\qquad
\qquad

HURLSTONE AGRICULTURAL HIGH SCHOOL

Mathematics Extension 2

Assessment Task 4

Trial Examination

Examiners~ G. Huxley, G. Rawson

General
Instructions

- Reading time -5 minutes
- Working time - 3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- This test paper must NOT be removed from the examination

Total marks: 100

Section I-10 marks (pages 2-4)

- Attempt Questions 1-10
- Allow about 20 minutes for this section

Section II - 90 marks (pages 5-13)

- Attempt Questions 11-16
- Allow about 2 hour 40 minutes for this section

Section 1

10 marks
Attempt Questions 1-10 Allow about 20 minutes for this section.
Use the multiple choice answer sheet provided for Questions 1 - 10

1. What is the gradient of the curve $2 x^{3}-y^{2}=7$ at the point where $y=-3$?
A $\quad-4$
B $\quad-2$
C $\quad-1$
D 4
2. Which graph best describes $|y|=\tan ^{-1}(x)$?
A

B

C

D

3. The sum of the eccentricities of two conics is $\frac{3}{2}$.

Which of the following could the two conics not be?
A An ellipse and a hyperbola
B An ellipse and a parabola
C A circle and a hyperbola
D A hyperbola and a parabola
4. The substitution $t=\tan \frac{\theta}{2}$ is used to find $\int \frac{d \theta}{\cos \theta}$.

Which of the following gives the correct expression for the required integral?
A $\quad \int \frac{1}{2\left(1-t^{2}\right)} d t$
B $\quad \int \frac{2}{1-t^{2}} d t$
C $\quad \int \frac{2 t}{1-t^{2}} d t$
D $\int \frac{4 t}{\left(1+t^{2}\right)^{2}} d t$
5. Multiplying a non-zero complex number by $\frac{1+i}{1-i}$ results in a rotation about the origin on an Argand diagram.
What is the rotation?
A \quad Clockwise by $\frac{\pi}{4}$
B \quad Clockwise by $\frac{\pi}{2}$
C \quad Anticlockwise by $\frac{\pi}{4}$
D Anticlockwise by $\frac{\pi}{2}$
6. It is given that $z=2+i$ is a root of $z^{3}+a z^{2}-7 z+15=0$, where a is a real number.

What is the value of a ?
A $\quad-7$
B -1
C 1
D 7
7. The equation $|z-3|+|z+3|=10$ defines an ellipse.

What is the length of the semi minor axis?
A 4
B 5
C 8
D $\quad 10$
8. Under which condition would the graph of $f(x)=\frac{1}{x^{2}+m x-n}$, where m and n are real constants, have no vertical asymptotes?
A $m^{2}<-4 n$
B $m^{2}>-4 n$
C $\quad m^{2}<4 n$
D $\quad m^{2}>4 n$
9. Consider the region bounded by the y-axis, the line $y=4$ and the curve $y=x^{2}$.

If this region is rotated about the line $y=4$, which expression gives the volume of the solid of revolution?
A $\quad V=\pi \int_{0}^{4} x^{2} d y$
B $\quad V=\pi \int_{0}^{2}(4-y)^{2} d x$
C $\quad V=2 \pi \int_{0}^{2}(4-y) x d y$
D $\quad V=\pi \int_{0}^{4}(4-y)^{2} d x$
10. A hostel has four vacant rooms. Each room can accommodate a maximum of four people. In how many different ways can six people be accommodated in the four rooms?
A 4020
B 4068
C 4080
D 4096

Section 2

90 marks
Attempt Questions 11-16 Allow about 2 hours and 40 minutes for this section Answer each question in a separate answer booklet.
All necessary working should be shown in every question.

Question 11 (15 marks) Start a new answer booklet.
(a) Given that ω is one of the complex roots of the equation $z^{3}-1=0$, show that $\frac{1}{1+\omega}+\frac{1}{1+\omega^{2}}=1$
(b) Show that the quadratic equation $(1+i) z^{2}+4 i z-2(1-i)=0$ has equal roots.
(c) (i) Find the value of $\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}$
(ii) Show that $(\cos \theta+i \sin \theta)(1+\cos \theta-i \sin \theta)=1+\cos \theta+i \sin \theta$
(iii) Hence show that $\left(1+\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6}=0$
(d) Sketch the region on the Argand diagram defined by

$$
-\frac{\pi}{2} \leq \arg (z-1-i) \leq \pi \text { and }|z| \leq \sqrt{2}
$$

(e) The points A and B represent the complex numbers $z_{1}=2-i$ and $z_{2}=8+i$ respectively.

