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QUESTION ONE     15 marks     Start a SEPARATE booklet. 

 

Marks 
 
(a) The diagram shows the graph of  y f x  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Draw separate one third page sketches of the following 
 

 (i)  
 
1y

f x
                      2 

 
 (ii)   2y f x                      2 
 
 (iii)   2 f xy                       2 
 

 (iv)  1y f
x

 
  

 
                     2 

 
 
 

Question 1 continues on the next page 
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Marks 

(b) Consider the curve     ln 2 2cos 2 , 2 2f x x x      . 
 

(i) Show that the function f is even and the curve  y f x  is concave down for all 
  values of x in its domain.                   3 
 
(ii)  Sketch, using a third of a page, the graph of the curve  y f x               2 

 
 
(c)       Find the coordinates of the points where the tangent to the curve 
  2 22 3 18x xy y    is horizontal.                   2 
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QUESTION TWO     15 marks     Start a SEPARATE booklet. 

 

   Marks 
 
(a) Using the substitution 1xu e   or otherwise, 
 

 evaluate  
1

2
0 (1 )

x

x

e dx
e





. 3 

 
 

(b) Find 1
ln

dx
x x





. 1 

 
 
(c) (i) Find a, b, and c, such that 
 

  2 2

16
( 4) (2 ) 4 2

ax b c
x x x x


 

   
. 2 

 
 

 (ii) Find 2

16
( 4) (2 )

dx
x x 





. 2 

 
 
(d) Using integration BY PARTS ONLY, evaluate 
 

 
1 1

0
sin x dx

 . 3 
 
 

(e) Use the substitution tan to show that
2

t 
 : 

 
2

0

11 1tan
4sin 2cos 6 2 2

( )d




 


 





. 4 
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QUESTION THREE     15 marks     Start a SEPARATE booklet. 

 
Marks 

 

(a) Find all the complex numbers  z a ib   , where a and b are real, such that              3 

 
2 5 10 0.z z i    

 

 

(b) 1 21 3 and 1z i z i      are two complex numbers. 

 

 (i) Express  1
1 2

2

, and zz z
z

  in modulus-argument form.               3 

 

 (ii) Find the smallest positive integer  n  such that  1

2

n

n
z
z

  is imaginary. For this value             2 

  of  n  , write the value of  1

2

n

n
z
z

  in the form  bi  where  b  is a real number. 

 

 

(c) (i) On an Argand Diagram shade the region where both  1 1 and 0 arg
6

z z 
    .            3 

 

 (ii) Find the perimeter of the shaded region.                 2 

 

 

(d) On an Argand Diagram the points  A, B, and  C  represent the complex numbers 

 , , and     respectively.  ∆ABC  is equilateral, named with its vertices taken  

 anticlockwise. 

 

 Show that   cos sin
3 3

i 
   

 
    

 
                  2 
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QUESTION FOUR     15 marks     Start a SEPARATE booklet. 

 

Marks 
 

(a) (i) Show that 011181694 22  yxyx   represents an ellipse.                   1 

 

 (ii) Find the eccentricity and hence, the coordinates of its foci and                    2 

the equations of its directrices.  

       

   

(b) The tangent to the hyperbola 12

2

2

2


b
y

a
x

 
is given by the equation 0 CByAx . 

 Find the coordinates of the point of contact between the hyperbola and the tangent.            3 

 

 

(c) Show that the equation of the normal to the curve 2xy c  at the point  

, cP cp
p

 
 
 

 is given by  3 4 1p x py c p   .                  3 

 

 

(d) The position of a particle moving in the Cartesian plane at a time t is given by the 
parametric equations. 

  
5cos
12sin

x t
y t



 

(i)  Eliminate t from the two equations above.                  1 
 
(ii)  Sketch the path of the particle in the x–y plane.                 1 
 
(iii)  Without using the area formula for an ellipse,       

  show by integration that the area of the ellipse is 60π square units.              4 
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QUESTION FIVE     15 marks     Start a SEPARATE booklet. 

 
Marks 

 

(a) Let  , , and     be the solutions of  3 24 2 5 0x x x    . 

