^{2020} \omega$
(B) $\quad 2^{2020} \omega$
(C) $\quad-2^{2020} \omega^{2}$
(D) $\quad 2^{2020} \omega^{2}$
2. Which of the following Argand diagrams describes the relationship defined by $\arg (z-i)=\arg (z+1)$?
(A)

(B)

(C)

(D)

3. The acceleration of a particle moving in a straight line with velocity v is given by $\ddot{x}=\frac{1}{v}$. Which of the following functions best represents v in terms of x ?
(A) $\quad v=x+\frac{1}{3}$
(B) $\quad v=\sqrt[3]{3 x+1}$
(C) $\quad v=x+1$
(D) $\quad v=e^{x}$
4. Given $\underset{\sim}{a}=\underset{\sim}{i}-\underset{\sim}{j}+2 \underset{\sim}{k}$ and $\underset{\sim}{b}=\underset{\sim}{3 i}-2 \underset{\sim}{j}+\underset{\sim}{k}$, the projection of $\underset{\sim}{a}$ onto $\underset{\sim}{b}$ is:
(A) $\quad \frac{1}{2}\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right]$
(B) $\frac{7}{6}\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right]$
(C) $\frac{1}{2}\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$
(D) $\frac{7}{6}\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$
5. If $a>b$ and $c>0$, which of the following must be true?
I. $a^{2}>b^{2}$
II. $a-c>b-c$
III. $\frac{a}{c^{2}}>\frac{b}{c^{2}}$
(A) I and II only
(B) II and III only
(C) I and III only
(D) I, II and III
6. The argand diagram below shows the complex numbers α and αz^{2}.

Which of the following best represents the positions of z and α ?
(A)

(B)

(C)

(D)

7. Which of the following expressions is equivalent to $\int_{0}^{2 a} f(x) d x$?
(A) $\int_{0}^{2 a} f(2 a-x) d x$
(B) $\int_{0}^{2 a} f(a-x) d x$
(C) $2 \int_{0}^{2 a} f(2 a-x) d x$
(D) $2 \int_{0}^{2 a} f(a-x) d x$
8. What is the contrapositive of $\neg A \Rightarrow B$?
(A) $\quad \neg B \Rightarrow \neg A$
(B) $\quad B \Rightarrow \neg A$
(C) $\quad \neg B \Rightarrow A$
(D) $B \Rightarrow A$
9. A sphere is defined by $\left|\underset{\sim}{r}-\left[\begin{array}{c}2 \\ -3 \\ 5\end{array}\right]\right|=4 \sqrt{3}$.

Which of the following points lie outside of the sphere?
(A) $(2,-3,2)$
(B) $(5,-6,4)$
(C) $(1,2,3)$
(D) $(1,0,-3)$
10. A bob on a spring moves vertically in simple harmonic motion, with equation of motion given as $x=a \sin n t$. Which of the following best describes the initial placement and motion of the bob?
(A) the motion starts at the top and moves downwards
(B) the motion starts at the bottom and moves upwards
(C) the motion starts at the centre and moves upwards
(D) the motion starts at the centre and moves downwards

End of Section I

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Answer each question in a separate writing booklet.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Begin a new Writing Booklet
(a) Find $\int \frac{d x}{x^{2}+6 x+13}$.
(b) Let $w=-\sqrt{3}+i$ and $z=1+i$
(i) Find $w z$ in the form $a+i b$.
(ii) Find w and z in mod-arg form.
(iii) Hence, find the exact value of $\sin \frac{5 \pi}{12}$.
(c) Prove that the product of two consecutive even counting numbers is a multiple of 4 .
(d) (i) Find a, b and c such that $\frac{16}{\left(x^{2}+4\right)(2-x)}=\frac{a x+b}{x^{2}+4}+\frac{c}{2-x}$.
(ii) Find $\int \frac{16}{\left(x^{2}+4\right)(2-x)} d x$.
(e) Solve $z^{2}-2 i z+2=0$.

End of Question 11

Question 12 (15 marks) Begin a new Writing Booklet
(a) (i) Prove that $a^{2}+b^{2} \geq 2 a b$.
(ii) Hence, prove that $x^{2}+y^{2}+z^{2} \geq x y+y z+z x$.
(iii) Deduce that if $x+y+z=1$, then $x y+y z+z x \leq \frac{1}{3}$.
(b) Use integration by parts to show that $\int e^{x} \cos x d x=\frac{e^{x}}{2}(\sin x+\cos x)$.
(c) Prove that $\sum_{k=1}^{n} r 2^{r}=(n-1)\left(2^{n+1}\right)+2$.
(d) Sketch the region defined by the union of

$$
\begin{gathered}
\frac{\pi}{6} \leq \arg z \leq \frac{5 \pi}{6} \\
|z-i| \geq 2
\end{gathered}
$$

(e) Suppose that $1-i=e^{a+i b}$, where $a, b \in \mathbb{R}$ and $-\frac{\pi}{2}<b<\frac{\pi}{2}$.

Find the exact values of a and b.

End of Question 12

Question 13 (15 marks) Begin a new Writing Booklet
(a) Find the angle between the vectors $\underset{\sim}{u}=(3,5,-2)$ and $\underset{\sim}{v}=(-1,2,3)$.
(b) (i) Find the square roots of $-24-10 i$.
(ii) Hence, or otherwise, solve $z^{2}-(1-i) z+6+2 i=0$.
(c) Consider the polynomial $P(z)=z^{4}+4 z^{3}+14 z^{2}+20 z+25$.
(i) It is known that $P(-1+2 i)=0$.