Find all the possible complex numbers z_{3}, represented by C, such that $\triangle A B C$ is isosceles and right angled at C.

End of Question 11

Question 12 (15 marks) Start a new answer booklet.

(a) The diagram below shows the graph of the function $f(x)=\sqrt{x+1}-2$

On the separate diagrams on the answer sheet provided for this question, sketch the following graphs, showing clearly any intercepts on the co-ordinate axes, key points and the equations of any asymptotes.
(i) $y=[f(x)]^{2}$
(ii) $y^{2}=f(x)$
(iii) $y=\frac{1}{f(x)}$
(iv) $y=x \times f(x)$

Question 12 continued...
(b) The diagram of the ellipse E with equation $\frac{x^{2}}{3}+\frac{y^{2}}{4}=1$ is shown below.

The line $y=m x+4$, with $m>0$, is a tangent to the ellipse E at the point P.
(i) Find the value of m. 3
(ii) Determine the co-ordinates of P

End of Question 12

Question 13 (15 marks) Start a new answer booklet.
(a) (i) Find a and b such that $x=2$ is a double root of $P(x)=x^{4}+a x^{3}+x^{2}+b$.
(ii) For the values of a and b above, factorise $P(x)$ over the real numbers.
(b) Consider the polynomial $P(x)=x^{3}-x^{2}-21 x+45$ with roots α, β and γ.
(i) Find the monic polynomial with roots $\alpha-3, \beta-3$ and $\gamma-3$.
(ii) Hence solve $P(x)=0$.
(c) Suppose α, β and γ are the roots of the polynomial equation

$$
x^{3}+x+12=0
$$

(i) Find $\alpha^{2}+\beta^{2}+\gamma^{2}$
(ii) Hence explain why only one of the roots is real.
(iii) Let the real root be denoted by α. Show that $-3<\alpha<-2$.

End of Question 13

Question 14 (15 marks) Start a new answer booklet.
(a) Sketch $\frac{x^{2}}{16}+\frac{y^{2}}{11}=1$
indicating the co-ordinates of its foci and equations of the directrices.
(b) The distinct points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ are on the same branch of the hyperbola with the equation $x y=c^{2}$.
The tangent at P has the equation $x+p^{2} y=2 c p$. (You do not have to derive this.)
The tangents at P and Q meet at the point T.

(i) Show that T has co-ordinates $\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)$
(ii) Let P and Q move so that the tangent at P intersects the x-axis at $(c q, 0)$. Show that the locus of T is a hyperbola and state its eccentricity.

Question 14 continued...
(c) The region bounded by the curve $y=\sqrt{2-x}$, the x axis and the y axis is rotated About the line $x=2$ to form a solid.

Calculate the volume of the solid generated.
(d) The diagram shows the region bounded by the curve $y=(x+2)^{2}$ and the line $y=4-x$.

Use the method of cylindrical shells to calculate the volume generated when This region is rotated about the y-axis.

End of Question 14

Question 15 (15 marks) Start a new answer booklet.
(a) Find $\int \sin ^{5} \theta \cos ^{4} \theta d \theta$
(b) Find $\int \frac{\ln x}{x^{2}} d x$
(c) Using the substitution $t=\tan \frac{x}{2}$, or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\cos x}$.
(d) (i) Prove that $\frac{x^{2}}{\left(x^{2}+1\right)^{n+1}}=\frac{1}{\left(x^{2}+1\right)^{n}}-\frac{1}{\left(x^{2}+1\right)^{n+1}}$
(ii) Given that $I_{n}=\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{n}}$, prove that $2 n I_{n+1}=\frac{1}{2^{n}}+(2 n-1) I_{n}$.
(iii) Hence, evaluate $\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{3}}$.

