STUDENT'S NAME:

Teacher's Name:

HURLSTONE AGRICULTURAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE **EXAMINATION**

Mathematics Extension 2 Assessment Task 4

Trial Examination

Examiners~ G. Huxley, G. Rawson

General Instructions • Reading time – 5 minutes

- Working time 3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided.
- In Questions 11–16, show relevant mathematical reasoning and/or calculations
- This test paper must **NOT** be removed from the examination

Total marks: 100	 Section I - 10 marks (pages 2-4) Attempt Questions 1-10 Allow about 20 minutes for this section
	 Section II – 90 marks (pages 5–13) Attempt Questions 11–16 Allow about 2 hour 40 minutes for this section

Section 1 10 marks Attempt Questions 1 – 10 Allow about 20 minutes for this section. Use the multiple choice answer sheet provided for Questions 1 – 10

1. What is the gradient of the curve 2:	$x^3 - y^2 = 7$ at the point where $y = -3$?
---	---

А	-4	В	-2
С	-1	D	4

2. Which graph best describes $|y| = \tan^{-1}(x)$?

- 3. The sum of the eccentricities of two conics is $\frac{3}{2}$. Which of the following could the two conics *not* be?
 - A An ellipse and a hyperbola B An ellipse and a parabola
 - C A circle and a hyperbola D A hyperbola and a parabola
- 4. The substitution $t = \tan \frac{\theta}{2}$ is used to find $\int \frac{d\theta}{\cos \theta}$. Which of the following gives the correct expression for the required integral?

A
$$\int \frac{1}{2(1-t^2)} dt$$
 B $\int \frac{2}{1-t^2} dt$
C $\int \frac{2t}{1-t^2} dt$ D $\int \frac{4t}{(1+t^2)^2} dt$

- 5. Multiplying a non-zero complex number by $\frac{1+i}{1-i}$ results in a rotation about the origin on an Argand diagram. What is the rotation?
 - A Clockwise by $\frac{\pi}{4}$ B Clockwise by $\frac{\pi}{2}$
 - C Anticlockwise by $\frac{\pi}{4}$ D Anticlockwise by $\frac{\pi}{2}$
- 6. It is given that z = 2 + i is a root of $z^3 + az^2 7z + 15 = 0$, where *a* is a real number. What is the value of *a*?
 - A -7 B -1
 - C 1 D 7

HAHS Mathematics Extension 2 Trial Examination 2019

7. The equation |z-3|+|z+3| = 10 defines an ellipse. What is the length of the semi minor axis?

> A 4 B 5 C 8 D 10

8. Under which condition would the graph of $f(x) = \frac{1}{x^2 + mx - n}$, where *m* and *n* are real constants, have no vertical asymptotes?

A
$$m^2 < -4n$$
 B $m^2 > -4n$
C $m^2 < 4n$ D $m^2 > 4n$

9. Consider the region bounded by the *y*-axis, the line y = 4 and the curve $y = x^2$. If this region is rotated about the line y = 4, which expression gives the volume of the solid of revolution?

A
$$V = \pi \int_{0}^{4} x^{2} dy$$
 B $V = \pi \int_{0}^{2} (4 - y)^{2} dx$
C $V = 2\pi \int_{0}^{2} (4 - y) x dy$ D $V = \pi \int_{0}^{4} (4 - y)^{2} dx$

10. A hostel has four vacant rooms. Each room can accommodate a maximum of four people. In how many different ways can six people be accommodated in the four rooms?

A 4020	В	4068
--------	---	------

C 4080 D 4096

Section 290 marksAttempt Questions 11 – 16Allow about 2 hours and 40 minutes for this sectionAnswer each question in a separate answer booklet.All necessary working should be shown in every question.

Question 11 (15 marks) Start a new answer booklet.