Show that $P^{\prime}(-1+2 i)=0$ and explain the significance of this.
(ii) Explain why $-1-2 i$ is also a root of $P(z)$.
(iii) Hence, factorise $P(z)$ over the complex numbers and then over the real.
(d) (i) Find the coordinates of P that divides the interval $A B$ in the ratio 2:3, where $A=(1,3,4)$ and $B=(-4,8,2)$.
(ii) Check the result by calculating $|\overrightarrow{A B}|$ and $|\overrightarrow{A P}|$.

End of Question 13

Question 14 (15 marks) Begin a new Writing Booklet
(a) Prove by contradiction that $\log _{3} 4$ is irrational.
(b) Use the substitution $u=e^{x}+1$ to find $\int \frac{e^{2 x}}{\left(e^{x}+1\right)^{2}} d x$.
(c) (i) Show that for $k>0$,

$$
\frac{1}{(k+1)^{2}}-\frac{1}{k}+\frac{1}{k+1}<0
$$

(ii) Use mathematical induction to prove that for all integers $n \geq 2$,

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}<2-\frac{1}{n}
$$

(d) Using the substitution $t=\tan \frac{x}{2}$, or otherwise, find

$$
\int \frac{d x}{5+3 \cos x}
$$

(e) (i) Find the vector equation of $\overrightarrow{A B}$, given $A=(4,8,3)$ and $B=(5,10,4)$
in the form $\underset{\sim}{r_{1}}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]+\lambda\left[\begin{array}{l}d \\ e \\ f\end{array}\right]$.
(ii) Find the point of intersection of $\underset{\sim}{r_{1}}$ and $\underset{\sim}{r} r_{2}=\left[\begin{array}{c}9 \\ 6 \\ 10\end{array}\right]+\mu\left[\begin{array}{c}1 \\ -4 \\ 2\end{array}\right]$.

End of Question 14

Question 15 (15 marks) Begin a new Writing Booklet
(a) Prove by the method of mathematical induction that for any positive integer $n>0$,

3

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

(b) A particle moving in simple harmonic motion has a period of π seconds. Initially the particle is at $x=2$ with a velocity of $8 \mathrm{~ms}^{-1}$.
(i) Find x as a function of t in the form $x=b \cos n t+c \sin n t$.
(ii) Find x as a function of t in the form $x=a \cos (n t-\alpha)$, where $a>0$ and $0 \leq \alpha \leq 2 \pi$.
(iii) Hence, find the amplitude and the maximum speed of the particle.
(c) $\quad O A B C$ is a parallelogram. $\overrightarrow{O A}$ is represented by the vector $\underset{\sim}{a}$ and $\overrightarrow{O C}$ is represented by the vector $\underset{\sim}{c}$.
M is the midpoint of $B C$ and N is the point on $O B$ such that $O N: N B=2: 1$.

(i) Find expressions for the following vectors, given your answers in simplest form: $\overrightarrow{O N}, \overrightarrow{O M}, \overrightarrow{A N}$ and $\overrightarrow{A M}$.
(ii) Show that the points A, N and M are collinear.

End of Question 15

Question 16 (15 marks) Begin a new Writing Booklet
(a) A skydiver jumps out of a stationary balloon and starts falling freely to Earth. She experiences gravity of $m g$ and air resistance of $\frac{m v^{2}}{360}$ upwards.

Given that down is positive, $x=t=0$ at the balloon and that $g=9.8 \mathrm{~ms}^{-2}$,
(i) Show that $\ddot{x}=g-\frac{v^{2}}{360}$ and find her terminal velocity.
(ii) Show that $x=180 \ln \left(\frac{360 g}{360 g-v^{2}}\right)$ and find the distance fallen when the skydiver reaches $50 \mathrm{~ms}^{-1}$.
(iii) Find the time taken for the skydiver to reach this speed.
(b) Let $I_{n}=\int_{0}^{\frac{1}{2}} \frac{1}{\left(1+4 x^{2}\right)^{n}} d x$, where n is a positive integer.
(i) Find the value of I_{1}.
(ii) Using integration by parts, show that $I_{n}=\frac{2 n I_{n+1}}{2 n-1}+\frac{1}{2^{n+1}(1-2 n)}$.

$$
\left(\text { Hint: } \frac{m}{(1+m)^{n+1}}=\frac{1+m-1}{(1+m)^{n+1}}\right)
$$

(iii) Hence, evaluate $I_{3}=\int_{0}^{\frac{1}{2}} \frac{1}{\left(1+4 x^{2}\right)^{3}} d x$.

