

| Student Name: | <br> |  |
|---------------|------|--|
|               |      |  |
|               |      |  |
| Teacher:      |      |  |

# 2012 TRIAL HSC EXAMINATION

# Mathematics Extension 2

# **Examiners**

Mr J. Dillon and Mr S. Gee

#### **General Instructions**

- Reading time 5 minutes.
- Working time 3 hours.
- Write using black or blue pen.
   Diagrams may be drawn in pencil.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11-16.
- Start each question in a separate answer booklet.
- Put your student number on each booklet.

#### Total marks - 100

#### **Section I**

#### 10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

#### **Section II**

# 90 marks

- Attempt Questions 11-16. Each of these six questions are worth 15 marks
- Allow about 2 hour 45 minutes for this section

# **Section I**

# 10 marks Attempt Questions 1 - 10Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

Consider the hyperbola with the equation  $\frac{x^2}{144} - \frac{y^2}{25} = 1$ .

What are the equations of the directrices?

(A) 
$$y = \pm \frac{25}{13}$$

(B) 
$$y = \pm \frac{144}{13}$$

(C) 
$$x = \pm \frac{25}{13}$$

(D) 
$$x = \pm \frac{144}{13}$$

The points  $P(a\cos\theta, b\sin\theta)$  and  $Q(a\cos\phi, b\sin\phi)$  lie on the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  and the chord PQ subtends a right angle at (0,0). Which of the following is the correct expression?

(A) 
$$\tan \theta \tan \phi = -\frac{b^2}{a^2}$$

(B) 
$$\tan \theta \tan \phi = -\frac{a^2}{b^2}$$

(C) 
$$\tan \theta \tan \phi = \frac{b^2}{a^2}$$

(D) 
$$\tan \theta \tan \phi = \frac{a^2}{b^2}$$

What is  $-\sqrt{3} + i$  expressed in modulus-argument form?

(A) 
$$\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$
 (B) 
$$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

(B) 
$$2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$$

(C) 
$$\sqrt{2}(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$$
 (D)  $2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$ 

(D) 
$$2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$$

Consider the Argand diagram below.



Which inequality could define the shaded area?

(A) 
$$|z-1| \le \sqrt{2}$$
 and  $0 \le \arg(z-i) \le \frac{\pi}{4}$ 

(B) 
$$|z-1| \le \sqrt{2}$$
 and  $0 \le \arg(z+i) \le \frac{\pi}{4}$ 

(C) 
$$|z-1| \le 1$$
 and  $0 \le \arg(z-i) \le \frac{\pi}{4}$ 

(D) 
$$|z-1| \le 1$$
 and  $0 \le \arg(z+i) \le \frac{\pi}{4}$ 

5 The diagram shows the graph of the function y = f(x).



Which of the following is the graph of  $y = \sqrt{f(x)}$ ?

(A)



(B)



(C)



(D)



**6** The diagram shows the graph of the function y = f(x).



Which of the following is the graph of  $y = \frac{1}{f(x)}$ ?

(A)



(B)



(C)



(D)



7 Which of the following is an expression for  $\int \frac{1}{\sqrt{7-6x-x^2}} dx$ ?

(A) 
$$\sin^{-1}\left(\frac{x-3}{2}\right) + c$$

(B) 
$$\sin^{-1}\left(\frac{x+3}{2}\right) + c$$

(C) 
$$\sin^{-1}\left(\frac{x-3}{4}\right) + c$$

(D) 
$$\sin^{-1}\left(\frac{x+3}{4}\right) + c$$

**8** Which of the following is an expression for  $\int \frac{1}{\sqrt{x^2 - 6x + 10}} dx$ ?

(A) 
$$\ln\left(x-3-\sqrt{x^2-6x+10}\right)+c$$

(B) 
$$\ln\left(x + 3 - \sqrt{x^2 - 6x + 10}\right) + c$$

(C) 
$$\ln\left(x-3+\sqrt{x^2-6x+10}\right)+c$$

(D) 
$$\ln\left(x + 3 + \sqrt{x^2 - 6x + 10}\right) + c$$

**9** The equation  $4x^3 - 27x + k = 0$  has a double root.

What are the possible values of k?

$$(A)$$
  $\pm 4$ 

(D) 
$$\pm \frac{81}{2}$$

10 Given that  $(x-1)p(x) = 16x^5 - 20x^3 + 5x - 1$ , then if  $p(x) = (4x^2 + ax - 1)^2$ , the value of a is:

(C) 
$$\frac{1}{2}$$

Blank page

# **Section II**

#### 90 marks

# **Attempt Questions 11 – 16**

# Allow about 2 hours and 45 minutes for this section

Answer each question in a new answer booklet.

All necessary working should be shown in every question.

# **Question 11** (15 marks) **Start a new answer booklet**

**Marks** 

(a) Using the substitution  $u = e^x + 1$  or otherwise, evaluate

$$\int_0^1 \frac{e^x}{(1+e^x)^2} \, dx.$$
 3

(b) Find 
$$\int \frac{1}{x \ln x} dx$$
.

(c) (i) Find a, b, and c, such that

$$\frac{16}{(x^2+4)(2-x)} = \frac{ax+b}{x^2+4} + \frac{c}{2-x}.$$

(ii) Find 
$$\int \frac{16}{(x^2+4)(2-x)} dx$$
.

(d) Using integration by parts ONLY, evaluate

$$\int_0^1 \sin^{-1} x \ dx.$$

(e) Use the substitution  $t = \tan \frac{\theta}{2}$  to show that :

$$\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{4\sin\theta - 2\cos\theta + 6} = \frac{1}{2}\tan^{-1}\left(\frac{1}{2}\right).$$

# Question 12 (15 marks) Start a new answer booklet

Marks

- (a) Given  $z = \frac{\sqrt{3} + i}{1 + i}$ ,
  - (i) Find the argument and modulus of z.

2

(ii) Find the smallest positive integer n such that  $z^n$  is real.

1

- (b) The complex number z moves such that  $\operatorname{Im}\left[\frac{1}{\overline{z}-i}\right]=2$ .
  - Show that the locus of z is a circle.

2

(c) Sketch the region in the complex plane where the inequalities

$$|z+1-i| < 2$$
 and  $0 < \arg(z+1-i) < \frac{3\pi}{4}$  hold simultaneously.

3

(d) Find the three different values of z for which

$$z^3 = \frac{1+i}{\sqrt{2}}.$$

3

(e) The locus of the complex number Z, moving in the complex plane such that  $arg(Z - 2\sqrt{3}) - arg(Z - 2i) = \frac{\pi}{3}$ , is a part of a circle.

The angle between the lines from 2i to Z and then from  $2\sqrt{3}$  to Z is  $\alpha$ , as shown in the diagram below.



(i) Show that 
$$\alpha = \frac{\pi}{3}$$
.

2

(ii) Find the centre and the radius of the circle.