Question 16 (15 marks) Start a new answer booklet.
(a) (i) Show that $\sqrt{2} \cos x-\frac{1}{\sqrt{2}} \cos x=\cos \frac{\pi}{4} \cos x$
(ii) A sequence of numbers $T_{n}, n=1,2,3, \ldots$. Is defined by $T_{1}=2, T_{2}=0$ and $T_{n}=2 T_{n-1}-2 T_{n-2}$ for $n=3,4,5, \ldots$.
Use mathematical induction to show that:

$$
T_{n}=(\sqrt{2})^{n+2} \cos \left(\frac{n \pi}{4}\right), n=1,2,3, \ldots
$$

(b) The diagram below shows two tangents $P T$ and $P S$ drawn to a circle from a point P outside the circle. Through T, a chord $T A$ is drawn parallel to the tangent $P S$. The secant $P A$ meets the circle at E, and $T E$ produced meets $P S$ at F.

(i) Prove that $\triangle E F P$ is similar to $\triangle P F T$.
(ii) Hence show that $P F^{2}=T F \times E F$
(iii) Hence or otherwise, prove that F is the midpoint of $P S$.

Question 16 continued...
(c) Suppose $f(x)=x-\ln \left(1+x+\frac{x^{2}}{2}\right)$.

Show that $f(x)$ is an increasing function for all values of x.
(d) Given that $\frac{m+n}{2} \geq \sqrt{m n}$, show that, for $m>0, n>0, p>0, q>0$:
(i) $(m+n)(n+p)(m+p) \geq 8 m n p$
(ii) $\frac{m}{n}+\frac{n}{p}+\frac{p}{q}+\frac{q}{m} \geq 4$

HURLSTONE AGRICULTURAL HIGH SCHOOL

EXTENSION 2 MATHEMATICS

2019

TRIAL EXAMINATION

SAMPLE SOLUTIONS AND MARKING GUIDELINES

SECTION I ANSWER SHEET

EXTENSION 2 MATHEMATICS

Year 12	Mathematics Extension 2	TRIAL 2019
Question No. 11	Solutions and Marking Guidelines	
Outcomes Addressed in this Question		
E3 - uses the relationship between algebraic and geometric representations of complex numbers (and of conic sections)		

Solutions

(a) $z^{3}-1=(z-1)\left(z^{2}+z+1\right)$
ω is complex root, so $\omega^{2}+\omega+1=0$

$$
\begin{aligned}
\frac{1}{1+\omega}+\frac{1}{1+\omega^{2}} & =\frac{1+\omega^{2}+1+\omega}{(1+\omega)\left(1+\omega^{2}\right)} \\
& =\frac{\omega^{2}+\omega+1+1}{1+\omega^{2}+\omega+\omega^{3}} \\
& =\frac{0+1}{0+\omega^{3}}=\frac{1}{1}=1 \quad\left(\omega^{3}=1\right)
\end{aligned}
$$

(b) $\Delta=b^{2}-4 a c$
$=(4 i)^{2}-4(1+i)(-2(1-i))$
$=-16+8(1+i)(1-i)$
$=-16+8\left(1-i^{2}\right)$
$=-16+8(2)$
$=0$
(c) (i) $\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}=(\cos \pi+i \sin \pi)$

$$
=-1
$$

(ii)

$$
\begin{aligned}
\text { LHS } & =(\cos \theta+i \sin \theta)(1+\cos \theta-i \sin \theta) \\
& =\cos \theta+\cos ^{2} \theta-i \sin \theta \cos \theta+i \sin \theta+i \sin \theta \cos \theta-i^{2} \sin ^{2} \theta \\
& =\cos \theta+\cos ^{2} \theta+i \sin \theta+\sin ^{2} \theta \\
& =1+\cos \theta+i \sin \theta \\
& =\text { RHS }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { LHS } & =\left(1+\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6} \\
& =\left[\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)\right]^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6} \\
& =-1\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6} \\
& =0=\text { RHS }
\end{aligned}
$$

Marking Guidelines

$\mathbf{2}$ marks: correct solution
1 mark: substantially correct solution
(apparently there are
approximately 374 ways to do this question)

2 marks: correct solution
1 mark: substantially correct solution
(NB: finding the sum and products of roots was not enough for a mark unless you actually were able to come up with the double root)
$\underline{\mathbf{2} \text { marks: correct solution }}$
1 mark: substantially correct solution

1 mark: correct solution
$\mathbf{2}$ marks: correct solution
1 mark: substantially correct solution (NB: Hence, but not otherwise... ie MUST use part (i) and/or (ii) to be elligble for marks)

Question 11 continued...