End of Examination

$$
\text { MXX TRIAL - HAltS } 2020 \text { - SonuTans }
$$

Q1.

$$
\left.\begin{array}{rl}
& \left(1+\omega-\omega^{2}\right)^{2020} \\
= & \left(1+\omega+\omega^{2}-2 \omega^{2}\right)^{2020} \\
= & \left(-2 \omega^{2}\right)^{2000} \\
= & 2^{200} \omega^{2040} \\
= & 2^{200} \omega^{2} \\
& 3) 4346 \\
\hline 0^{\prime} 4^{3} 0
\end{array}\right] .
$$

Q2.

$$
\arg (z-i)=\arg (z+1)
$$

arg of z from e same as from - 1

Q3

$$
\ddot{x}=\frac{1}{\sqrt{v}}
$$

(B) $\int v^{2} d v=\int d x$.

$$
\frac{y^{3}}{3}=x+c
$$

Q4

$$
\begin{aligned}
x^{0} j_{k} a & =\left(\frac{a \cdot b}{b \cdot b}\right) b \\
& =\frac{1(3)-1(-2)+2(1)}{3^{2}+(-2)^{2}+1^{2}}\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right] \\
& =\frac{7}{14}\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]
\end{aligned}
$$

OS

$$
a>b \Rightarrow X a^{2}>b^{2} \text { only if } a>b>0
$$

$$
\Rightarrow a-c>b-c
$$

Q6 (D) modulus must be closer to and.

QT
(A)

$$
\begin{aligned}
\int_{0}^{2 a} f(2 a-x) d x & =-[F(2 a-x)]_{2}^{2 x} \\
& =-F(2 a-2 a)+F(2 a) \\
& =F(2 a)-F(0)
\end{aligned} \begin{aligned}
\int_{0}^{2 a} f(x) d x=F(2 a)-F(0)
\end{aligned}
$$

Q 8.
(C) $\quad \begin{aligned} \neg B & \Rightarrow \neg(\neg A) \\ & \Rightarrow A .\end{aligned}$
$Q 9$
check distance from $(2,-3,5)$
(D)

A: $d^{2}=0^{2}+0^{2}+3^{2}=9$
B: $\quad d^{2}=3^{2}+(3)^{2}+r^{2}=19$
C: $d^{2}=\left(1^{2}+(-5)^{2}+2^{2}=30\right.$
$D: d^{2}=1^{2}+(-3)^{2}+8^{2}=74$.

QuO.
C

$$
\text { Qll a) } \begin{aligned}
\int \frac{d x}{x^{2}+6 x+13} & =\int \frac{d x}{x^{2}+6 x+9+4} \\
& =\int \frac{d x}{(x+3)^{2}+4} \\
& =\frac{1 \tan ^{-1} \frac{x+3}{2}+c}{2}
\end{aligned}
$$

b.)

$$
\begin{aligned}
\omega & =-\sqrt{3}+z=1+i \\
\omega z & =(\sqrt{3}+i)(1+i) \\
& =-\sqrt{3}+i-\sqrt{3} i-1 \\
& =-(1+\sqrt{3})+i(1-\sqrt{3}) \quad-i
\end{aligned}
$$

$$
\begin{aligned}
& \omega=2 \operatorname{cis} \frac{5 \pi}{6} \\
& z=\sqrt{2} \operatorname{cis} \frac{\pi}{4}
\end{aligned}
$$

iii)

$$
\begin{aligned}
\omega z & =2 \sqrt{2} \text { cis }\left(\frac{5 \pi}{6}+\frac{\pi}{4}\right) \\
& =2 \sqrt{2} \text { cis }\left(\frac{10 \pi+3 \pi}{12}\right) \\
& =2 \sqrt{2} \text { cis } \frac{13 \pi}{12} .
\end{aligned}
$$

equating in components of i and ii

$$
\begin{aligned}
& 2 \sqrt{2} \sin \frac{13}{12}=(1-\sqrt{3}) \\
& \therefore \sin \frac{13 \pi}{12}=\frac{1-\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

c) Let two consecutive ever numbers be
$2 n, 2 n+2$ for $n \in \mathbb{Z}$.

$$
\begin{aligned}
\text { product } & =2 n(2 n+2) \\
& =4 n^{2}+4 n \\
& =4\left(n^{2}+n\right)
\end{aligned}
$$

hence the prodnd is a multiple of 4
d) i) let $\frac{16}{\left(x^{2}+4\right)(2-x)}=\frac{a x+b}{x^{2}+4}+\frac{c}{2-x}$

$$
\begin{aligned}
\therefore 16 & =(a x+b)(2-x)+c\left(x^{2}+4\right) \\
& =2 a x+2 b-a x^{2}-x b+c x^{2}+4 c
\end{aligned}
$$

for $x=2$.

$$
\begin{aligned}
16 & =8 c \\
c & =2
\end{aligned}
$$

constants: $16=2 b+4 c \Rightarrow 2 b-8$

$$
b=4
$$

x-tern: $0=2 a-b \rightarrow 2 a=4$ $a=2$

$$
\therefore \quad a=2, b-4, c=2 .
$$

ii)

$$
\begin{aligned}
\int \frac{16}{\left(x^{2}+4\right)(2-x)} d x & =\int\left(\frac{2 x+4}{x^{2}+4}+\frac{2}{2-x}\right) d x \\
& =\ln \left|x^{2}+4\right|+2 \tan ^{-1} \frac{x}{2}-2 \ln |2-x|+c
\end{aligned}
$$

e)

$$
\begin{aligned}
& z^{2}-2 i z+2=0 \\
& z=\frac{2 i \pm \sqrt{(2 i)}-4(i)(2)}{2(i)} \\
&=\frac{2 i \pm \sqrt{-1}}{2} \\
&=\frac{2 i \pm 2 \sqrt{3} i}{2} \\
&=(1+\sqrt{3}) i, \quad(1-\sqrt{3}) i
\end{aligned}
$$