2

# Question 13 (15 marks) Start a new answer booklet

Marks

1

(a) Consider the polynomial equation

$$x^4 + ax^3 + bx^2 + cx + d = 0$$

where a, b, c, and d are all integers. Suppose the equation has a root of the form x = ki, where k is real, and  $k \ne 0$ .

- (i) State why the conjugate x = -ki is also a root.
- (ii) Show that  $c = k^2 a$ .
- (iii) Show that  $c^2 + a^2d = abc$ .
- (iv) If x = 2 is also a root of the equation, and b = 0, show that d and c are both even.
- (b) Solve  $z^5 + 1 = 0$  by De Moivre's Theorem, leaving your solutions in modulus-argument form.
  - (ii) Prove that the solutions of  $z^4 z^3 + z^2 z + 1 = 0$  are the non-real solutions of  $z^5 + 1 = 0$ .
  - (iii) Show that if  $z^4 z^3 + z^2 z + 1 = 0$  where  $z = cis \theta$  then  $4\cos^2 \theta 2\cos \theta 1 = 0$ .

Hint: 
$$z^4 - z^3 + z^2 - z + 1 = 0 \Rightarrow z^2 - z + 1 - \frac{1}{z} + \frac{1}{z^2} = 0$$

(iv) Hence, find the exact value of  $\sec \frac{3\pi}{5}$ .

# **Question 14** (15 marks) **Start a new answer booklet**

Marks

(a) (i) Determine the real values of  $\lambda$  for which the equation

$$\frac{x^2}{4-\lambda} + \frac{y^2}{2-\lambda} = 1 \text{ defines}$$

- $(\alpha)$  an ellipse 1
- $(\beta)$  a hyperbola 1
- (ii) Sketch the curve corresponding to the value  $\lambda = 1$ , indicating the positions of the foci and directrices and stating their coordinates and equations respectively. Also mark any axes intercepts on your diagram.
- (iii) Describe how the shape of this curve changes as  $\lambda$  increases from 1 towards 2. What is the limiting position of the curve as 2 is approached?
- (b) Show that the equation of the normal to the hyperbola  $xy = c^2$  at  $P(cp, \frac{c}{p}) \text{ is } p^3x py = c(p^4 1).$ 
  - (ii) The normal at  $P(cp, \frac{c}{p})$  meets the hyperbola  $xy = c^2$  again at  $Q(cq, \frac{c}{q})$ . Prove that  $p^3 q = -1$ .
  - (iii) Hence, show that the locus of the midpoint R of PQ is given by  $c^2(x^2 y^2)^2 + 4x^3y^3 = 0.$

(a) Given below is the graph of  $f(x) = 3 - \frac{24}{x^2 + 4}$ .



Use the graph of y = f(x) to sketch, on separate axes, the graphs of

(i) 
$$y = \left[ f(x) \right]^2$$

(ii) 
$$y = \sqrt{f(x)}$$

(iii) 
$$y = f'(x)$$

Each graph should be at least one – third of a page in size.

(b) Consider the curve that is defined by  $4x^2 - 2xy + y^2 - 6x = 0$ 

(i) Show that 
$$\frac{dy}{dx} = \frac{3 - 4x + y}{y - x}$$

(ii) Find the coordinates of all points where the tangent is vertical.

Question 15 continues on the next page ......

(c) A solid is formed by rotating the area enclosed by the curve  $x^2 + y^2 = 16$  through one complete revolution about the line x = 10.



(i) Use the method of slicing to show that the volume of this solid is

$$V = 40\pi \int_{-4}^{4} \sqrt{16 - y^2} \, dy$$

(ii) Find the exact volume of the solid.

# **Question 16** (15 marks) **Start a new answer booklet**

Marks

1

(a) Let 
$$f(x) = (1 - \frac{x^2}{2}) - \cos x$$

- (i) Show that f(x) is an even function.
- (ii) Find expressions for f'(x) and f''(x).
- (iii) Deduce that  $f'(x) \le 0$  for  $x \ge 0$ .
- (iv) Hence, show that  $\cos x \ge 1 \frac{x^2}{2}$ .
- (b) (i) Use the principle of mathematical induction to prove that

$$(1+x)^n > 1+nx$$
 for  $n > 1$  and  $x > -1$ 

(ii) Hence, deduce that 
$$\left(1 - \frac{1}{2n}\right)^n > \frac{1}{2}$$
 for  $n > 1$ .

(c)



In the diagram above, AB = AD = AX and  $XP \perp DC$ .

- (i) Prove that  $\angle DBX = 90^{\circ}$
- (ii) Hence, or otherwise, prove that AB = AP.

2

2

#### STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right) x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:  $\ln x = \log_e x$ , x > 0

Blank page

HAHS Extension 2 Trial HSC

# **Year 12 Mathematics Extension 2**

# **Section I - Answer Sheet**

| St | udent Nu           | ımber _  |         |             |           |             |              | _             |                           |                           |           |
|----|--------------------|----------|---------|-------------|-----------|-------------|--------------|---------------|---------------------------|---------------------------|-----------|
| Se | lect the alt       | ernative | A, B, 0 | C or D t    | hat best  | answers     | s the quest  | tion. Fill in | the respon                | se oval con               | npletely. |
|    | Samp               | ole: 2   | + 4 =   | (A) 2       | (B        | 6) 6        | (C) 8        | (D) 9         |                           |                           |           |
|    |                    |          |         | $A \subset$ | ) B       |             | c $\bigcirc$ | D             |                           |                           |           |
| •  | If you thi answer. | nk you h | nave m  | ade a m     | istake, p | out a cro   | ss through   | the incorr    | ect answer                | and fill in               | the new   |
|    |                    |          |         | A <b>•</b>  | В         |             | С            | $D \bigcirc$  |                           |                           |           |
| •  |                    |          |         | ver by w    | riting th | ne word     | correct an   |               | be the corr<br>an arrow a | ect answer,<br>s follows. | then      |
|    | 1.                 | A 🔾      | В       | $\bigcirc$  | c $\circ$ | DO          |              |               |                           |                           |           |
|    | 2.                 | A 🔾      | В       | $\bigcirc$  | c 🔾       | $D\bigcirc$ |              |               |                           |                           |           |
|    | 3.                 |          |         |             | c O       |             |              |               |                           |                           |           |
|    | 4.                 | A 🔾      | В       | $\bigcirc$  | c O       | DO          |              |               |                           |                           |           |
|    | 5.                 | A 🔾      | В       | $\circ$     | c O       | DO          |              |               |                           |                           |           |
|    | 6.                 | A 🔾      | В       | $\bigcirc$  | c O       | $D\bigcirc$ |              |               |                           |                           |           |
|    | 7.                 | A 🔾      | В       | $\bigcirc$  | c O       | DO          |              |               |                           |                           |           |
|    | 8.                 | A 🔾      | В       | $\bigcirc$  | c O       | $D\bigcirc$ |              |               |                           |                           |           |

HAHS Extension 2 Trial HSC

9. A O BO CO DO

10. A O BO CO DO

# Year 12 Mathematics Extension 2

# Section I - Answer Sheet

| Student Number | ANSWERS |  |  |
|----------------|---------|--|--|
|                |         |  |  |

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.