(a) Given that ω is one of the complex roots of the equation $z^3 - 1 = 0$,

show that
$$\frac{1}{1+\omega} + \frac{1}{1+\omega^2} = 1$$
 2

(b) Show that the quadratic equation
$$(1+i)z^2 + 4iz - 2(1-i) = 0$$
 has equal roots. 2

(c) (i) Find the value of
$$\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6$$
 2

(ii) Show that
$$(\cos\theta + i\sin\theta)(1 + \cos\theta - i\sin\theta) = 1 + \cos\theta + i\sin\theta$$
 1

(iii) Hence show that
$$\left(1 + \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6 + \left(1 + \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^6 = 0$$
 2

(d) Sketch the region on the Argand diagram defined by

$$-\frac{\pi}{2} \le \arg(z-1-i) \le \pi \text{ and } |z| \le \sqrt{2}$$

(e) The points A and B represent the complex numbers $z_1 = 2 - i$ and $z_2 = 8 + i$ respectively. Find all the possible complex numbers z_3 , represented by C, such that $\triangle ABC$ is isosceles and right angled at C.

End of Question 11

HAHS Mathematics Extension 2 Trial Examination 2019

Page 5

3

Marks

Question 12 (15 marks) Start a new answer booklet.

Marks

On the separate diagrams on the answer sheet provided for this question, sketch the following graphs, showing clearly any intercepts on the co-ordinate axes, key points and the equations of any asymptotes.

(i)
$$y = [f(x)]^2$$
 2

(ii)
$$y^2 = f(x)$$
 2

(iii)
$$y = \frac{1}{f(x)}$$

(iv)
$$y = x \times f(x)$$
 3

(b) The diagram of the ellipse *E* with equation $\frac{x^2}{3} + \frac{y^2}{4} = 1$ is shown below.

The line y = mx + 4, with m > 0, is a tangent to the ellipse *E* at the point *P*.

- (i) Find the value of *m*.
- (ii) Determine the co-ordinates of *P*

End of Question 12

Question 13 (15 marks) Start a new answer booklet.

(a)	(i)	Find <i>a</i> and <i>b</i> such that $x = 2$ is a double root of $P(x) = x^4 + ax^3 + x^2 + b$.	3
	(ii)	For the values of a and b above, factorise $P(x)$ over the real numbers.	1
(b)	Consi	der the polynomial $P(x) = x^3 - x^2 - 21x + 45$ with roots α , β and γ .	
	(i)	Find the monic polynomial with roots $\alpha - 3$, $\beta - 3$ and $\gamma - 3$.	3
	(ii)	Hence solve $P(x) = 0$.	2
(c)	Supp	ose α , β and γ are the roots of the polynomial equation	
		$x^3 + x + 12 = 0$	
	(i)	Find $\alpha^2 + \beta^2 + \gamma^2$	2
	(ii)	Hence explain why only one of the roots is real.	2
	(iii)	Let the real root be denoted by α . Show that $-3 < \alpha < -2$.	2

End of Question 13

Marks

Question 14 (15 marks) Start a new answer booklet.

(a) Sketch $\frac{x^2}{16} + \frac{y^2}{11} = 1$ indicating the co-ordinates of its foci and equations of the directrices.

(b) The distinct points $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right)$ are on the same branch of the hyperbola with the equation $xy = c^2$.

The tangent at *P* has the equation $x + p^2y = 2cp$. (You do not have to derive this.)

The tangents at P and Q meet at the point T.

(ii) Let *P* and *Q* move so that the tangent at *P* intersects the *x*-axis at (cq, 0). Show that the locus of *T* is a hyperbola and state its eccentricity.

2

4

Question 14 continues on the next page.

Page 9

Marks

(c) The region bounded by the curve $y = \sqrt{2-x}$, the *x* axis and the *y* axis is rotated About the line x = 2 to form a solid.

Calculate the volume of the solid generated.

(d) The diagram shows the region bounded by the curve $y = (x+2)^2$ and the line y=4-x.

Use the method of cylindrical shells to calculate the volume generated when This region is rotated about the *y*-axis.

End of Question 14

3

Question 15 (15 marks) Start a new answer booklet.

(a) Find
$$\int \sin^5 \theta \cos^4 \theta \, d\theta$$
 3

(b) Find
$$\int \frac{\ln x}{x^2} dx$$
 2

(c) Using the substitution
$$t = \tan \frac{x}{2}$$
, or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}$.