alternatively,

$$
\begin{gathered}
z^{2}-2 i z-1=-2-1 \\
(z-i)^{2}=-3 \\
z-i= \pm \sqrt{3} i \\
z=(1 \pm \sqrt{5}) i
\end{gathered}
$$

$$
\begin{gathered}
\quad(a, b+-\mathbb{1} \\
\text { QUa i) } \quad(a-b)^{2} \geqslant 0 \\
a^{2}-2 a b+b^{2} \geqslant 0 \\
\therefore a^{2}+b^{2} \geqslant 2 a b
\end{gathered}
$$

ii) from (i)

$$
\begin{array}{ll}
x^{2}+y^{2} \geqslant 2 x y & -i \\
y^{2}+z^{2} \geqslant 2 y z & -1 \\
z^{2}+x^{2} \geqslant 2 z x . & -11
\end{array}
$$

$1+11+111$

$$
\begin{aligned}
& 2 x^{2}+2 y^{2}+2 z^{2} \geqslant 2 x y+2 y z+2 z x \\
& \therefore x^{2}+y^{2}+z^{2} \geqslant x y+y z+z x
\end{aligned}
$$

$$
\begin{aligned}
& (x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+z x) \\
\therefore & x^{2}+y^{2}+z^{2}=1-2(x y+y z+z x)
\end{aligned}
$$

from (ii)

$$
\begin{aligned}
1-2(x y+y z+z x) & \geqslant x y+y z+z x . \\
\therefore 3(x y+y z+z x) & \leqslant 1 \\
x y+y z+z x & \leqslant \frac{1}{3}
\end{aligned}
$$

b).

$$
\begin{aligned}
& \text { b) } \quad \begin{array}{rl}
\int e^{x} \cos x d x & d x t u=e^{x} \\
d u=e^{x} d x \quad v & d v=\sin x . d x \\
& =e^{x} \sin x-\int e^{x} \sin x d x
\end{array} \quad \text { let } d v=\sin x d x \\
&=e^{x} \sin x-\left(-e^{x} \cos x-\int e^{x}(-\cos x) d x\right) \\
&=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
\end{aligned}
$$

c) Prove. $\sum_{k=1}^{n} 42^{k}=(n-1)\left(2^{n+1}\right)+2$.

Prose true for $n=1$

$$
\begin{array}{rlrl}
\text { HS }=1 \times 2 & & \text { RUS } & =(1-1) 2^{|H|}+2 \\
& =2 & & \\
& =2 \\
& =L H S
\end{array}
$$

\therefore True for $n=$?
Assume fire for $n=k$.

$$
\text { is. } \sum_{k=1}^{k} k 2^{k}=(k-1)\left(2^{k+1}\right)+2
$$

Prove tire for $n=k+1$

$$
\text { ie: } \begin{aligned}
\sum_{r=1}^{k+1}(k+1) 2^{k+1} & =\left(k+(-1)\left(2^{(k+1) k+1}\right)+\right. \\
& =k 2^{-k+2}+2
\end{aligned}
$$

$$
\begin{aligned}
k+15 & =(k+1) 2^{-k+1}+\sum_{k=1}^{k} r 2^{r} \\
& =\left(k+12^{2 k+1}+(k-1)\left(2^{k+1}\right)+\right. \\
& =(k+1+(k-1)) \cdot 2^{k+1}+2 \\
& =2 k \cdot 2^{(k+1}+2 \\
& =k 2^{k+2}+2=7+5
\end{aligned}
$$

$$
=(k+1)^{2 k+1}+(k-1)\left(2^{k+1}\right)+2 \quad \text { by induction } \quad \text { ngopithes }
$$

- by pinaple of induction, this is true
d)

e.)

$$
\begin{aligned}
& 1-i= \sqrt{2} c i s\left(-\frac{\pi}{4}\right) \\
&=\sqrt{2} e^{-\frac{\pi}{4} i} \\
&=e^{\ln 2} \cdot e^{-\frac{\pi}{4} i} \\
&=e^{\ln \sqrt{2}-\frac{\pi}{4} i} \\
& \therefore a=\ln \sqrt{2} \\
& b=-\frac{\pi}{4}
\end{aligned}
$$

Q 13 a) $\quad 3(-1)+(5)(2)-2(3)=\sqrt{3^{2}+5^{2}+(-2) \mid \sqrt{(-1)^{2}+2^{2}+3^{2}}} \cos \theta$.