(e)

For $\triangle A B C$ to be isosceles, with $A C=B C, C$ must be on the perpendicular bisector of $A B$.

For $\angle B C A$ to be a right angle, $A C B C^{\prime}$ must be a square, inscribed in the circle with $A B$ as diameter.

So C must be either $(4,3)$ or $(6,-3)$
The complex numbers are $4+3 i$ or $6-3 i$

3 marks: correct solution

2 marks: substantially correct solution

1 mark: partial progress towards correct solution

3 marks: correct solution

2 marks: substantially correct solution

1 mark: partial progress towards correct solution
(NB: algebraic methods are fine for this question, but very few... like extremely very few candidates were successful in finding both answers. It was much easier just to draw the square and work around the diagram)

Question No. 12 Solutions and Marking Guidelines
Outcomes Addressed in this Question
E6 combines the ideas of algebra and calculus to determine the important features of the graphs of a wide variety of functions

	Solutions	Marking Guidelines
(a)	See next page.	(a) (i) 2 marks: Correct graph including shape, intercepts on axes and original function, and end point. 1 mark: One feature not included. (ii) 2 marks: Correct graph including coordinates indicated and parabolic shape. 1 mark: One feature not included. (iii) 3 marks: Correct graph including endpoint, intercepts on original function, and asymptote. 2 marks: One feature not included. 1 mark: Some relevant progress made. (iv) 3 marks: Correct graph including coordinates indicated, intercepts on axes and original function, and endpoint. 2 marks: One feature not included. 1 mark: Some relevant progress made.
(b)	 This diagram is not entirely necessary to be able to answer the question, but it would have been of assistance to illustrate how the line with positive gradient touches the ellipse in the second quadrant.	(b)

HAHS Mathematics Extension 2

2019 Trial Examination
Question 12(a) answer sheet
(i) $y=[f(x)]^{2}$
(ii) $y^{2}=f(x)$

(iii) $y=\frac{1}{f(x)}$

(iv) $y=x \times f(x)$

Year 12 Mathematics Extension 2	TRIAL 2019	
Question No. 13 Solutions and Marking Guidelines		
Outcomes Addressed in this Question		
E4 - uses efficient techniques for the algebraic manipulation required in dealing with questions such as		

	Solutions
	(a)(i) now, $\begin{aligned} & P(x)=x^{4}+a x^{3}+x^{2}+b \\ & P^{\prime}(x)=4 x^{3}+3 a x^{2}+2 x \\ & P^{\prime}(2)=0 \end{aligned}$ ie $\quad 4(2)^{3}+3 a(2)^{2}+2(2)=0$ $32+12 a+4=0 \quad \Rightarrow a=-3$ and $P(2)=0$ ie $(2)^{4}+-3(2)^{3}+(2)^{2}+b=0$ $\begin{aligned} & 16-24+4+b=0 \quad \Rightarrow b=4 \\ & \therefore a=-3, \quad b=4 \end{aligned}$

(ii) $P(x)=x^{4}-3 x^{3}+x^{2}+4$

$$
\begin{aligned}
& =(x-2)^{2}\left(A x^{2}+B x+C\right) \\
& =\left(x^{2}-4 x+4\right)\left(A x^{2}+B x+C\right) \\
& =\left(x^{2}-4 x+4\right)\left(x^{2}+B x+1\right) \\
& =(x-2)^{2}\left(x^{2}+x+1\right)
\end{aligned}
$$