(d) (i) Prove that
$$\frac{x^2}{(x^2+1)^{n+1}} = \frac{1}{(x^2+1)^n} - \frac{1}{(x^2+1)^{n+1}}$$
 1

(ii) Given that
$$I_n = \int_0^1 \frac{dx}{(x^2 + 1)^n}$$
, prove that $2nI_{n+1} = \frac{1}{2^n} + (2n-1)I_n$. 2

(iii) Hence, evaluate
$$\int_{0}^{1} \frac{dx}{\left(x^{2}+1\right)^{3}}.$$
 3

End of Question 15

HAHS Mathematics Extension 2 Trial Examination 2019

Marks

Question 16 (15 marks) Start a new answer booklet.

(a) (i) Show that
$$\sqrt{2}\cos x - \frac{1}{\sqrt{2}}\cos x = \cos\frac{\pi}{4}\cos x$$
 1

(ii) A sequence of numbers T_n , n = 1, 2, 3, ... Is defined by $T_1 = 2$, $T_2 = 0$ and $T_n = 2T_{n-1} - 2T_{n-2}$ for n = 3, 4, 5, ...Use mathematical induction to show that:

$$T_n = \left(\sqrt{2}\right)^{n+2} \cos\left(\frac{n\pi}{4}\right), n = 1, 2, 3, \dots$$
 3

(b) The diagram below shows two tangents PT and PS drawn to a circle from a point P outside the circle. Through T, a chord TA is drawn parallel to the tangent PS. The secant PA meets the circle at E, and TE produced meets PS at F.

(1)	Prove that $\triangle EFP$ is similar to $\triangle PFT$.	2
(ii)	Hence show that $PF^2 = TF \times EF$	1

(iii) Hence or otherwise, prove that *F* is the midpoint of *PS*.

(c) Suppose
$$f(x) = x - \ln\left(1 + x + \frac{x^2}{2}\right)$$
.

Show that f(x) is an increasing function for all values of x.

(d) Given that
$$\frac{m+n}{2} \ge \sqrt{mn}$$
, show that, for $m > 0, n > 0, p > 0, q > 0$:

(i)
$$(m+n)(n+p)(m+p) \ge 8mnp$$

(ii)
$$\frac{m}{n} + \frac{n}{p} + \frac{p}{q} + \frac{q}{m} \ge 4$$
 2

End of Question 16

END OF EXAMINATION

2

HURLSTONE AGRICULTURAL HIGH SCHOOL EXTENSION 2 MATHEMATICS

2019

TRIAL EXAMINATION

SAMPLE SOLUTIONS AND MARKING GUIDELINES

SECTION I ANSWER SHEET

EXTENSION 2 MATHEMATICS

Year 12 Mathematics Extension 2	TRIAL 2019			
Question No. 11 Solutions and Marking Guidelines				
Outcomes Addressed in this Question E3 - uses the relationship between algebraic and geometric representations of <u>complex numbers</u> (and of conic sections)				
Es - uses the relationship between algebraic and geometric representations of <u>compa</u>	(and of come sections)			
Solutions	Marking Guidelines			
(a) $z^{3} - 1 = (z - 1)(z^{2} + z + 1)$ ω is complex root, so $\omega^{2} + \omega + 1 = 0$ $\frac{1}{1 + \omega} + \frac{1}{1 + \omega^{2}} = \frac{1 + \omega^{2} + 1 + \omega}{(1 + \omega)(1 + \omega^{2})}$ $= \frac{\omega^{2} + \omega + 1 + 1}{1 + \omega^{2} + \omega + \omega^{3}}$ $= \frac{0 + 1}{0 + \omega^{3}} = \frac{1}{1} = 1$ ($\omega^{3} = 1$)	2 marks: correct solution 1 mark: substantially correct solution (apparently there are approximately 374 ways to do this question)			
(b) $\Delta = b^{2} - 4ac$ = $(4i)^{2} - 4(1+i)(-2(1-i))$ = $-16 + 8(1+i)(1-i)$ = $-16 + 8(1-i^{2})$ = $-16 + 8(2)$ = 0	2 marks: correct solution 1 mark: substantially correct solution (<i>NB: finding the sum and products of</i> roots was not enough for a mark unless you actually were able to come up with the double root)			
(c) (i) $\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6 = \left(\cos\pi + i\sin\pi\right)$ = -1 (ii) LHS = $\left(\cos\theta + i\sin\theta\right)\left(1 + \cos\theta - i\sin\theta\right)$ = $\cos\theta + \cos^2\theta - i\sin\theta\cos\theta + i\sin\theta + i\sin\theta\cos\theta - i^2\sin^2\theta$ = $\cos\theta + \cos^2\theta + i\sin\theta + \sin^2\theta$ = $1 + \cos\theta + i\sin\theta$ = RHS	 <u>2 marks</u>: correct solution <u>1 mark</u>: substantially correct solution <u>1 mark</u>: correct solution 			
(iii) LHS = $\left(1 + \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6 + \left(1 + \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^6$ = $\left[\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)\left(1 + \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)\right]^6 + \left(1 + \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^6$ = $-1\left(1 + \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^6 + \left(1 + \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)^6$ = $0 = \text{RHS}$	<u>2 marks:</u> correct solution <u>1 mark:</u> substantially correct solution (<i>NB: Hence, but not otherwise ie</i> <i>MUST use part (i) and/or (ii) to be</i> <i>elligble for marks</i>)			