$$
1=\sqrt{38} \sqrt{14} \cos \theta
$$

$$
\begin{aligned}
\cos \theta & =\frac{1}{\sqrt{532}} \\
\theta & =1.527 \text { radiars } \\
& =87^{\circ} 30^{\circ} 54.48^{\prime \prime}
\end{aligned}
$$

b) i) let $(x+l y)^{2}=-24-10 i^{\prime}$

$$
x^{2}-y^{2}+2 x y i=-24-101
$$

equate $\mathrm{Re}+\mathrm{Ins}_{\mathrm{n}}$

$$
\begin{aligned}
& x^{2}-y^{2}=-24 \cdot-i \\
& 2 x y=-10 \Rightarrow x^{2} y^{2}=25 \quad-i i
\end{aligned}
$$

from :

$$
\begin{gathered}
x^{4}-x^{2} y^{2}=-24 x^{2} \\
x^{4}-25=-24 x \\
x^{4}+24 x^{2}-25=0 \\
\left(x^{2}+25\right)\left(x^{2}-1\right)=0 \\
x^{2}=1 \\
x= \pm(\\
\Rightarrow y=\mp 5 \\
\left(x^{2} \neq-25\right) \\
\therefore \sqrt{-24-10 i}= \pm(1 \times 5 i)
\end{gathered}
$$

ii)

$$
\begin{aligned}
& z^{2}-(1-i) z+6+2 i=0 \\
& z=\frac{(1-i) \pm \sqrt{(1-i)^{2}-4(1)(6+2 i)}}{2(i)} \\
&=\frac{1-i \pm \sqrt{-2 i-24-8 i}}{2} \\
&=\frac{1-i \pm \sqrt{-24-10 i}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1-i \pm(1-5 i)}{2} \\
& =\frac{2-6 i}{2} \cdot \frac{4 i}{2} \\
& =1-3 i, 2 i
\end{aligned}
$$

c) $P(z)=z^{4}+4 z^{3}+14 z^{2}+20 z+25$.
i) $p(-1+2 i)=0$

$$
\begin{aligned}
P(z) & =4 z^{3}+12 z^{2}+28 z+20 \\
P^{\prime}(-+2 i) & -4(-1+2)^{3}+12(-1+2)^{2}+28(-1+2 i)+20 \\
& =4(-1+3(2 i)-3(-4)-8 i)+12(1-4 i-4)+28(-1+2 i)+20 \\
& =44-8 i+(-36)-48 i-28+86 i+20 \\
& =0
\end{aligned}
$$

this rears that $-1+2 i$ is a double rot.
ii) $-1-2 i$ is also a root as I it is the conjugate of $-\left(+2 e^{\circ}\right.$ II He pilynamal has real ceeffccents and complex cods of polynomials with real coefficients occur is conjugate pairs
iII)

$$
\begin{aligned}
\therefore P(z) & =(z-(-1-2 i))^{2}(z-(-1+2 i))^{2} \\
& =(z+1+2 i)^{2}(z+1-2 i)^{2} \text { are complex } \\
& =\left((z+1)^{2}-(2 e)^{2}\right)^{2} \\
& =\left(z^{2}+2 z+1-(-4)\right)^{2} \\
& =\left(z^{2}+2 z+5\right)^{2} \quad \text { over real }
\end{aligned}
$$

d) i)

$$
\begin{aligned}
& A=(1,3,4) \quad A B \Rightarrow 2: 3 \\
& B=(-4,8,2) \quad \\
& P=\frac{1}{2+3}(3(1,3,4)+2(-4,8,2)) \\
&=\frac{1}{5}((3,9,12)+(-8,16,4)) \\
&=\frac{1}{5}(-5,25,16) \\
&=\left(-1,5,3 \frac{1}{5}\right)
\end{aligned}
$$

(1)

$$
\begin{array}{rlrl}
\overrightarrow{A B} & =\left[\begin{array}{l}
-4 \\
8 \\
2
\end{array}\right]-\left[\begin{array}{c}
1 \\
3 \\
4
\end{array}\right] & \overrightarrow{A B}-\left[\begin{array}{l}
-1 \\
5 \\
5
\end{array}\right]-\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right] \\
& =\left[\begin{array}{ll}
-5 \\
5 \\
-2
\end{array}\right] & & =\left[\begin{array}{l}
-2 \\
2 \\
\left.-\frac{4}{5 B} \right\rvert\,
\end{array}\right] \\
& =\sqrt{(-5)^{2}+5^{2}+(-2)^{2}} & & \overrightarrow{A T}]
\end{array}
$$

$$
\begin{aligned}
\overrightarrow{A P} \mid & =\sqrt{\frac{216}{25}} \\
& =\frac{2}{5} \sqrt{54} \\
& =\frac{2}{5}|\overrightarrow{A B}|
\end{aligned}
$$

QI
a). let $\log _{3} 4=\frac{a}{b}, a, b \in \mathbb{Z}$

$$
\begin{aligned}
b \log _{3} 4 & =a \\
\log _{3} 4^{b} & =a \\
4^{b} & =3^{a} \\
2^{2 b} & =3^{a}
\end{aligned}
$$

given the prime nature of 2 and 3 , and $a, b \in \mathbb{Z}$. this cannot betrue:
$\therefore \log _{3} 4$ is irrational

$$
\text { b) } \begin{array}{rlr}
I & =\int \frac{e^{2 x}}{\left(e^{x}+1\right)^{2}} d x & \text { let } u=e^{x}+1 \\
& =\int \frac{e^{x}}{\left(e^{x}+1\right)^{2}} \cdot e^{x} d x & d u=e^{x} d x \\
& =\int \frac{u-1}{u^{2}} d u \\
& =\int\left(\frac{1}{u}-\frac{1}{u^{2}}\right) d x
\end{array}
$$

$$
\begin{aligned}
& =\ln \left\lvert\, \bar{n}\left(+\frac{1}{a}+c\right.\right. \\
& =\ln \left(e^{x}+1\right)+\frac{1}{e^{x}+c}+c
\end{aligned}
$$

c) i. Show $\frac{1}{(k+1)^{2}}-\frac{1}{k}+\frac{1}{k+1}<0$

$$
\begin{aligned}
L H S & =\frac{1}{(k+1)^{2}}-\frac{1}{k}+\frac{1}{k+1} \\
& =\frac{k-(k+1)^{2}+k((k+1)}{k(k+1)^{2}} \\
& =\frac{k-k^{2}-2 k-1+k^{2}+k}{k(k+1)^{2}} \\
& =\frac{-1}{k(k+1)^{2}}<0 \quad \text { as } k>0
\end{aligned}
$$

ii) Prove $\frac{1}{1^{2}}+\frac{1}{\mathcal{P}^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}}<2-\frac{1}{n}, \quad n \geq 2$