If you change your mind and have crossed out what you consider to be the correct answer, then
indicate the correct answer by writing the word correct and drawing an arrow as follows.





## 2012 X2 Trial HSC ~ Multiple Choice Answers

1. 
$$b^2 = a^2(e^2 - 1)$$
  $a^2 = 144$  and  $b^2 = 25$ .  
 $25 = 144(e^2 - 1)$   $a = 12$   $b = 5$   
 $(e^2 - 1) = \frac{25}{144}$  or  $e^2 = \frac{169}{144}$  or  $e = \frac{13}{12}$   
Equation of the directrices are  $x = \pm \frac{a}{e} = \pm \frac{144}{13}$ . (D)

2. POQ is a right-angled triangle. Therefore  $OP^2 + OQ^2 = PQ^2$ .  $a^2 \cos^2 \theta + b^2 \sin^2 \theta + a^2 \cos^2 \phi + b^2 \sin^2 \phi = a^2 (\cos \theta - \cos \phi)^2 + b^2 (\sin \theta - \sin \phi)^2$   $a^2 (\cos^2 \theta + \cos^2 \phi) + b^2 (\sin^2 \theta + \sin^2 \phi) = a^2 (\cos \theta - \cos \phi)^2 + b^2 (\sin \theta - \sin \phi)^2$ Hence  $0 = -2a^2 \cos \theta \cos \phi - 2b^2 \sin \theta \sin \phi$   $2b^2 \sin \theta \sin \phi = -2a^2 \cos \theta \cos \phi$   $\frac{\sin \theta \sin \phi}{\partial \theta} = \frac{-2a^2}{2} \cos \theta \cos \phi$ 





3.  $\tan \theta = \frac{1}{-\sqrt{3}}$   $\theta = \frac{5\pi}{6}$   $r^2 = x^2 + y^2$   $= (\sqrt{3})^2 + 1^2$  r = 2  $-\sqrt{3} + i = 2(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6})$ (D)

**(B)** 

4.  $|z-1| \le \sqrt{2}$  represents a region with a centre is (1,0) and radius is less than or equal to  $\sqrt{2}$ .  $0 \le \arg(z+i) \le \frac{\pi}{4}$  represents a region between angle 0 and  $\frac{\pi}{4}$  whose vertex is (-1,0) not including the vertex  $|z-1| \le \sqrt{2}$  and  $0 \le \arg(z+i) \le \frac{\pi}{4}$  (B)

5. y  $4 \uparrow$  2 - 1  $4 \uparrow$  2 - 1  $4 \uparrow$  2 - 1  $4 \uparrow$   $4 \uparrow$ 

7. 
$$\int \frac{1}{\sqrt{7 - 6x - x^2}} dx = \int \frac{1}{\sqrt{16 - 9 - 6x - x^2}} dx$$

$$= \int \frac{1}{\sqrt{16 - (x + 3)^2}} dx$$

$$= \sin^{-1} \left(\frac{x + 3}{4}\right) + c$$
(D)

$$\int \frac{dx}{\sqrt{x^2 - 6x + 10}} = \int \frac{dx}{\sqrt{x^2 - 6x + 9 + 1}} = \frac{dx}{\sqrt{(x - 3)^2 + 1}}$$
$$= \ln\left(x - 3 + \sqrt{(x - 3)^2 + 1}\right) + c$$
$$= \ln\left(x - 3 + \sqrt{x^2 - 6x + 10}\right) + c$$

9. Let 
$$P(x) = 4x^3 - 27x + k$$
 (C)  $P'(x) = 12x^2 - 27$ 

Let  $\alpha$  be the double root.

∴ a = 2 or -17.

Hence  $P(\alpha) = 0$  and  $P'(\alpha) = 0$ 

When  $P'(\alpha) = 0$  then  $12\alpha^2 - 27 = 0$ 

$$\alpha^2 = \frac{9}{4}$$

$$\alpha = \pm \frac{3}{2}$$

When  $P(\alpha) = 0$  then  $4\alpha^3 - 27\alpha + k = 0$ 

$$k = 27\alpha - 4\alpha^{3}$$

$$= \alpha(27 - 4\alpha^{2})$$

$$= \pm \frac{3}{2}(27 - 4 \times \frac{9}{4})$$

$$= \pm 27$$

10. 
$$(x-1)(4x^2 + ax - 1)^2 = 16x^5 - 20x^3 + 5x - 1$$
  
Let  $x = 2$ ,  $1.(15 + 2a)^2 = 16.2^5 - 20.2^3 + 5.2 - 1 = 361$   
 $\therefore 15 + 2a = \pm 19$   
 $\therefore 2a = -15 \pm 19 = 4 \text{ or } -34$ 

| Year 12     | Mathematics Extension 2            | Trial HSC Examination 2012 |
|-------------|------------------------------------|----------------------------|
| Question 11 | Solutions and Marking Guidelines   |                            |
|             | Outcome Addressed in this Question |                            |

E8 applies further techniques of integration, including partial fractions, integration by parts and