Higher S	School Certificate Mathematics	Task 4 2019 HSC
Extension		
	No. 12 Solutions and Marking Guidelines	
	Outcomes Addressed in this Question Outcomes the ideas of algebra and calculus to detern	ning the important features of the graphs of a
	ity of functions	The the important reatines of the graphs of a
	Solutions	Marking Guidelines
(a)	See next page.	 (a) (i) 2 marks: Correct graph including shape, intercepts on axes and original function, and end point. 1 mark: One feature not included. (ii) 2 marks: Correct graph including coordinates indicated and parabolic shape. 1 mark: One feature not included. (iii) 3 marks: Correct graph including endpoint, intercepts on original function, and asymptote. 2 marks: One feature not included. (iv) 3 marks: Correct graph including coordinates indicated, intercepts on axes and original function, and endpoint. 2 marks: One feature not included. 1 mark: Some relevant progress made. (iv) 3 marks: Correct graph including coordinates indicated, intercepts on axes and original function, and endpoint. 2 marks: One feature not included. 1 mark: Some relevant progress made.
(b)	This diagram is not entirely necessary to be able to answer the question, but it would have been of assistance to illustrate how the line with positive gradient touches the ellipse in the second quadrant.	(b)

<u>HAHS Mathematics Extension 2</u> <u>2019 Trial Examination</u> <u>Question 12(a) answer sheet</u>

Higher So Question	chool CertificateMathematics Extension 2No. 12Solutions and Marking Guidelines	Task 4 2019 HSC	
<u></u>	Outcomes Addressed in this Question		
	ombines the ideas of algebra and calculus to determine the important f	eatures of the graphs of a	
vide variety of functions Solutions Marking Guidelines			
(b)	(i)	(b) (i)	
		3 marks: Complete	
	$\frac{x^2}{3} + \frac{(mx+4)^2}{4} = 1$	solution with working	
	$\rightarrow 4x^2 + 3m^2x^2 + 24mx + 36 = 0$	2 marks: Significant	
		progress. 1 mark : Some relevant	
	This will have equal roots because of the tangent property.	progress	
	So its discriminant will equal 0. $(24m)^2 - 4(4+3m^2)(36) = 0$		
	$(24m)^{-4}(4+5m)(30)^{-6}$ $\rightarrow 144m^2 - 576 = 0$		
	$144(m-2)(m+2)=0 \rightarrow m=\pm 2$		
	However, we need $m > 0$, so $m = 2$ is the only solution.	(ii)	
	(ii) Substituting $m = 2$ into the quadratic equation above:	2 marks: correct solution	
	$16x^2 + 48x + 36 = 0$	with working. CFPA	
		1 mark : significant	
	$4(2x+3)^2 = 0$	progress towards corre solution	
	$x = -\frac{3}{2}$. Find the corresponding point on the ellipse.		
	$\frac{-\frac{3}{2}}{-\frac{3}{2}} + \frac{y^2}{4} = 1 \longrightarrow y^2 = 1$		
	But in the 2nd quadrant, $y > 0$.		
	$\therefore P = \left(-\frac{3}{2}, 1\right)$		
	Alternately, $x = -\frac{3}{2}$ can be substituted into the straight line		
	equation for the same result.		