 

 (i) Find  2 2 2    .                    2 

 

 (ii) Find  3 3 3                        2 

 

 (iii) Write an equation with roots  1, 1, 1     .                2 

 

 

(b) Find a polynomial  P(x)  with real coefficients having  2i  and  1-3i  as zeroes.             3 

 

 

(c) (i) By considering  9 1z    as the difference of two cubes, or otherwise, write             2 

  2 3 4 5 6 7 81 z z z z z z z z          as a product of two polynomials with 

  real coefficients, one of which is a quadratic. 

 

 (ii) Solve  9 1 0z     and determine the six solutions of  6 3 1 0z z   .              2 

 

 (iii) Hence show that  
2 4cos cos cos
9 9 9
  
                   2 
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QUESTION SIX     15 marks     Start a SEPARATE booklet. 

 

Marks 
 

(a)  A solid shape has an elliptical base on the xy-plane as shown below. 
Sections of the solid taken perpendicular to the x-axis are equilateral triangles. 
The major and minor axes of the ellipse are of lengths 6 metres and 2 metres respectively. 

 

 

 
 

 (i)  Write down the equation of the ellipse.                  1 
 

(ii)  Show that the volume ΔV of a slice taken at x d  is given by 

 23 9
9

d
V x


                      2 

  
(iii) Find the volume of this solid.                   3 

 
 
 
 

Question 6 continues on the next page 
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Marks 

(b)  The region bounded by 1y
x

 , 
2

8
xy   and x = 1 is rotated about the line x = 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (i) Use the method of cylindrical shells to find an integral which gives the  

volume of the resulting solid of revolution.                   3 
 
 (ii) Find the volume of this solid of revolution.                2 
 
 
(c) The sketch below shows the region enclosed by the curve 

1
3y x , the x axis and the  

ordinate x = 8. 
 

 
 
 
Find the volume generated when this region is rotated about the line x = 8.              4 
 

x = 1 

1y
x

  

2

8
xy   

0 

y 

x 
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QUESTION SEVEN     15 marks     Start a SEPARATE booklet. 

 

Marks 

 

(a) (i) How many ways can a doubles tennis game be organised,               1 

   given a group of four players? 

 

 (ii) In how many ways can two games of doubles tennis be organised,              1 

   given a group of eight players? 

 

 

(b) Use mathematical induction, or otherwise, to prove the following: 

 

 (i)  1.1! 2.2! 3.3! ... . ! 1 ! 1, for 1.n n n n                        3 

 

 (ii) If  1
19 8 9, show that  9 64 64,n

n n nu n u u n

       and hence show that             4 

  un  is divisible by 64 for  1n . 

 

 

(c) (i) Let  cos sin .z i     Show that 12cos .z z                   1 

 

 (ii) Hence or otherwise show that 416cos 2cos 4 8cos 2 6     .              2 

 

 (iii) Use the substitution   
2 2

0
2sin toevaluate 4x x dx  .               3 
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QUESTION EIGHT     15 marks     Start a SEPARATE booklet. 

 

Marks 

 

(a) The region R is bounded by the curve  
1

xy
x




 , the x-axis and the vertical line x = 3.            3 

 

 Find the exact volume generated when R  is rotated about the x-axis. 

 

 

(b) (i) n ax
nI x e dx    , where a is a constant.                 2 

  Prove that  1

n ax

n n
x e nI I

a a   . 

 

 (ii) Hence find the value of  
1 3 2

0

xx e dx .                  3 

 

 

 (c)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  If  andST AB TM   is a tangent, prove that  TMB TAS  .              3 

 

 

 

Question 8 continues on the next page 
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(d) Two circles of equal radii intersect at A and B. A variable line through A meets 

 the two circles again at  P  and   Q. 

 

  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (i) Give the reason why  QPB PQB                   1 

 

 (ii) M  is the midpoint of PQ. Prove that  BM PQ                 2 

 

 (iii) What is the locus of  M  as the line  PAQ  varies?                1 

 

 

 

 

END OF EXAMINATION 

  