| Part   | Solutions                                                                                                | Marking Guidelines                      |
|--------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|
| )      | 1                                                                                                        | Award 3                                 |
|        | $\int \frac{e^x}{\left(1+e^x\right)^2} dx \qquad u=e^x+1 \Longrightarrow du=e^x dx$                      | Correct solution.                       |
|        | $\int \frac{1}{(1-x)^2} dx \qquad u = e^x + 1 \Rightarrow du = e^x dx$                                   |                                         |
|        | $\int_{\Omega} \left(1 + e^{\lambda}\right)$                                                             | Award 2                                 |
|        | e+1                                                                                                      | Substantial progress towards            |
|        | ( du                                                                                                     | solution.                               |
|        | $=\int_{0}^{e+1}\frac{du}{u^{2}}$                                                                        |                                         |
|        | <u>Z</u>                                                                                                 | Award 1                                 |
|        | $=\left[-\frac{1}{u}\right]_{0}^{e+1}$                                                                   | Attempts to manipulate                  |
|        | $=\left -\frac{1}{u}\right $                                                                             | integrand and find primitive.           |
|        |                                                                                                          |                                         |
|        | $=-\frac{1}{e+1}-\left(-\frac{1}{2}\right)$                                                              |                                         |
|        | $=-\frac{1}{e+1}-(-\frac{1}{2})$                                                                         |                                         |
|        |                                                                                                          |                                         |
|        | $=\frac{1}{2}-\frac{1}{e+1}$                                                                             |                                         |
|        | 2 e+1                                                                                                    |                                         |
|        |                                                                                                          |                                         |
|        |                                                                                                          | Award 1                                 |
| )      | $\int \frac{1}{x \ln x}  dx \qquad u = \ln x \Longrightarrow du = \frac{dx}{x}$                          | Correct solution.                       |
|        |                                                                                                          |                                         |
|        | $=\int \frac{du}{u}$                                                                                     |                                         |
|        |                                                                                                          |                                         |
|        |                                                                                                          |                                         |
|        | $= \ln u + c$                                                                                            |                                         |
|        | $=\ln(\ln x)+c$                                                                                          |                                         |
|        |                                                                                                          |                                         |
|        |                                                                                                          |                                         |
| c) (i) | $16 = (ax + b)(2 - x) + c(x^2 + 4)$                                                                      | Award 2                                 |
|        | $x = 2 \Rightarrow 16 = 8c : c = 2 \dots (1)$                                                            | Correct answers for $a$ , $b$ and $c$ . |
|        |                                                                                                          | A 34                                    |
|        | $x = 1 \Rightarrow 16 = a + b + 10 : a + b = 6(2)$                                                       | Award 1                                 |
|        | $x = 0 \Rightarrow 16 = 2b + 8 : b = 4(3)$                                                               | Correct answers for two of $a$ , $b$    |
|        | $(3) \rightarrow (2) \Rightarrow a = 2$                                                                  | or <i>c</i> .                           |
|        |                                                                                                          |                                         |
|        |                                                                                                          |                                         |
| (ii)   | 16                                                                                                       |                                         |
| (11)   | $\int \frac{16}{(x^2+4)(2-x)} dx$                                                                        | Award 2                                 |
|        | $\int (x^2 + 4)(2 - x)$                                                                                  | Correct solution.                       |
|        | (2x+4 2)                                                                                                 |                                         |
|        | $= \int \left( \frac{2x+4}{x^2+4} + \frac{2}{2-x} \right) dx$                                            | Award 1                                 |
|        |                                                                                                          | Substantial progress towards            |
|        | $= \int \left( \frac{2x}{x^2 + 4} + \frac{4}{x^2 + 4} - \frac{2}{x - 2} \right) dx$                      | solution.                               |
|        | $= \left[ \left( \frac{x^2 + 4}{x^2 + 4} + \frac{x^2 + 4}{x^2 + 4} - \frac{1}{x - 2} \right) \right] dx$ |                                         |
|        |                                                                                                          |                                         |
|        | $= \ln(x^2 + 4) + 2 \tan^{-1}(\frac{x}{2}) - 2 \ln(x - 2) + c$                                           |                                         |
|        | (2)                                                                                                      |                                         |
|        |                                                                                                          |                                         |
|        |                                                                                                          |                                         |

| (d) | $\int_{0}^{1} \sin^{-1} x \ dx = \int_{0}^{1} 1.\sin^{-1} x \ dx$                                                                                          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $= \left[x \sin^{-1} x\right]_0^1 - \int_0^1 x \cdot \frac{1}{\sqrt{1 - x^2}}  dx$                                                                         |
|     | $= \frac{\pi}{2} - 0 + \frac{1}{2} \int_{0}^{1} -2x \cdot (1 - x^{2})^{-\frac{1}{2}} dx$                                                                   |
|     | $= \frac{\pi}{2} + \frac{1}{2} \left[ \frac{\left(1 - x^2\right)^{\frac{1}{2}}}{\frac{1}{2}} \right]_0^1$                                                  |
|     | $\begin{bmatrix} \frac{\pi}{2} & \frac{1}{2} \\ \frac{\pi}{2} + (0 - 1) \end{bmatrix}$                                                                     |
|     | $=\frac{\pi}{2}-1$                                                                                                                                         |
| (e) | $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{4\sin\theta - 2\cos\theta + 6}$                                                                                   |
|     | $= \int_{0}^{1} \frac{\frac{2dt}{1+t^{2}}}{4 \times \frac{2t}{1+t^{2}} - 2 \times \frac{1-t^{2}}{1+t^{2}} + 6}$                                            |
|     | $=\int_{0}^{1} \frac{2dt}{8t^2 + 8t + 4}$                                                                                                                  |
|     | $= \frac{1}{4} \int_{0}^{1} \frac{dt}{t^2 + t + \frac{1}{2}}$                                                                                              |
|     | $= \frac{1}{4} \int_{0}^{1} \frac{dt}{\left(t + \frac{1}{2}\right)^{2} + \frac{1}{4}}$                                                                     |
|     | $= \frac{1}{4} \left[ \frac{1}{2} \tan^{-1} \left( \frac{t + \frac{1}{2}}{\frac{1}{2}} \right) \right]_{0}^{1}$                                            |
|     | $= \frac{1}{2} \left[ \tan^{-1} \left( \frac{1 + \frac{1}{2}}{\frac{1}{2}} \right) - \tan^{-1} \left( \frac{0 + \frac{1}{2}}{\frac{1}{2}} \right) \right]$ |
|     | $=\frac{1}{2}\left[\tan^{-1}\left(3\right)-\tan^{-1}\left(1\right)\right]$                                                                                 |
|     | $= \frac{1}{2} \left[ \tan^{-1} \left( \frac{3-1}{1+3\times 1} \right) \right]$                                                                            |
|     | $=\frac{1}{2}\tan^{-1}\left(\frac{1}{2}\right)$                                                                                                            |