Year 12	Mathematics Extension 2	TRIAL 2019
Question No. 13	Solutions and Marking Guidelines	
	Outcomes Addressed in this Q	
	niques for the algebraic manipulation required sections and) polynomials.	d in dealing with questions such as
	Solutions	Marking Guidelines
		B B
(a)(i)	$P(x) = x^4 + ax^3 + x^2 + b$	
	$P'(x) = 4x^3 + 3ax^2 + 2x$	<u>3 marks:</u> correct solution
now,	P'(2) = 0	<u>2 marks:</u> substantially correct solution
ie 4	$(2)^{3} + 3a(2)^{2} + 2(2) = 0$	correct solution
	$32+12a+4=0 \implies a=-3$	<u>1 mark:</u> partial progress
		towards correct solution
and	P(2) = 0	
$ $ ie $(2)^{4}$	$a^{4} + -3(2)^{3} + (2)^{2} + b = 0$	
	$16-24+4+b=0 \qquad \Rightarrow b=4$	
	$\therefore a = -3, b = 4$	
(ii) $P(x) = x^4$	$x^4 - 3x^3 + x^2 + 4$	
=	$(x-2)^2 \left(Ax^2 + Bx + C\right)$	
· · · ·		<u>1 mark:</u> correct solution
· · · · · · · · · · · · · · · · · · ·	$(Ax^2 - 4x + 4)(Ax^2 + Bx + C)$	NB: should be factorised
=(x	$(x^2 - 4x + 4)(x^2 + Bx + 1)$	fully
=(x	$(x-2)^2(x^2+x+1)$	
(-		
(b)(i)	$P(x) = x^3 - x^2 - 21x + 45$	<u>3 marks:</u> correct solution
roots	of form $y = x - 3$, so let $x = y + 3$	<u>5 marks:</u> correct solution
	$(y+3)^2 = y^2 + 6y + 9$	2 marks: substantially
		correct solution
	$(y+3)^3 = y^3 + 9y^2 + 27y + 27$	<u>1 mark:</u> partial progress
so, $P(y+3) = ($	$(y+3)^{3} - (y+3)^{2} - 21(y+3) + 45$	towards correct solution
= 1	$y^{3}+9y^{2}+27y+27-y^{2}-6y-9-21y-63+4$	45
P(y+3)=y	$v^3 + 8v^2$	
(ii) $y^3 + 8y^2 =$	0	<u>2 marks:</u> correct solution
$y^2(y+8) =$	0	
y = y	0, 0, -8	<u>1 mark:</u> substantially
	x = 3, 3, -5 (from (i), $x = y + 3$)	correct solution

Question 13 continued	
(c) (i) $x^3 + 0x^2 + x + 12 = 0$	
$\alpha + \beta + \gamma = -\frac{b}{a} = 0$	<u>2 marks:</u> correct solution
$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a} = 1$	1 mark: substantially
$\alpha\beta\gamma=-rac{d}{a}=-12$	correct solution
$\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha\beta+\alpha\gamma+\beta\gamma)$	
=0-2(1)	
=-2	
(ii) The sum of squares is < 0 , so at least one root is unreal.	
Coefficients are real, so unreal roots occur in conjugate pairs.	<u>2 marks:</u> correct solution
∴ there are two unreal roots. Degree three polynomial has 3 roots, one of which must be	<u>1 mark:</u> substantially
real. (odd degree).	correct solution
\therefore there must be one real root.	
(iii) $P(x) = x^3 + x + 12$ $P(-3) = (-3)^3 + (-3) + 12 = -18 < 0$	<u>2 marks:</u> correct solution
	<u>1 mark:</u> substantially
$P(-2) = (-2)^3 + (-2) + 12 = 2 > 0$	correct solution
∴ the graph crosses the <i>x</i> -axis between -3 and -2 ie $-3 < \alpha < -2$.	
OTE:	
 ence v Hence or otherwise. Hence means you <u>must</u> use the previous part(s) of question to ans 	swer this part. If you use
alternate means, you are not answering the question, and therefore	e making yourself
	our method works or not.
ineligible to receive marks for this part – regardless of whether yo This was the case for many candidates in this question.	
	÷

