HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS - EXTENSION TWO

TRIAL EXAMINATION

2011

ASSESSMENT TASK 4

Examiners ~ G Huxley, G Rawson

General Instructions

- Reading Time - 5 minutes.
- Working Time -3 hours.
- Attempt all questions.
- All necessary working should be shown in every question.
- This paper contains eight (8) questions.
- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators may be used.
- Each question is to be started in a new booklet.
- This examination paper must NOT be removed from the examination room.
\qquad
\qquad
(a) The diagram shows the graph of $y=f(x)$

Draw separate one third page sketches of the following
(i) $y=\frac{1}{f(x)}$
(ii) $y^{2}=f(x)$
(iii) $y=2^{f(x)}$
(iv) $y=f\left(\frac{1}{x}\right)$
(b) Consider the curve $f(x)=\ln (2+2 \cos (2 x)),-2 \pi \leq x \leq 2 \pi$.
(i) Show that the function f is even and the curve $y=f(x)$ is concave down for all values of x in its domain.
(ii) Sketch, using a third of a page, the graph of the curve $y=f(x)$
(c) Find the coordinates of the points where the tangent to the curve $x^{2}+2 x y+3 y^{2}=18$ is horizontal.
(a) Using the substitution $u=e^{x}+1$ or otherwise,

$$
\text { evaluate } \int_{0}^{1} \frac{e^{x}}{\left(1+e^{x}\right)^{2}} d x
$$

(e) Use the substitution $t=\tan \frac{\theta}{2}$ to show that:

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{4 \sin \theta-2 \cos \theta+6}=\frac{1}{2} \tan ^{-1}\left(\frac{1}{2}\right) \tag{4}
\end{equation*}
$$

(a) Find all the complex numbers $z=a+i b$, where a and b are real, such that $|z|^{2}+5 \bar{z}+10 i=0$.
(b) $z_{1}=1+i \sqrt{3}$ and $z_{2}=1-i$ are two complex numbers.
(i) Express z_{1}, z_{2} and $\frac{z_{1}}{z_{2}}$ in modulus-argument form.
(ii) Find the smallest positive integer n such that $\frac{z_{1}{ }^{n}}{z_{2}{ }^{n}}$ is imaginary. For this value of n, write the value of $\frac{z_{1}^{n}}{z_{2}{ }^{n}}$ in the form $b i$ where b is a real number.
(c) (i) On an Argand Diagram shade the region where both $|z-1| \leq 1$ and $0 \leq \arg z \leq \frac{\pi}{6}$.
(ii) Find the perimeter of the shaded region.

2
(d) On an Argand Diagram the points A, B, and C represent the complex numbers α, β, and γ respectively. $\triangle A B C$ is equilateral, named with its vertices taken anticlockwise.

Show that $\gamma-\alpha=\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)(\beta-\alpha)$
(a) (i) Show that $4 x^{2}+9 y^{2}+16 x+18 y-11=0$ represents an ellipse.
(ii) Find the eccentricity and hence, the coordinates of its foci and the equations of its directrices.
(b) The tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is given by the equation $A x+B y+C=0$.

Find the coordinates of the point of contact between the hyperbola and the tangent.
(c) Show that the equation of the normal to the curve $x y=c^{2}$ at the point
$P\left(c p, \frac{c}{p}\right)$ is given by $p^{3} x-p y=c\left(p^{4}-1\right)$.
(d) The position of a particle moving in the Cartesian plane at a time t is given by the parametric equations.

$$
\begin{aligned}
& x=5 \cos t \\
& y=12 \sin t
\end{aligned}
$$

(i) Eliminate t from the two equations above.
(ii) Sketch the path of the particle in the $x-y$ plane.
(iii) Without using the area formula for an ellipse, show by integration that the area of the ellipse is 60π square units.
(a) Let α, β, and γ be the solutions of $x^{3}-4 x^{2}+2 x+5=0$.
(i) Find $\alpha^{2}+\beta^{2}+\gamma^{2}$. 2
(ii) Find $\alpha^{3}+\beta^{3}+\gamma^{3} \quad \boldsymbol{2}$
(iii) Write an equation with roots $\alpha+1, \beta+1, \gamma+1$.
(b) Find a polynomial $P(x)$ with real coefficients having $2 i$ and $1-3 i$ as zeroes.
(c) (i) By considering $z^{9}-1$ as the difference of two cubes, or otherwise, write
$1+z+z^{2}+z^{3}+z^{4}+z^{5}+z^{6}+z^{7}+z^{8}$ as a product of two polynomials with real coefficients, one of which is a quadratic.
(ii) Solve $z^{9}-1=0$ and determine the six solutions of $z^{6}+z^{3}+1=0$.
(iii) Hence show that $\cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}=\cos \frac{\pi}{9}$
(a) A solid shape has an elliptical base on the $x y$-plane as shown below.

Sections of the solid taken perpendicular to the x-axis are equilateral triangles.
The major and minor axes of the ellipse are of lengths 6 metres and 2 metres respectively.

(i) Write down the equation of the ellipse.
(ii) Show that the volume ΔV of a slice taken at $x=d$ is given by

$$
\Delta V \approx \frac{\sqrt{3}\left(9-d^{2}\right)}{9} \Delta x
$$

(iii) Find the volume of this solid.

Question 6 continues on the next page
(b) The region bounded by $y=\frac{1}{x}, y=\frac{x^{2}}{8}$ and $x=1$ is rotated about the line $x=1$.

(i) Use the method of cylindrical shells to find an integral which gives the
volume of the resulting solid of revolution.
(ii) Find the volume of this solid of revolution.
(c) The sketch below shows the region enclosed by the curve $y=x^{\frac{1}{3}}$, the x axis and the ordinate $x=8$.

Find the volume generated when this region is rotated about the line $x=8$.

QUESTION SEVEN 15 marks Start a SEPARATE booklet.

Marks

(a) (i) How many ways can a doubles tennis game be organised, given a group of four players?
(ii) In how many ways can two games of doubles tennis be organised, given a group of eight players?
(b) Use mathematical induction, or otherwise, to prove the following:
(i) $1.1!+2.2!+3 \cdot 3!+\ldots+n \cdot n!=(n+1)!-1$, for $n \geq 1$.
(ii) If $u_{n}=9^{n+1}-8 n-9$, show that $u_{n+1}=9 u_{n}+64 n+64$, and hence show that u_{n} is divisible by 64 for $n \geq 1$.
(c) (i) Let $z=\cos \theta+i \sin \theta$. Show that $2 \cos \theta=z+z^{-1}$.
(ii) Hence or otherwise show that $16 \cos ^{4} \theta=2 \cos 4 \theta+8 \cos 2 \theta+6$.
(iii) Use the substitution $x=2 \sin \theta$ to evaluate $\int_{0}^{2}\left(4-x^{2}\right) d x$.
(a) The region R is bounded by the curve $y=\frac{x}{x+1}$, the x-axis and the vertical line $x=3$.

Find the exact volume generated when R is rotated about the x-axis.
(b) (i) $I_{n}=\int x^{n} e^{a x} d x$, where a is a constant.

Prove that $I_{n}=\frac{x^{n} e^{a x}}{a}-\frac{n}{a} I_{n-1}$.
(ii) Hence find the value of $\int_{0}^{1} x^{3} e^{2 x} d x$.
(c)

If $S T \| A B$ and $T M$ is a tangent, prove that $\quad \triangle T M B \| \Delta T A S$.

Question 8 continues on the next page
(d) Two circles of equal radii intersect at A and B. A variable line through A meets the two circles again at P and Q.

(i) Give the reason why $\angle Q P B=\angle P Q B$
(ii) $\quad M$ is the midpoint of $P Q$. Prove that $B M \perp P Q$
(iii) What is the locus of M as the line $P A Q$ varies?

END OF EXAMINATION