# Award 3

Correct solution

# Award 2

Substantial progress towards solution

# Award 1

Attempts to use integration by parts

# Award 4

Correct solution

# Award 3

Substantial progress towards solution

# Award 2

Limited progress towards solution

# Award 1

Attempts to use manipulate integrand and determine primitive

| Year 12     | Mathematics Extension 2                                                                                                         | Trial HSC Examination 2012                                       |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
| Question 12 | E                                                                                                                               |                                                                  |  |  |  |
| E3 uses     | Outcome Addressed in this Question  E3 uses the relationship between algebraic and geometric representations of complex numbers |                                                                  |  |  |  |
| Part        | Solutions                                                                                                                       | Marking Guidelines                                               |  |  |  |
| (a) (i)     |                                                                                                                                 | Award 2                                                          |  |  |  |
| (4) (1)     | $z = \frac{\sqrt{3} + i}{1 + i}$                                                                                                | Correct answers.                                                 |  |  |  |
|             | I+I                                                                                                                             |                                                                  |  |  |  |
|             | $\arg z = \arg\left(\sqrt{3} + i\right) - \arg\left(1 + i\right)$                                                               | Award 1                                                          |  |  |  |
|             |                                                                                                                                 | Substantial progress towards solution <b>or</b> only one correct |  |  |  |
|             | $=\frac{\pi}{6}-\frac{\pi}{4}$                                                                                                  | answer                                                           |  |  |  |
|             | $\pi$                                                                                                                           |                                                                  |  |  |  |
|             | $=-\frac{\pi}{12}$                                                                                                              |                                                                  |  |  |  |
|             | 1 2 5                                                                                                                           |                                                                  |  |  |  |
|             | $\left z\right  = \frac{2}{\sqrt{2}} = \sqrt{2}$                                                                                |                                                                  |  |  |  |
|             | <b>,</b> -                                                                                                                      |                                                                  |  |  |  |
| (ii)        | $\sqrt{2}\cdot (\pi)$                                                                                                           | Award 1                                                          |  |  |  |
| (11)        | $z = \sqrt{2}\operatorname{cis}\left(-\frac{\pi}{12}\right)$                                                                    | Correct solution.                                                |  |  |  |
|             | $z^{12} = \left(\sqrt{2}\right)^2 \operatorname{cis}\left(-\pi\right) = -2^6 = -64$                                             |                                                                  |  |  |  |
|             | $\therefore n = 12.$                                                                                                            |                                                                  |  |  |  |
|             | $\dots n-12$ .                                                                                                                  |                                                                  |  |  |  |
|             |                                                                                                                                 |                                                                  |  |  |  |
| (b)         | $I_{\text{min}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$                                                                           | Award 2                                                          |  |  |  |
|             | $\operatorname{Im}\left[\frac{1}{\overline{z}-i}\right]=2$                                                                      | Correct solution.                                                |  |  |  |
|             | Let $z = x + iy$                                                                                                                | Award 1                                                          |  |  |  |
|             |                                                                                                                                 | Substantial progress towards                                     |  |  |  |
|             | $\frac{1}{\overline{z} - i} = \frac{1}{x - iy - i}$                                                                             | solution.                                                        |  |  |  |
|             | • · · · · · · · · · · · · · · · · · · ·                                                                                         |                                                                  |  |  |  |
|             | $= \frac{1}{x - i(y+1)} \times \frac{x + i(y+1)}{x + i(y+1)}$                                                                   |                                                                  |  |  |  |
|             | $=\frac{x+i(y+1)}{x^2+(y+1)^2}$                                                                                                 |                                                                  |  |  |  |
|             |                                                                                                                                 |                                                                  |  |  |  |
|             | $\operatorname{Im}\left[\frac{1}{\overline{z}-i}\right] = 2 \implies \frac{\left(y+1\right)}{x^2 + \left(y+1\right)^2} = 2$     |                                                                  |  |  |  |
|             | $\therefore y + 1 = 2x^2 + 2(y+1)^2 = 2x^2 + 2y^2 + 4y + 2$                                                                     |                                                                  |  |  |  |
|             | $2x^{2} + 2y^{2} + 4y + 2 - y - 1 = 0$                                                                                          |                                                                  |  |  |  |
|             | $2x^{2} + 2\left(y^{2} + \frac{3y}{2} + \frac{9}{16}\right) - \frac{1}{8} = 0$                                                  |                                                                  |  |  |  |
|             | $\therefore x^2 + \left(y + \frac{3}{4}\right)^2 = \frac{1}{16}$                                                                |                                                                  |  |  |  |
|             | ( 1) 10                                                                                                                         |                                                                  |  |  |  |
|             | ∴ The locus is a circle                                                                                                         |                                                                  |  |  |  |
|             |                                                                                                                                 |                                                                  |  |  |  |
|             |                                                                                                                                 |                                                                  |  |  |  |
|             |                                                                                                                                 |                                                                  |  |  |  |



#### Award 3

Correct region shaded, with centre of circle and angular region clearly indicated. Exclusions must be shown.

#### Award 2

Substantial progress towards solution.

#### Award 1

Limited progress towards solution.

## Award 3

Correct solution.

#### Award 2

Substantial progress towards solution.

#### Award 1

Limited progress towards solution.

#### Award 2

Correct solution.

#### Award 1

Substantial progress towards solution.



# Centre = $\left(\frac{4}{\sqrt{3}}, 2\right)$ (x coordinate length is the radius as the radius is perpendicular to the tangent at (0,2) and the centre height is 2 the value at the y axis)

# Award 2

Correct solution.

## Award 1

Substantial progress towards solution.

| Year 12     | Mathematics Extension 2            | Trial HSC Examination 2012 |
|-------------|------------------------------------|----------------------------|
| Question 13 | Solutions and Marking Guidelines   |                            |
|             | Outcome Addressed in this Ouestion |                            |

E4 uses efficient techniques for the algebraic manipulation required in dealing with questions such

|             | s efficient techniques for the algebraic manipulation requir                                                                            | ed in dealing with questions such              |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|             | hose involving polynomials.                                                                                                             | M 1. C                                         |
| <u>Part</u> | Solutions                                                                                                                               | Marking Guidelines                             |
| (a) (i)     | The coefficients are real.<br>By the conjugate root theorem, $x = -ki$ is also a root.                                                  | Award 1 Correct explanation.                   |
| (ii)        | $\left(ki\right)^4 + a\left(ki\right)^3 + b\left(ki\right)^2 + c\left(ki\right) + d = 0$                                                | Award 2 Correct solution.                      |
|             | $(ki)^{4} + a(ki)^{3} + b(ki)^{2} + c(ki) + d = 0$ $k^{4} - ak^{3}i - bk^{2} + cki + d = 0$ $(k^{4} - bk^{2} + d) - i(ak^{3} - ck) = 0$ | Award 1 Substantial progress towards           |
|             | Equating imaginary parts,<br>$ak^{3} - ck = 0$                                                                                          | solution.                                      |
|             | $k(ak^2 - c) = 0$ $\therefore k = 0 \text{ (which is not a solution)}$                                                                  |                                                |
|             | or $\therefore c = ak^2$                                                                                                                |                                                |
| (iii)       | Equating real parts,<br>$k^4 - bk^2 + d = 0$                                                                                            | Award 2 Correct solution.                      |
|             | $\left(\frac{c}{a}\right)^2 - b\left(\frac{c}{a}\right) + d = 0$                                                                        | Award 1 Substantial progress towards solution. |
|             | $\frac{c^2}{a^2} - \frac{bc}{a} + d = 0$ $\frac{c^2 - abc + da^2}{a^2} = 0$                                                             |                                                |
|             | $\therefore c^2 - abc + da^2 = 0$                                                                                                       |                                                |
| (iv)        | $\therefore c^2 + a^2 d = abc$ Substitute $x = 2$ ,                                                                                     | Award 2                                        |
|             | 16 + 8a + 2c + d = 0                                                                                                                    | Correct solution.                              |
|             | i.e. $d = -16 - 8a - 2c = 2(-8 - 4a - 2)$<br>$\therefore d$ is even                                                                     | Award 1 Substantial progress towards solution. |
|             | Substitute $b = 0$ into $c^2 + a^2d = abc$                                                                                              | solution.                                      |
|             | $c^2 + a^2 d = 0$                                                                                                                       |                                                |
|             | Since $d$ is even, $c^2$ is even.                                                                                                       |                                                |
|             | Since $c^2$ is even, then $c$ is even.                                                                                                  |                                                |
|             |                                                                                                                                         |                                                |
|             |                                                                                                                                         |                                                |
|             |                                                                                                                                         |                                                |