E7 (c) Using the method of slicing, we get washers, with thickness
$$\Delta y$$
.
Washer: Outer radius = 2; Inner radius = $2 - x$
Arca $-\pi \left(2^2 - (2 - x)^2\right)$
But $y - \sqrt{2 - x} \rightarrow y^2 - 2 - x$
 $\therefore A(y) = \pi \left(4 - y^4\right)$
 $\Delta V = \pi \left(4 - y^4\right) \Delta y$
 $V = \frac{1}{36\pi^{-0}} \int_{-5}^{5\pi} (4 - y^4) \Delta y$
 $= \pi \left[4y - \frac{y^5}{5}\right]_0^{5^2} = \frac{16\sqrt{2}\pi}{\pi}$ units³
Alternately, the method of cylindrical shells would give the following integral:
 $V = 2\pi \int_{0}^{\frac{1}{2}} (2 - x)^{\frac{3}{2}} dx$ with the same final result.
(d) Cylindrical shells will have height equal to the difference between the line and parabola. Since each shell's radius is positive, the radius will be the negative of the x value at each point in the given region.
 $A(x) = 2\pi r h$
 $r = -x$; $h = (4 - x) - (x + 2)^2$
 $= -5x - x^2$
 $\therefore A(x) = 2\pi (-x)(-5x - x^2)$
 $= -2\pi (-5x^2 - x^2)$
 $AY = -5x^2 - 2\pi (-5x^2 - x^2)$
 $AY = -5x^2 - 2\pi (-5x$

Year 12 Mathematics Extension 2	TRIAL 2019		
Question No. 15 Solutions and Marking Guidelines			
Outcomes Addressed in this Question			
E8 - applies further techniques of integration, including partial fractions, integration formulae, to problems	by parts and recurrence		
Solutions	Marking Guidelines		
(a) $\int \sin^5 \theta \cos^4 \theta d\theta = \int \sin^4 \theta \cos^4 \theta \sin \theta d\theta$ $= \int (1 - \cos^2 \theta)^2 \cos^4 \theta \sin \theta d\theta \qquad u = \cos \theta$ $du = -\sin \theta d\theta$ $= -\int (1 - u^2)^2 u^4 du$ $= -\int (u^4 - 2u^6 + u^8) du$ $= -\left(\frac{u^5}{5} - \frac{2u^7}{7} + \frac{u^9}{9}\right) + C$ $= -\frac{1}{5} \cos^5 \theta + \frac{2}{7} \cos^7 \theta - \frac{1}{9} \cos^9 \theta + C$	3 marks: correct solution 2 marks: substantially correct solution 1 mark: partial progress towards correct solution		
$= -\frac{1}{5}\cos \theta + \frac{1}{7}\cos \theta - \frac{1}{9}\cos \theta + C$ (b) $\int \frac{\ln x}{x^2} dx = \int \ln x \cdot \frac{1}{x^2} dx$ $= uv - \int v du$ $= \ln x \left(-\frac{1}{x} \right) - \int \left(-\frac{1}{x} \right) \frac{1}{x} dx$ $= -\frac{\ln x}{x} + \int \frac{1}{x^2} dx$ $= -\frac{\ln x}{x} - \frac{1}{x} + C$ $= -\frac{\ln x - 1}{x} + C$	<u>2 marks:</u> correct solution <u>1 mark: substantially correct solution</u>		
(c) $t = \tan \frac{x}{2}$ $\cos x = \frac{1-t^2}{1+t^2}$ $x = \frac{\pi}{2} \implies t = 1$ $dx = \frac{2dt}{1+t^2}$ $x = 0 \implies t = 0$ $\int_0^{\frac{\pi}{2}} \frac{dx}{2+\cos x} = \int_0^1 \frac{\frac{1}{2+t^2}}{2+\frac{1-t^2}{1+t^2}} dt$ $= \int_0^1 \frac{2}{3+t^2} dt$ $= 2\left[\frac{1}{\sqrt{3}}\tan^{-1}\frac{t}{\sqrt{3}}\right]_0^1 = \frac{2}{\sqrt{3}}\left[\tan^{-1}\frac{1}{\sqrt{3}} - \tan^{-1}0\right]$ $= \frac{2}{\sqrt{3}} \cdot \frac{\pi}{6} = \frac{\pi}{3\sqrt{3}}$	 <u>4 marks:</u> correct solution <u>3 marks:</u> substantially correct solution <u>2 marks:</u> significant progress towards correct solution <u>1 mark:</u> limited progress towards correct solution 		