(b)(i)

$$
P(x)=x^{3}-x^{2}-21 x+45
$$

roots of form $y=x-3$, so let $x=y+3$
$(y+3)^{2}=y^{2}+6 y+9$
$(y+3)^{3}=y^{3}+9 y^{2}+27 y+27$
so, $P(y+3)=(y+3)^{3}-(y+3)^{2}-21(y+3)+45$

$$
=y^{3}+9 y^{2}+27 y+27-y^{2}-6 y-9-21 y-63+45
$$

$$
P(y+3)=y^{3}+8 y^{2}
$$

(ii) $y^{3}+8 y^{2}=0$

$$
\begin{aligned}
y^{2}(y+8) & =0 \\
y & =0,0,-8 \\
& \therefore x=3,3,-5 \quad(\text { from }(\mathrm{i}), x=y+3)
\end{aligned}
$$

3 marks: correct solution
2 marks: substantially correct solution

1 mark: partial progress towards correct solution

1 mark: correct solution
NB: should be factorised fully ...

3 marks: correct solution
2 marks: substantially correct solution

1 mark: partial progress towards correct solution

2 marks: correct solution
1 mark: substantially correct solution

Question 13 continued...
(c) (i) $x^{3}+0 x^{2}+x+12=0$

$$
\begin{aligned}
\alpha+\beta+\gamma & =-\frac{b}{a}=0 \\
\alpha \beta+\alpha \gamma+\beta \gamma & =\frac{c}{a}=1 \\
\alpha \beta \gamma & =-\frac{d}{a}=-12 \\
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =0-2(1) \\
& =-2
\end{aligned}
$$

(ii) The sum of squares is <0, so at least one root is unreal. Coefficients are real, so unreal roots occur in conjugate pairs. \therefore there are two unreal roots.
Degree three polynomial has 3 roots, one of which must be real. (odd degree).
\therefore there must be one real root.
(iii) $P(x)=x^{3}+x+12$

$$
P(-3)=(-3)^{3}+(-3)+12=-18<0
$$

$$
P(-2)=(-2)^{3}+(-2)+12=2>0
$$

\therefore the graph crosses the x-axis between -3 and -2 ie $\quad-3<\alpha<-2$.
$\mathbf{2}$ marks: correct solution
1 mark: substantially correct solution

2 marks: correct solution
1 mark: substantially correct solution
$\mathbf{2}$ marks: correct solution
1 mark: substantially correct solution

NOTE:

Hence v Hence or otherwise.

- Hence means you must use the previous part(s) of question to answer this part. If you use alternate means, you are not answering the question, and therefore making yourself ineligible to receive marks for this part - regardless of whether your method works or not. This was the case for many candidates in this question.
- Hence or otherwise allows you to use whatever means necessary to answer the question. Usually, the previous parts are the most convenient stepping stone to the next part, but it's up to you.

Outcomes Addressed in this Question

E3 uses the relationship between algebraic and geometric representations of conic sections.
E7 uses the techniques of slicing and cylindrical shells to determine volumes.

Outcome		Solutions			
E3 (a)					

(b)
(i)

At $T: x+p^{2} y=2 c p \ldots . . .(1)$
$x+q^{2} y=2 c q \ldots .$. (2)
$(1)-(2):\left(p^{2}-q^{2}\right) y=2 c(p-q)$

$$
\begin{aligned}
& (p-q)(p+q) y=2 c(p-q) \\
& \therefore y=\frac{2 c}{p+q} \quad ; p \neq q
\end{aligned}
$$

Substitute into (1): $x+p^{2}\left(\frac{2 c}{p+q}\right)=2 c p$

$$
\begin{aligned}
& x(p+q)+2 c p^{2}=2 c p^{2}+2 c p q \\
& x=\frac{2 c p q}{p+q} \quad \therefore T=\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)
\end{aligned}
$$

(ii)Substitute $(c q, 0)$ into equation of tangent through P.

$$
c q+p^{2}(0)=2 c p \quad \rightarrow q=2 p
$$

Substitute into co-ordinates of T

$$
\begin{aligned}
T & =\left(\frac{2 c p(2 p)}{p+2 p}, \frac{2 c}{p+2 p}\right) \\
& =\left(\frac{4 c p}{3}, \frac{2 c}{3 p}\right)
\end{aligned}
$$

The paramater p can be eliminated by multiplication:
$x y=\left(\frac{4 c p}{3}\right) \times\left(\frac{2 c}{3 p}\right)=\frac{8 c^{2}}{9}$
which is constant for the hyperbola $x y=c^{2}$.
Therefore the locus of T is a rectangular hyperbola, so it has eccentricity $=\sqrt{2}$.