Prove tine for $n=2$

$$
\begin{array}{rlrl}
L H S & =\frac{1}{1^{2}}+\frac{1}{2^{2}} & R H=2-\frac{1}{n} \\
& =\frac{5}{4} & & =\frac{3}{2}
\end{array}
$$

as $\frac{5}{4}<\frac{3}{2}$, then statement free for $n=0$
Assume fie for $n=k$

$$
\therefore=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{k^{2}}<2-\frac{1}{k} \quad-\text { induction }
$$

Prove frae for $n=k+1$

$$
\text { Fe. } \frac{1}{1^{2}}=\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}}<2-\frac{1}{k+1}
$$

LIS $<2-\frac{1}{k}+\frac{1}{(k+1)^{2}} \quad$, using induction hypothesis

$$
\begin{aligned}
& =2+\frac{1}{(k+1)^{2}}-\frac{1}{k}+\frac{1}{k+1}-\frac{1}{k+1} \\
& <2-\frac{1}{k+1} \quad \text { from (i) } \\
& <\text { RUS }
\end{aligned}
$$

\therefore by prinaple of induction, statement's true for $n \geqslant 2$
d)

$$
\begin{aligned}
I & =\int \frac{d x}{5+3 \cos x} \quad \text { let } \quad t=\tan \frac{x}{2} \quad t_{\frac{n}{2}}^{\sqrt{1+t}} \\
I & \therefore \cos x=\frac{1-t^{2}}{1+t^{2}} d t=\frac{1}{2} \sec ^{2} \frac{x}{2} d x \\
& =\frac{1}{5+\frac{3\left(1-t^{2}\right)}{1+t^{2}}} \frac{2 d t}{1+t^{2}} \\
& =2 \int \frac{2 d t}{1+t^{2}} d t \\
& =2 \int \frac{d t}{1\left(1 t^{2}\right)+3\left(1-t^{2}\right)\left(1 t^{2}\right)} \\
& =\int \frac{d t}{8+2 t^{2}} \\
& \int \frac{d t^{2}}{}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \tan ^{-1} \frac{t}{2}+c \\
& =\frac{1}{2} \tan ^{-1}\left[\frac{\tan \frac{x}{2}}{2}\right]+c
\end{aligned}
$$

c) i) $A=(4,8,3), B=(5,10,4)$

$$
\begin{aligned}
r_{i} & =\vec{A}+\lambda \overrightarrow{A B} \\
& =\left[\begin{array}{l}
4 \\
8 \\
3
\end{array}\right]+\lambda\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
\end{aligned}
$$

ii) equate r_{1} and r_{2}

$$
\begin{aligned}
& {\left[\begin{array}{l}
4 \\
8 \\
3
\end{array}\right]+\lambda\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
9 \\
6 \\
10
\end{array}\right]+\mu\left[\begin{array}{c}
1 \\
-4 \\
2
\end{array}\right]} \\
& \therefore \quad 4+\lambda=9+\mu \quad-1 \\
& 8+2 \lambda=6-4 \mu \quad-1 \\
& 3+\lambda=10+2 \mu \quad-i \prime \prime \\
& i-11 \\
& 1=-1-\mu \\
& \mu=-2 \Rightarrow \lambda=3 \quad \text { (from } i \text {) }
\end{aligned}
$$

test in ii $\quad L H S=8+2(3) \quad$ HS $=6-4(-2)$

$$
=14 \quad=14
$$

ii $\quad \angle 4 S-3+3 \quad$ RUS $=10-2(-2)$ \therefore intersection at $\left[\begin{array}{l}4 \\ 8 \\ 3\end{array}\right]+3\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}7 \\ 14 \\ 6\end{array}\right]$

Q(5.a) Prove $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$.
Prove trine for $n=$

$$
\begin{aligned}
\text { LHS }=\frac{d}{d x}\left(x^{\prime}\right) \quad \begin{aligned}
R H & =1 \cdot x^{0} \\
& =1 \\
& =1 \\
& =L H S
\end{aligned}
\end{aligned}
$$