$$\begin{aligned} & \text{Question 15 continued...} \\ & (d) (i) \ \text{LHS} = \frac{x^2}{(x^2 + 1)^{s+1}} = \frac{x^2 + 1 - 1}{(x^2 + 1)^{s+1}} = \frac{1}{(x^2 + 1)^{s+1}} = \text{RHS} \end{aligned}$$

$$(ii) \ I_n = \int_0^1 \frac{dx}{(x^2 + 1)^s} = tv - \int_0^1 v \, du \qquad \qquad | \text{let } u = \frac{1}{(x^2 + 1)^{s+1}} dx \qquad \qquad 2 \text{ marks; correct solution} \\ &= \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^{s+1}} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \qquad \qquad 1 \text{ mark; substantially correct solution} \\ &= \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^s} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^s} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^s} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^s} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^s} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^s} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^s} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^s} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^s} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \left(\frac{1}{(x^2 + 1)^s} - \frac{1}{(x^2 + 1)^{s+1}}\right) dx \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \frac{1}{(x^2 + 1)^s} = \frac{1}{2^n} + 2(2(1) - 1)I_n \\ &I_n = \frac{1}{2^n} + 2n \int_0^1 \frac{1}{(x^2 + 1)^s} = \frac{1}{2^n} + \frac{1}{2^n} + \frac{1}{2^n} \\ &I_n = \frac{1}{2^n} + \frac{1}{2^n} = \frac{1}{2^n} + \frac{1}{2^n} \\ &I_n = \frac{1}{2^n} + \frac{1}{2^n} = \frac{1}{2^n} + \frac{1}{2^n} \\ &I_n = \frac{1}{2^n} + \frac{1}{2^n} = \frac{1}{2^n} + \frac{1}{2^n} \\ &I_n = \frac{1}{2^n} + \frac{1}{2^n} \\ &I_n = \frac{1}{2^n} + \frac{1}{2^n} = \frac{1}{2^n} + \frac{1}{2^n} \\ &I_n = \frac{1}{2^$$