Marking Guidelines

(a) (i)

2 marks: Complete solution with foci and directrices labelled. 1 mark: Relevant progress
(b) (i)

2 marks: Correct
solutions with working.
1 mark: Relevant progress.

(ii)

4 marks: Full solution with working.
3 marks: One element of solution incorrect. 2 marks: Significant progress.
1 mark: Some relevant progress.

E7 (c)
Using the method of slicing, we get washers, with thickness Δy.
Washer: Outer radius $=2$; Inner radius $=2-x$
Area $=\pi\left(2^{2}-(2-x)^{2}\right)$
But $y=\sqrt{2-x} \rightarrow y^{2}=2-x$
$\therefore A(y)=\pi\left(4-y^{4}\right)$
$\Delta V=\pi\left(4-y^{4}\right) \Delta y$
$V=\lim _{\Delta y \rightarrow 0} \sum_{y=0}^{\sqrt{2}} \pi\left(4-y^{4}\right) \Delta y$
$=\pi \int_{0}^{\sqrt{2}} 4-y^{4} d y$
$=\pi\left[4 y-\frac{y^{5}}{5}\right]_{0}^{\sqrt{2}}=\frac{16 \sqrt{2} \pi}{5}$ units 3
Alternately, the method of cylindrical shells would give the following integral:
$V=2 \pi \int_{0}^{2}(2-x)^{\frac{3}{2}} d x$ with the same final result.
(d)

Cylindrical shells will have height equal to the difference between the line and parabola. Since each shell's radius is positive, the radius will be the negative of the x value at each point in the given region.
$A(x)=2 \pi r h$
$r=-x ; \quad h=(4-x)-(x+2)^{2}$

$$
=-5 x-x^{2}
$$

$\therefore A(x)=2 \pi(-x)\left(-5 x-x^{2}\right)$ $=-2 \pi\left(-5 x^{2}-x^{3}\right)$
$\Delta V=-2 \pi\left(-5 x-x^{3}\right) \Delta x$
Points of intersection of curves:
$(x+2)^{2}=4-x$
$x(x+5)=0 \quad \rightarrow x=0,-5$
$\therefore V=\lim _{\Delta x \rightarrow 0} \sum_{x=-5}^{0}-2 \pi\left(-5 x^{2}-x^{3}\right) \Delta x$
$=2 \pi \int_{-5}^{0} 5 x^{2}+x^{3} d x$
$=2 \pi\left[\frac{5 x^{3}}{3}+\frac{x^{4}}{4}\right]_{-5}^{0}=\frac{625 \pi}{6}$ units 3
(c)

3 marks: Full solution with working.
2 marks: Significant progress.
1 mark: Some relevant progress.

(d)

4 marks: Full solution with working.
3 marks: One element of solution incorrect.
2 marks: Significant progress.
1 mark: Some relevant progress.

Year 12 Mathematics Extension 2	TRIAL 2019	
Question No. 15 Solutions and Marking Guidelines		
Outcomes Addressed in this Question		
E8 - applies further techniques of integration, including partial fractions, integration by parts and recurrence formulae, to problems		

Solutions	
(a) $\int \sin ^{5} \theta \cos ^{4} \theta d \theta$	$=\int \sin ^{4} \theta \cos ^{4} \theta \sin \theta d \theta$
	$=\int\left(1-\cos ^{2} \theta\right)^{2} \cos ^{4} \theta \sin \theta d \theta \quad$$u$ $=\cos \theta$ $=-\int\left(1-u^{2}\right)^{2} u^{4} d u$ $=-\int\left(u^{4}-2 u^{6}+u^{8}\right) d u$ $=-\left(\frac{u^{5}}{5}-\frac{2 u^{7}}{7}+\frac{u^{9}}{9}\right)+C$ $=-\frac{1}{5} \cos ^{5} \theta+\frac{2}{7} \cos ^{7} \theta-\frac{1}{9} \cos ^{9} \theta+C$