\therefore trice for $a-1$.
Assume the for $n=k$

$$
\therefore \frac{d}{d x}\left(x^{k}\right)^{\text {Some the }}=k x^{k=1}
$$

Prose fine for $n=k+1$
ie. $\frac{d}{d x}\left(x^{k+1}\right)=(k+1)^{(k+1)-1}$

$$
\begin{aligned}
L H S & =\frac{d}{d x}\left(x^{k+1}\right) \\
& =\frac{d}{d x}\left(x \cdot x^{k}\right) \\
& =x^{k} \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}\left(x^{k}\right) \\
& =x^{k} \cdot 1+x \cdot k x^{k-1} \\
& =x^{k}+k x^{k} \\
& =(k+1) x^{k} \\
& =(k+1) x^{(x+1)}=1=\text { DHS }
\end{aligned}
$$

$$
=x^{k} \cdot 1+x \cdot k x^{k-1} \text { using induction }
$$

- by induction, the for $n \geqslant 1$
b) i) $\quad x=b \cos n t+c \sin n t$ $t=0, x=2$

$$
\begin{aligned}
2 & =b \cos 0+c \sin 0 \\
& =b .
\end{aligned}
$$

$v=-b n \sin n t+c_{n} \cos n t$

$$
\begin{aligned}
8 & =-b n \sin 0+c n \cos 0 \\
\therefore 8 & =c n
\end{aligned}
$$

as period is $\pi, n=2$

$$
\therefore b=2 c c=4
$$

and $x=12 \cos 2 t+4 \sin 2 t$
ii)

$$
\begin{aligned}
x & =a \cos (n t-\alpha) \\
& =a \cos n t \cdot \cos \alpha+a \sin n t \cdot \sin \alpha .
\end{aligned}
$$

equating coefficients

$$
\begin{aligned}
& a \cos \alpha=2 \\
& a \sin \alpha=4 \\
& \therefore a=2 \sqrt{5} \\
& \tan \alpha=2 \Rightarrow \alpha=\tan ^{-1} 2, \quad 0<\alpha<\frac{\pi}{2} \\
& \therefore \quad a \cos \alpha>0 \\
& \therefore x=2 \sqrt{2} \cos \left(2+-\tan ^{-1} 2\right) \quad
\end{aligned}
$$

iii. for SHM, Max speed when $x=0$.

$$
\begin{aligned}
& \text { so } 2 \sqrt{5} \cos \left(2 t-\tan ^{-1} 2\right)=0 \\
& 2+-\tan ^{-1} 2=1 \\
& \quad t=\frac{1}{2}\left(1+\tan ^{-1} 2\right) \\
& v=-4 \sqrt{5 \sin \left(2 t-\tan ^{-1} 2\right)} \\
& =-4 \sqrt{5} \sin \left(2 \frac{1}{2}\left(1+\tan ^{-1} 2\right)-\tan ^{-12}\right) \\
& =-4 \sqrt{5} \sin 1 \\
& =
\end{aligned}
$$

- amplitude is $2 \sqrt{5}$ units and maxspeed is $7.53 \mathrm{~ms}^{-1}$ (2dp)
c) i.

$$
\begin{aligned}
\overrightarrow{O N} & =\frac{2}{3}(a+c) \\
\overrightarrow{O M} & =\frac{1}{2} a+c \\
\overrightarrow{A N} & =\overrightarrow{O N}-\overrightarrow{O A} \\
& =\frac{2}{3}(a+c)-a \\
& =-\frac{1}{3} a+\frac{2}{3} c
\end{aligned}
$$

$$
\overrightarrow{A M}=\overrightarrow{O M}-\overrightarrow{O A}
$$

$$
=\frac{1}{2} a+c-a
$$

$$
=-\frac{1}{2} a+c
$$

iiI)

$$
\begin{aligned}
\overrightarrow{A N} & =-\frac{1}{3} a+\frac{2}{3} c \\
& =\frac{2}{3}\left(-\frac{1}{2} a+c\right) \\
& =\frac{2}{3} \overrightarrow{A M}
\end{aligned}
$$

as both vectors omginate at A.
$\therefore A, N$, and M are collinear.

$$
\begin{aligned}
& Q(6 a) i) \quad \underbrace{\frac{M P}{30}}_{m} \\
& \begin{array}{l}
F=m a \\
m a=m g-\frac{m v^{2}}{360}
\end{array} \\
& a=g-\frac{v^{2}}{360}
\end{aligned}
$$

for terminal velocity $a=0$

$$
\begin{aligned}
& \therefore \quad g=v^{2} \\
& \therefore 60 \\
& v^{2}=360 \mathrm{~g} \\
& v=\sqrt{360 g} \\
&=59.39696 \mathrm{~ms}^{-1}
\end{aligned}
$$

ii)

$$
\begin{aligned}
v \frac{d r}{d x} & =g-\frac{v^{2}}{300} \\
& =\frac{360 g-v^{2}}{360} \\
\int \frac{v d v}{362 g v^{2}} & =\frac{d x}{360}
\end{aligned}
$$

$$
-\frac{1}{2} \ln \left|360 g-v^{2}\right|=\frac{x}{360}+c
$$

given $t=0 \Rightarrow x=0,0 \Rightarrow$
then $c=-\frac{1}{2} \ln 360 y$

$$
\begin{aligned}
\frac{x}{360} & =\frac{1}{2} \ln 360-\frac{1}{2} \ln \left(36 \operatorname{gg}^{-v^{2}}\right) \\
& =\frac{1}{2} \ln \frac{360 g}{360 g^{-v^{2}}} \\
\therefore x & =180 \ln \frac{360 g}{360 g-v^{2}}
\end{aligned}
$$

at $1=50$

$$
\begin{aligned}
x & =180 \ln \frac{360 \mathrm{~g}}{360 \mathrm{~g}-50^{2}} \\
& =221.9608748 \mathrm{~m} \text { below the balloon }
\end{aligned}
$$