0	School CertificateMathematics Extension 2No. 16Solutions and Marking Guidelines	Task 4 2019 HSC
uestion	Outcomes Addressed in this Question	
	ooses appropriate strategies to construct arguments and proofs in bo	th concrete and abstract
settings Solutions Marking Cuidal		
E2(a)	(i) Solutions	Marking Guidelines(a) (i) 1 mark: Correct
12(a)	$\sqrt{2}\cos x - \frac{1}{\sqrt{2}}\cos x = \left(\sqrt{2} - \frac{1}{\sqrt{2}}\right)\cos x$	working.
	$= \frac{1}{\sqrt{2}} \cos x = \cos \frac{\pi}{4} \cos x$ (ii) RTP: $T_n = (\sqrt{2})^{n+2} \cos\left(\frac{n\pi}{4}\right)$ Step 1: $n = 1; LHS = 2$ $RHS = (\sqrt{2})^3 \times \frac{1}{\sqrt{2}}$ = 2 = LHS $n = 2; LHS = 0$ $RHS = (\sqrt{2})^4 \cos \frac{\pi}{2}$ = 0 = LHS Statement is true for $n = 1, 2.$ Step 2: Assume true for all n up to $n = k$:i.e. $T_k = (\sqrt{2})^{k+2} \cos\left(\frac{k\pi}{4}\right)$ Prove true for $n = k + 1$: i.e. $T_{k+1} = (\sqrt{2})^{k+3} \cos\left(\frac{(k+1)\pi}{4}\right)$ $LHS = T_{k+1} = 2T_k - 2T_{k-1}$ $= 2(\sqrt{2})^{k+2} \cos\left(\frac{k\pi}{4}\right) - 2(\sqrt{2})^{k+1} \cos\left(\frac{(k-1)\pi}{4}\right)$ $= (\sqrt{2})^{k+4} \cos\left(\frac{k\pi}{4}\right) - (\sqrt{2})^{k+3} \cos\left(\frac{(k-1)\pi}{4}\right)$ $= (\sqrt{2})^{k+3} \left[\sqrt{2} \cos\left(\frac{k\pi}{4}\right) - \cos\left(\frac{k\pi}{4} - \frac{\pi}{4}\right)\right]$ $= (\sqrt{2})^{k+3} \left[\sqrt{2} \cos\left(\frac{k\pi}{4}\right) - \cos\left(\frac{k\pi}{4} - \sin\frac{k\pi}{4}\sin\frac{\pi}{4}\right]$ $= (\sqrt{2})^{k+3} \left[\sqrt{2} \cos\left(\frac{k\pi}{4} - \frac{1}{\sqrt{2}}\cos\frac{k\pi}{4} - \sin\frac{k\pi}{4}\sin\frac{\pi}{4}\right]$ $= (\sqrt{2})^{k+3} \left[\cos\frac{\pi}{4}\cos\frac{k\pi}{4} - \sin\frac{k\pi}{4}\sin\frac{\pi}{4}\right]$ $= (\sqrt{2})^{k+3} \cos\left(\frac{(k+1)\pi}{4}\right)$ = RHS as required.	 (ii) 3 marks: Complete solution with reasoning Step 1 needs to conside both <i>n</i>=1,2. 2 marks: Error made in solution. 1 mark: Substantial relevant progress.

(b) (i)
$$2 \text{ marks: Correct}$$

 $\angle EFF = \angle TAP$ Alternate segment theorem
 $\angle EFF = \angle TAP$ Alternate angles, $TA \| PS$
i. $\angle PTF = \angle EPF$ Both equal $\angle TAP$
In $AEFP$, ΔPFT $\angle EFF = \angle PTF$ shown above
 $\angle EFF = \angle PTF$ shown above
 $\angle EFP = \angle TFP$ common angle
:. $\Delta EFP \| \Delta TFP$ equiangular
(i)
In $AEFP$, ΔPFT ecorresponding sides in similar triangles
are in proportion
:. $PF^2 = TF \times EF$ intercept properties of tangent and scent.
From (i) $PF^2 = TF \times FF$
i. $PF^2 = FS^2$ is oF is the midpoint of PS
i. $e.PF = FS^2$ is oF is the midpoint of PS
i. $e.PF = FS^2$ is oF is the midpoint of PS
i. $e.f'(x) \ge 1$
 $= \frac{x^2}{2 + 2x + x^2} = \frac{x^2}{1 + (1 + x)^2}$
i. $e.f'(x) \ge 0$
Because the numerator is non-negative and the denominator is positive definite.
So $f(x)$ is non-decreasing for all values of x.
(i)
(i)
 $\frac{m}{n} + \frac{m}{p} + \frac{m}{q} + \frac{m}{m} \ge 2(\sqrt{\frac{m}{n}})(\frac{n}{p}) + 2\sqrt{(\frac{n}{q})(\frac{m}{m}})$
 $= 2(\sqrt{\frac{m}{p}} + \sqrt{\frac{m}{m}}) = 2(2\sqrt{\frac{mm}{pm}}) = 4$
:..LHS \ge 4
(b) (i) 2 marks: Correct
vorking.
(ii) 2 marks: Correct
vorking.
(iii) 2 marks: Correct
vorking.
(iii) 2 marks: Correct
vorking.
(iv) (i) 2 marks: Correct
vorking.
(iv) 1 mark: 1 step omitted.