(b) (i) 
$$z^{5} = -1$$

$$\therefore z^{5} = \operatorname{cis}\left(\pi + 2k\pi\right)$$

$$\vdots z = \operatorname{cis}\left(\frac{\pi + 2k\pi}{5}\right)$$
i.e.  $z = \operatorname{cis}\left(\frac{\pi + 2.0\pi}{5}\right), \operatorname{cis}\left(\frac{\pi + 2.1\pi}{5}\right), \operatorname{cis}\left(\frac{\pi + 2.2\pi}{5}\right), \operatorname{cis}\left(\frac{\pi + 2.3\pi}{5}\right), \operatorname{cis}\left(\frac{\pi + 2.4\pi}{5}\right)$ 

$$= \operatorname{cis}\left(\frac{\pi}{5}\right), \operatorname{cis}\left(\frac{3\pi}{5}\right), \operatorname{cis}\left(\frac{5\pi}{5}\right), \operatorname{cis}\left(\frac{7\pi}{5}\right), \operatorname{cis}\left(\frac{9\pi}{5}\right)$$

$$= \operatorname{cis}\left(\frac{\pi}{5}\right), \operatorname{cis}\left(\frac{3\pi}{5}\right), \operatorname{cis}\left(\pi\right), \operatorname{cis}\left(-\frac{3\pi}{5}\right), \operatorname{cis}\left(-\frac{\pi}{5}\right)$$

$$= \operatorname{cis}\left(\frac{\pi}{5}\right), \operatorname{cis}\left(\frac{3\pi}{5}\right), -1, \operatorname{cis}\left(-\frac{3\pi}{5}\right), \operatorname{cis}\left(-\frac{\pi}{5}\right)$$

(ii) 
$$z^5 + 1 = (z+1)(z^4 - z^3 + z^2 - z + 1)$$

The only real root is z = -1

From (i), the other roots must be the solutions to  $z^4 - z^3 + z^2 - z + 1 = 0$ 

(iii) 
$$z^4 - z^3 + z^2 - z + 1 = 0$$

becomes

$$z^{2} - z + 1 - \frac{1}{z} + \frac{1}{z^{2}} = 0$$
 (dividing through by  $z^{2}$ )  

$$\therefore z^{2} + z^{-2} - (z + z^{-1}) + 1 = 0$$

$$\therefore 2\cos 2\theta - 2\cos \theta + 1 = 0$$

Using the result  $z^n + z^{-n} = 2\cos n\theta$  (where  $z = \cos \theta + i\sin \theta$ )

i.e. 
$$2(2\cos^2\theta - 1) - 2\cos\theta + 1 = 0$$

$$\therefore 4\cos^2\theta - 2\cos\theta - 1 = 0$$

(iv) 
$$z = \operatorname{cis} \frac{3\pi}{5} \text{ is a solution of } z^4 - z^3 + z^2 - z + 1 = 0$$
$$\therefore \theta = \frac{3\pi}{5} \text{ is a solution of } 4\cos^2\theta - 2\cos\theta - 1 = 0$$

$$\cos \theta = \frac{-(-2) \pm \sqrt{(-2)^2 - 4.4. - 1}}{2.4}$$
$$= \frac{2 \pm \sqrt{20}}{8}$$
$$= \frac{1 \pm \sqrt{5}}{4}$$

But 
$$\cos \frac{3\pi}{5} < 0 \Rightarrow \sec \frac{3\pi}{5} < 0$$

$$\therefore \sec \frac{3\pi}{5} = \frac{4}{1 - \sqrt{5}} = -\left(1 + \sqrt{5}\right)$$

#### Award 2

Correct solution.

#### Award 1

Substantial progress towards solution.

#### Award 1

Correct explanation.

#### Award 3

Correct solution.

#### Award 2

Substantial progress towards solution.

#### Award 1

Limited progress towards solution.

#### Award 2

Correct solution.

#### Award 1

Substantial progress towards solution.

| Year 12    | Mathematics Extension 2                                                                                                                                                                                                                             | Trial HSC Examination 2012                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Question 1 | <u>U</u>                                                                                                                                                                                                                                            |                                                                                                                                   |
| E2         | Outcomes Addressed in this Question                                                                                                                                                                                                                 | 4.4                                                                                                                               |
| E4 uses    | s the relationship between algebraic and geometric represent<br>s efficient techniques for the algebraic manipulation require<br>those involving conic sections                                                                                     |                                                                                                                                   |
| Part       | Solutions                                                                                                                                                                                                                                           | Marking Guidelines                                                                                                                |
| (a) (i)(α) | $4 - \lambda > 0$ and $2 - \lambda > 0$                                                                                                                                                                                                             | Award 1                                                                                                                           |
|            | $\therefore \lambda < 4 \text{ and } \lambda < 2$                                                                                                                                                                                                   | Correct answer.                                                                                                                   |
|            | Hence, $\lambda < 2$ .                                                                                                                                                                                                                              |                                                                                                                                   |
| (i)(β)     | $4 - \lambda > 0$ and $2 - \lambda < 0$ or                                                                                                                                                                                                          | Award 1 Correct answer.                                                                                                           |
|            | $4 - \lambda < 0$ and $2 - \lambda > 0$                                                                                                                                                                                                             |                                                                                                                                   |
|            | Hence, $2 < \lambda < 4$ .                                                                                                                                                                                                                          |                                                                                                                                   |
|            | (Not possible to have $\lambda < 2$ and $\lambda > 4$ )                                                                                                                                                                                             |                                                                                                                                   |
| (ii)       | $\lambda = 1 : \frac{x^2}{3} + \frac{y^2}{1} = 1$ $e^2 = 1 - \frac{b^2}{a^2} = 1 - \frac{1}{3} = \frac{2}{3} \Rightarrow e = \sqrt{\frac{2}{3}}$ Foci = $(\pm ae, 0) = (\pm \sqrt{2}, 0)$                                                           | Award 3 Correct graph, with foci, directrices and intercepts with axes clearly indicated.  Award 2 Correct graph, with any two of |
|            | Directrices: $x = \pm \frac{a}{e} = \pm \frac{3}{\sqrt{2}}$                                                                                                                                                                                         | Correct graph, with any two of foci, directrices and intercepts with axes indicated.                                              |
|            | $x=-3/\sqrt{2}$ $= 2$                                                                                                                                                                                                                               | Award 1 Correct graph, with only one of foci, directrices and intercepts with axes indicated.                                     |
|            | A' S' B C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                         |                                                                                                                                   |
| (iii)      | As $\lambda$ increases from 1 to 2, $4 - \lambda$ decreases from 3 to 2 while $2 - \lambda$ decreases from 1 to 0.<br>The curve remains an ellipse with the semi – major axis reducing from $\sqrt{3}$ to $\sqrt{2}$ and the semi – minor axis from | Award 3 Correct solution with all reasoning provided.  Award 2                                                                    |
|            | 1 to 0.<br>As 2 is approached, $b \rightarrow 0$ , the ellipse becomes a line                                                                                                                                                                       | Solution with substantial reasoning provided.                                                                                     |
|            | segment joining $(-\sqrt{2},0)$ to $(\sqrt{2},0)$                                                                                                                                                                                                   | Award 1 Solution with limited reasoning provided                                                                                  |