iii)

$$
\text { i) } \begin{aligned}
\dot{x} & =\frac{360 g-v^{2}}{360} \\
\therefore \frac{d v}{d t} & =\frac{360 g-v^{2}}{360} \\
d t & =\frac{360 d u}{360 g-v^{2}} \\
t & =\int \frac{360 d v}{\left(360 g-v^{2}\right.} \\
\text { let } \frac{360}{360 g-v^{2}} & =\frac{A}{\sqrt{360 g}-v}+\frac{B}{\sqrt{360 g}+v} \\
\therefore 360 & =A(\sqrt{360 g}+v)+B(\sqrt{360 g}-v)
\end{aligned}
$$

$$
\left.\left.\left.\begin{array}{rl}
\text { wher } v=\sqrt{360 g} \quad A & =\frac{360}{2 \sqrt{360 g}} \\
& =\frac{3 \sqrt{10}}{\sqrt{g}}
\end{array}\right] \begin{array}{rl}
\text { wher } v=\sqrt{360 g} \quad B=\frac{3 \sqrt{10}}{\sqrt{g}}
\end{array}\right]+\frac{3 \sqrt{10}}{\sqrt{g}(\sqrt{360 g}+v)}\right) d x
$$

$$
\text { at } t=0,0=0 \Rightarrow c=0 \quad(\ln 1=0)
$$

at $s=50$

$$
\begin{aligned}
t & =\frac{3 \sqrt{0}}{\sqrt{g}} \ln \frac{\sqrt{360 y}+50}{\sqrt{360 g}-50} \\
& =7.438548983
\end{aligned}
$$

\therefore stegduver reaches 50 ms after 7.44 s (2dp)
(b) i- $I_{n}=\int_{0}^{\frac{1}{2}} \frac{1}{\left(1+4 x^{2}\right)^{2}} d x$

$$
\begin{aligned}
I_{1} & =\int_{0}^{\frac{1}{2}} \frac{1}{1+4 x^{2}} d x \\
& =\frac{1}{2}\left[\tan ^{-1} 2 x\right]_{0}^{\frac{1}{2}} \\
& =\frac{1}{2}\left(\tan ^{-1} 2\left(\frac{1}{2}\right)-\tan ^{-1} 2(0)\right) \\
& =\frac{1}{2}\left(\frac{\pi}{4}-0\right) \\
& =\frac{\pi}{8}
\end{aligned}
$$

ii. let $u=\left(1+4 x^{2}\right)^{-n} \quad d v=d x$

$$
\begin{aligned}
d u & =-n(8 x)\left(1+4 x^{2}\right)^{-n-1} d x \quad v=x \\
& =\frac{-8 n x}{\left(1+4 x^{2}\right)^{n+1}} \\
I_{n} & =\left[\frac{x}{\left(1+4 x^{n}\right)^{n}}\right]_{0}^{\frac{1}{2}}+2 n \int_{0}^{\frac{1}{2}} \frac{4 x^{2}}{\left(1+4 x^{2}\right)^{n+1}} d x \\
& =\frac{1}{2} \\
\left(1+4\left(\frac{1}{2}\right)^{2}\right)^{n} & -\frac{0}{(1+4(0))^{n}}+2 n \int_{0}^{\frac{1}{2}} \frac{1+4 x^{2}-1}{\left(1+4 x^{2}\right)^{n+1}} d x \\
& =\frac{1}{2 \times 2^{n}}+2 n \int_{0}^{\frac{1}{2}} \frac{1+4 x^{2}}{\left(1+4 x^{2}\right)^{n+1}} d x-2 n \int_{0}^{\frac{1}{2}} \frac{1}{\left(1+4 x^{2}\right)^{n+1}} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2^{n+1}}+2 n \int_{2}^{\frac{1}{2}} \frac{d x}{\left(1+4 x^{2}\right)^{2}}-2 n \\
\therefore I_{n} & =\frac{1}{2^{n+1}}+2 n I_{n} \frac{d x}{\left(1+4 x^{2}\right)^{n+1}}-2 n I_{n+1} \\
(2 n-1) I_{n} & =2 n I_{n+1}-\frac{1}{2^{n+1}} \\
& \therefore I_{n}
\end{aligned}
$$

iii)

$$
\begin{aligned}
I_{1} & =\frac{2(1) I_{2}}{2(1)-1}+\frac{1}{2^{1+1}(1-2(1))} \\
\frac{\pi}{8} & =2 I_{2}-\frac{1}{4} \\
I_{2} & =\frac{1}{2}\left(\frac{\pi}{8}+\frac{1}{4}\right) \\
& =\frac{\pi+2}{16} \\
I_{2} & =\frac{2(2) I_{3}}{2(2)-1}+\frac{1}{2^{2+1}(1-2(2))}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\pi+2}{16} & =\frac{4}{3} I_{3}-\frac{1}{3 \times 2^{3}} \\
\frac{4}{3} I_{3} & =\frac{\pi+2}{16}+\frac{1}{24} \\
& =\frac{3 \pi+6+2}{48} \\
I_{3} & =\frac{3}{4} \frac{(3 \pi+8)}{4 \% 16} \\
& =\frac{3 \pi+8}{64}
\end{aligned}
$$