(b) $\int \frac{\ln x}{x^{2}} d x=\int \ln x \cdot \frac{1}{x^{2}} d x$
$=u v-\int v d u$
$=\ln x\left(-\frac{1}{x}\right)-\int\left(-\frac{1}{x}\right) \frac{1}{x} d x$
$=-\frac{\ln x}{x}+\int \frac{1}{x^{2}} d x$
$=-\frac{\ln x}{x}-\frac{1}{x}+C$
$=\frac{-\ln x-1}{x}+C$
(c) $t=\tan \frac{x}{2} \quad \cos x=\frac{1-t^{2}}{1+t^{2}} \quad x=\frac{\pi}{2} \Rightarrow t=1$

$$
d x=\frac{2 d t}{1+t^{2}} \quad x=0 \Rightarrow t=0
$$

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\cos x} & =\int_{0}^{1} \frac{\frac{2}{1+t^{2}}}{2+\frac{1-t^{2}}{1+t^{2}}} d t \\
& =\int_{0}^{1} \frac{2}{3+t^{2}} d t \\
& =2\left[\frac{1}{\sqrt{3}} \tan ^{-1} \frac{t}{\sqrt{3}}\right]_{0}^{1}=\frac{2}{\sqrt{3}}\left[\tan ^{-1} \frac{1}{\sqrt{3}}-\tan ^{-1} 0\right] \\
& =\frac{2}{\sqrt{3}} \cdot \frac{\pi}{6}=\frac{\pi}{3 \sqrt{3}}
\end{aligned}
$$

3 marks: correct solution
2 marks: substantially correct solution

1 mark: partial progress towards correct solution

2 marks: correct solution
1 mark: substantially correct solution

4 marks: correct solution
3 marks: substantially correct solution

2 marks: significant progress towards correct solution

1 mark: limited progress towards correct solution

Question 15 continued...
(d) (i) LHS $=\frac{x^{2}}{\left(x^{2}+1\right)^{n+1}}=\frac{x^{2}+1-1}{\left(x^{2}+1\right)^{n+1}}$

$$
\begin{aligned}
& =\frac{x^{2}+1}{\left(x^{2}+1\right)^{n+1}}-\frac{1}{\left(x^{2}+1\right)^{n+1}} \\
& =\frac{1}{\left(x^{2}+1\right)^{n}}-\frac{1}{\left(x^{2}+1\right)^{n+1}}=\text { RHS }
\end{aligned}
$$

(ii) $I_{n}=\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{n}}=u v-\int_{0}^{1} v d u$

$$
\text { let } u=\frac{1}{\left(x^{2}+1\right)^{n}}
$$

$$
=\left[\frac{x}{\left(x^{2}+1\right)^{n}}\right]_{0}^{1}-\int_{0}^{1} \frac{-2 n x^{2}}{\left(x^{2}+1\right)^{n+1}} d x
$$

$$
d u=\frac{-2 n x}{\left(x^{2}+1\right)^{n+1}}
$$

$$
\text { and } d v=d x
$$

$$
=\frac{1}{2^{n}}+2 n \int_{0}^{1} \frac{x^{2}}{\left(x^{2}+1\right)^{n+1}} d x
$$

$$
=\frac{1}{2^{n}}+2 n \int_{0}^{1}\left(\frac{1}{\left(x^{2}+1\right)^{n}}-\frac{1}{\left(x^{2}+1\right)^{n+1}}\right) d x
$$

$$
I_{n}=\frac{1}{2^{n}}+2 n\left(I_{n}-I_{n+1}\right)
$$

$$
2 n I_{n+1}=\frac{1}{2^{n}}+(2 n-1) I_{n}
$$

(iii) $\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{3}}=I_{3} \quad$ so let $n=2$ and $n=1$

$$
\begin{array}{rlrl}
2(2) I_{2+1} & =\frac{1}{2^{2}}+(2(2)-1) I_{2} & 2(1) I_{1+1} & =\frac{1}{2^{1}}+(2(1)-1) I_{1} \\
4 I_{3} & =\frac{1}{4}+3 I_{2} & 2 I_{2} & =\frac{1}{2}+I_{1}
\end{array}
$$

$$
I_{1}=\int_{0}^{1} \frac{d x}{x^{2}+1}=\left[\tan ^{-1} x\right]_{0}^{1}=\frac{\pi}{4}
$$

$$
\begin{array}{rlrl}
2 I_{2} & =\frac{1}{2}+\frac{\pi}{4} & 4 I_{3} & =\frac{1}{4}+3\left(\frac{1}{4}+\frac{\pi}{8}\right) \\
I_{2}=\frac{1}{4}+\frac{\pi}{8} & I_{3} & =\frac{1}{16}+\frac{3}{4}\left(\frac{2+\pi}{8}\right) \\
& & =\frac{2+6+3 \pi}{32}=\frac{8+3 \pi}{32}
\end{array}
$$

1 mark: correct solution

2 marks: correct solution
1 mark: substantially correct solution

3 marks: correct solution
2 marks: substantially correct solution

1 mark: partial progress towards correct solution

Outcomes Addressed in this Question

E2 chooses appropriate strategies to construct arguments and proofs in both concrete and abstract settings

	Solutions	Marking Guidelines
E2(a)	(i) $\begin{aligned} \sqrt{2} \cos x-\frac{1}{\sqrt{2}} \cos x & =\left(\sqrt{2}-\frac{1}{\sqrt{2}}\right) \cos x \\ & =\frac{1}{\sqrt{2}} \cos x=\cos \frac{\pi}{4} \cos x \end{aligned}$ (ii) RTP: $T_{n}=(\sqrt{2})^{n+2} \cos \left(\frac{n \pi}{4}\right)$ Step 1: $\begin{aligned} n=1 ; L H S=2 \quad \text { RHS } & =(\sqrt{2})^{3} \times \frac{1}{\sqrt{2}} \\ & =2=L H S \\ n=2 ; L H S=0 \quad R H S & =(\sqrt{2})^{4} \cos \frac{\pi}{2} \\ & =0=L H S \end{aligned}$ Statement is true for $n=1,2$.. Step 2: Assume true for all n up to $n=k$:i.e. $T_{k}=(\sqrt{2})^{k+2} \cos \left(\frac{k \pi}{4}\right)$ Prove true for $n=k+1$: i.e. $T_{k+1}=(\sqrt{2})^{k+3} \cos \left(\frac{(k+1) \pi}{4}\right)$ $\begin{aligned} L H S=T_{k+1} & =2 T_{k}-2 T_{k-1} \\ & =2(\sqrt{2})^{k+2} \cos \left(\frac{k \pi}{4}\right)-2(\sqrt{2})^{k+1} \cos \left(\frac{(k-1) \pi}{4}\right) \\ & =(\sqrt{2})^{k+4} \cos \left(\frac{k \pi}{4}\right)-(\sqrt{2})^{k+3} \cos \left(\frac{(k-1) \pi}{4}\right) \\ & =(\sqrt{2})^{k+3}\left[\sqrt{2} \cos \left(\frac{k \pi}{4}\right)-\cos \left(\frac{k \pi}{4}-\frac{\pi}{4}\right)\right] \\ & =(\sqrt{2})^{k+3}\left[\sqrt{2} \cos \left(\frac{k \pi}{4}\right)-\cos \frac{k \pi}{4} \cos \frac{\pi}{4}-\sin \frac{k \pi}{4} \sin \frac{\pi}{4}\right] \\ & =(\sqrt{2})^{k+3}\left[\sqrt{2} \cos \frac{k \pi}{4}-\frac{1}{\sqrt{2}} \cos \frac{k \pi}{4}-\sin \frac{k \pi}{4} \sin \frac{\pi}{4}\right] \\ & =(\sqrt{2})^{k+3}\left[\cos \frac{\pi}{4} \cos \frac{k \pi}{4}-\sin \frac{k \pi}{4} \sin \frac{\pi}{4}\right] \\ & =(\sqrt{2})^{k+3} \cos \left(\frac{(k+1) \pi}{4}\right) \end{aligned}$ $=R H S$ as required.	(a) (i) 1 mark: Correct working. (ii) 3 marks: Complete solution with reasoning. Step 1 needs to consider both $n=1,2$. 2 marks: Error made in solution. 1 mark: Substantial relevant progress.