(b) (i) 
$$xy = c^{2}$$

$$y = \frac{c^{2}}{x}$$

$$\frac{dy}{dx} = -\frac{c^{2}}{x^{2}}$$
At  $P\left(cp, \frac{c}{p}\right)$ ,  $\frac{dy}{dx} = -\frac{c^{2}}{(cp)^{2}} = -\frac{1}{p^{2}}$ 

$$\therefore m_{\text{tangent}} = -\frac{1}{p^{2}}$$

$$\therefore m_{\text{normal}} = p^{2}$$
Equation of normal is
$$y - \frac{c}{p} = p^{2}(x - cp)$$

$$py - c = p^{3}(x - cp)$$

$$\therefore p^{3}x - py = cp^{4} - c = c(p^{4} - 1)$$
(ii) 
$$m_{pQ} = \frac{\frac{c}{p} - \frac{c}{q}}{cp - cq} = \frac{cq - cp}{pq} = -\frac{1}{pq}$$
Hence,  $-\frac{1}{pq} = p^{2}$ 

(ii) 
$$m_{PQ} = \frac{\frac{1}{p} - \frac{1}{q}}{cp - cq} = \frac{\frac{2q - 4p}{pq}}{cp - cq} = -\frac{1}{p}$$

$$\text{Hence, } -\frac{1}{pq} = p^2$$

$$\therefore p^3 q = -1$$

(iii) 
$$R = \left(\frac{cp + cq}{2}, \frac{\frac{c}{p} + \frac{c}{q}}{2}\right) = \left(\frac{c}{2}(p+q), \frac{c}{2}(\frac{p+q}{pq})\right)$$

$$Let \ x = \frac{c}{2}(p+q) \text{ and } y = \frac{c}{2}(\frac{p+q}{pq})$$

$$\therefore \frac{x}{y} = \frac{\frac{c}{2}(p+q)}{\frac{c}{2}(\frac{p+q}{pq})} = pq$$

$$From (ii) \ pq = -\frac{1}{p^2}$$

$$\therefore \frac{x}{y} = -\frac{1}{p^2}$$

Using the equation of the normal,

$$p^{2}x - y = \frac{c}{p} \left( p^{4} - 1 \right)$$

$$-\left( \frac{y}{x} \right) x - y = \frac{c}{p} \left( \left( -\frac{y}{x} \right)^{2} - 1 \right)$$

$$-2y = \frac{c}{p} \left( \frac{y^{2} - x^{2}}{x^{2}} \right)$$
Square both sides,
$$4y^{2} = c^{2} \times \left( -\frac{x}{y} \right) \left( \frac{x^{2} - y^{2}}{x^{2}} \right)^{2}$$

$$4y^{3}x^{3} = -c^{2} \left( x^{2} - y^{2} \right)^{2}$$

$$\therefore 4y^{3}x^{3} + c^{2} \left( x^{2} - y^{2} \right)^{2} = 0$$

## Award 2

Correct solution.

#### Award 1

Substantial progress towards solution.

## Award 2

Correct solution.

# Award 1

Substantial progress towards solution.

#### Award 3

Correct solution.

## Award 2

Substantial progress towards solution

#### Award 1

Limited progress towards solution

| Year 12    | Mathematics Extension 2                                                                                                                                                                                             | Trial HSC Examination 2012                                              |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Question 1 |                                                                                                                                                                                                                     |                                                                         |
|            | Outcomes Addressed in this Question mbines the ideas of algebra and calculus to determine the inde variety of functions                                                                                             |                                                                         |
| E7 use     | es the techniques of slicing to determine volumes                                                                                                                                                                   |                                                                         |
| Part       | Solutions                                                                                                                                                                                                           | Marking Guidelines                                                      |
| (a) (i)    |                                                                                                                                                                                                                     | Award 2 Correct graph.  Award 1 Substantially correct graph.            |
| (ii)       |                                                                                                                                                                                                                     | Award 2 Correct graph.  Award 1 Substantially correct graph.            |
| (iii)      |                                                                                                                                                                                                                     | Award 2 Correct graph.  Award 1 Substantially correct graph             |
| (b) (i)    | $4x^{2} - 2xy + y^{2} - 6x = 0$ Implicit differentiation yields $8x - 2x\frac{dy}{dx} - y \cdot 2 + 2y\frac{dy}{dx} - 6 = 0$ $4x - x\frac{dy}{dx} - y + y\frac{dy}{dx} - 3 = 0$ $(y - x)\frac{dy}{dx} = 3 - 4x + y$ | Award 2 Correct solution  Award 1 Substantial progress towards solution |
|            | $\frac{dy}{dx} = \frac{3 - 4x + y}{y - x}$                                                                                                                                                                          |                                                                         |

(ii)

If the tangent is vertical,  $\frac{dy}{dx}$  is undefined.

$$\therefore y - x = 0 \Rightarrow x = y$$

Substitute into the equation of the curve

$$4x^2 - 2x \cdot x + x^2 - 6x = 0$$

$$3x^2 - 6x = 0$$

$$3x(x-2)=0$$

$$\therefore x = 0 \text{ or } x = 2$$

 $\therefore$  Points where tangents are vertical are

$$(0,0)$$
 and  $(2,2)$ 





Slices are taken perpendicular to the axis of rotation (x = 10). The base is an annulus.

$$A = \pi(R^2 - r^2)$$
$$= \pi(R + r)(R - r)$$

Now

$$r = 10 - x$$

$$=10-\sqrt{16-y^2}$$

and

$$R = 10 + x$$

$$= 10 + \sqrt{16 - y^2}$$

Area of the annulus is

$$A = \pi (R+r)(R-r)$$

$$= \pi (10 + \sqrt{16 - y^2} + 10 - \sqrt{16 - y^2})(10 + \sqrt{16 - y^2} - 10 + \sqrt{16 - y^2})$$

$$=\pi(20)(2\sqrt{16-y^2})$$

$$=40\pi\sqrt{16-y^{2}}$$

$$\Delta V = 40\pi \sqrt{16 - y^2} \cdot \Delta y$$

$$V = \lim_{\Delta y \to 0} \sum_{y=-4}^{4} 40\pi \sqrt{16 - y^2} \Delta y$$

$$= \int_{-4}^{4} 40\pi \sqrt{16 - y^2} \, dy$$

$$=40\pi \int_{-4}^{4} \sqrt{16-y^2} \, dy$$

#### Award 2

Correct solution.

#### Award 1

Substantial progress towards solution.

## Award 3

Correct solution.

# Award 2

Correctly calculates the area of the annulus and attempts to determine the volume.

#### Award 1

Attempts to calculate the area of the annulus.

| (ii) | $\int_{-4}^{4} \sqrt{16 - y^2}  dy \text{ is the area of a semicircle with a radius}$ of 4. $\int_{-4}^{4} \sqrt{16 - y^2}  dy = \frac{1}{2} \times \pi \times 4^2$ $= 8\pi$ | Award 2 Correct answer.  Award 1 Using area of semi circle or appropriate integration. |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|      | $V = 40\pi \int_{-4}^{4} \sqrt{16 - y^2}  dy$ $= 40\pi \times 8\pi$ $= 320\pi^2 \text{ unit}^3$                                                                              |                                                                                        |
|      |                                                                                                                                                                              |                                                                                        |
|      |                                                                                                                                                                              |                                                                                        |
|      |                                                                                                                                                                              |                                                                                        |
|      |                                                                                                                                                                              |                                                                                        |
|      |                                                                                                                                                                              |                                                                                        |

| Year 12     | Mathematics Extension 2                                                                                                                                                                                                                                                                                                                    | Trial HSC Examination 2012                                                                           |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Question 16 | Solutions and Marking Guidelines                                                                                                                                                                                                                                                                                                           |                                                                                                      |  |
|             | Outcomes Addressed in this Question                                                                                                                                                                                                                                                                                                        |                                                                                                      |  |
| setti       | <del>-</del>                                                                                                                                                                                                                                                                                                                               |                                                                                                      |  |
|             | nmunicates abstract ideas and relationships using appropriate notation and logical argument                                                                                                                                                                                                                                                |                                                                                                      |  |
| Part        | Solutions                                                                                                                                                                                                                                                                                                                                  | Marking Guidelines                                                                                   |  |
| (a) (i)     | $f(x) = \left(1 - \frac{(x)^2}{2}\right) - \cos(x)$ $f(-x) = \left(1 - \frac{(-x)^2}{2}\right) - \cos(-x)$ $f(x) = \left(1 - \frac{(x)^2}{2}\right) - \cos(x) \text{ as } y = \cos x \text{ is an even function}$ $\therefore f(-x) = f(x)$ $\therefore f(x) \text{ is an even function.}$                                                 | Award 1 Correct solution.                                                                            |  |
| (ii)        | $f'(x) = \left(-\frac{2x}{2}\right) - (-\sin x) = \sin x - x$ $f''(x) = \cos x - 1$                                                                                                                                                                                                                                                        | Award 2 Correct expressions for $f'(x)$ and $f''(x)$ Award 1 Only one of $f'(x)$ or $f''(x)$ correct |  |
| (iii)       | $f''(x) \le 0$ for $x \ge 0$<br>because $-1 \le \cos x \le 1$ , hence, $\cos x - 1 \le 0$<br>This means that $f'(x)$ is an decreasing function for $x \ge 0$ .<br>$f'(0) = 0$ $\therefore f'(x) \le f'(0)$<br>i.e. $f'(x) \le 0$                                                                                                           | Award 2 Correct solution.  Award 1 Substantial progress towards solution                             |  |
| (iv)        | Since $f'(x) \le 0$ then $f(x) \le f(0)$ for $x \ge 0$ .<br>f(0) = 0<br>$\therefore f(x) \le 0$ for $x \ge 0$<br>But $f(x)$ is an even function<br>$\therefore f(x) \le 0$ for $x \le 0$<br>$\therefore f(x) \le 0$ for all $x$<br>$\therefore \cos x - \left(1 - \frac{x^2}{2}\right) \le 0$<br>$\therefore \cos x \le 1 - \frac{x^2}{2}$ | Award 2 Correct solution.  Award 1 Substantial progress towards solution                             |  |
|             |                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |  |

| (b) (i) | m 1 . 1 . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Award 3                                                                                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| (b) (i) | Test the result for $n=2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Correct solution.                                                                                    |
|         | $(1+x)^2 > 1+2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Award 2 Attempts to prove the result true for $n = k + 1$ Award 1 Establishes the result for $n = 2$ |
|         | $1+2x+x^2 > 1+2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |
|         | Since $x^2 > 0$ the result is true for $n = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      |
|         | Assume the result is true for $n = k$ $(1+x)^k > 1+kx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |
|         | To prove the result is true for $n = k + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |
|         | i.e we want to establish that $(1+x)^{k+1} > 1 + (k+1)x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      |
|         | $LHS = (1+x)^{k+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |
|         | $= (1+x)(1+x)^k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |
|         | > (1+x)(1+kx) Assumption for $n = k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |
|         | $> 1 + kx + x + kx^2$ $x > -1$ hence $(1+x) > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |
|         | $ > 1 + kx + x \qquad kx^2 > 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |
|         | >1+(k+1)x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |
|         | = RHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |
|         | Therefore the result holds true for $n = k + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |
|         | Hence the result is true for $n \ge 2$ by mathematical induction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |
| (ii)    | From part (i) with $x = -\frac{1}{2n}$ ( $n > 1$ it satisfies $x > -1$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Award 1 Correct solution.                                                                            |
|         | 2n (ii) it is a small $2n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |
|         | $(1-\frac{1}{2n})^n > 1+n \times -\frac{1}{2n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Correct solution.                                                                                    |
|         | 2n $2n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |
|         | $>\frac{1}{2}$ for $n>1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                      |
|         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |
| (c) (i) | The circle through $D$ , $B$ and $X$ has centre $A$ , since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Award 2 Correct solution with full reasoning                                                         |
|         | AD = AB = AX.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      |
|         | Hence, $DAX$ is a diameter.<br>Thus, $\angle DBX = 90^{\circ}$ (angle at circumference in semi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |
|         | circle equals $90^{\circ}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Award 1                                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recognises that D, B and X lie on a circle centred at A.                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on a choic centred at A.                                                                             |
|         | Devide a constant of the conclusion and consistent of the conclusion of the conclusi |                                                                                                      |
| (ii)    | By the converse of the angle in a semicircle, since $\angle DPX$ is a right angle, the circle with diameter $DAX$ also passes through $P$ .<br>Hence $AP = AB$ (radii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Award 2 Correct solution with full                                                                   |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reasoning                                                                                            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Award 1                                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Argues that the circle with                                                                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | diameter <i>DAX</i> also passes through <i>P</i> without giving                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reasons.                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |