

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

1999

MATHEMATICS -

4 UNIT (ADDITIONAL)

Time Allowed - Three hours (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are of equal value.
- Write your student Name / Number on every page of the question paper and your answer sheets.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are supplied.
- Board approved calculators may be used.
- The answers to the eight questions are to be handed in separately clearly marked Question 1, Question 2, etc..
- The question paper must be handed to the supervisor at the end of the examination.

(a) Find $\int \frac{x+7}{x^2+16} dx$.

2

(b) Find $\int xe^{3x}dx$.

2

(c) (i) Find real constants A and B such that

$$\frac{7x-4}{2x^2-3x-2}=\frac{A}{2x+1}+\frac{B}{x-2}.$$

- (ii) Hence find $\int \frac{7x-4}{2x^2-3x-2} dx$.
- (d) Using an appropriate diagram, or otherwise, evaluate $\int_0^{1\frac{1}{2}} \sqrt{9-x^2} dx$.

- 3
- (e) (i) Use the substitution $t = \tan \frac{x}{2}$ to show that $\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \sin x} = \int_0^1 \frac{dt}{t^2 + t + 1}.$
 - (ii) Hence evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \sin x}.$

QUESTION 2.

Use a separate Writing Booklet.

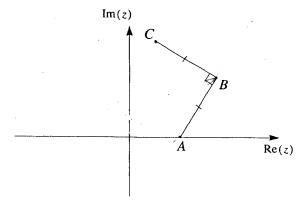
Marks

(a) Given $z = \sqrt{6} - \sqrt{2}i$, find:

6

- (i) $\operatorname{Re}(z^2)$;
- (ii) |z|;
- (iii) argz;
- (iv) z^4 in the form x + iy.
- (b) The equations $|z-8-6i| = 2\sqrt{10}$ and $\arg z = \tan^{-1} 2$ both represent loci on the Argand plane.
 - (i) Write down the Cartesian equations of the loci, and hence show that the points of intersection of the loci are 2 + 4i and 6 + 12i.
 - (ii) Sketch both loci on the same diagram, showing their points of intersection. (You need not show the intercepts with the axes.)

(c)



The diagram above shows the fixed points A, B and C in the Argand plane, where AB = BC, $\angle ABC = \frac{\pi}{2}$, and A, B and C are in anticlockwise order. The point A represents the complex number $z_1 = 2$ and the point B represents the complex number $z_2 = 3 + \sqrt{5}i$.

- (i) Find the complex number z_3 represented by the point C.
- (ii) D is the point on the Argand plane such that ABCD is a square. Find the complex number z_4 represented by D.

- (a) (i) Show that the equation of the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point $P(a \sec \theta, b \tan \theta)$ is $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$.
 - (ii) Show that the equation of the normal at P is $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$.
 - (iii) The line through P parallel to the y-axis meets the asymptote $y = \frac{bx}{a}$ at Q. The tangent at P meets the same asymptote at R. The normal at P meets the x-axis at G. Prove that $\angle RQG$ is a right angle.
 - (iv) What sort of quadrilateral is ROPG?
- (b) The tangents at two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ intersect at $T(x_0, y_0)$.
 - (i) Show that the equation of the chord of contact PQ is $\frac{xx_0}{16} + \frac{yy_0}{9} = 1$. (You may assume that the tangent at P has equation $\frac{xx_1}{16} + \frac{yy_1}{9} = 1$, and similarly for Q.)
 - (ii) If the chord PQ touches the circle $x^2 + y^2 = 9$, then by considering the distance of the chord from the origin, or otherwise, show that the point $T(x_0, y_0)$ satisfies $\frac{9x_0^2}{256} + \frac{y_0^2}{9} = 1$.
 - (iii) Give a geometrical description of the locus of T.

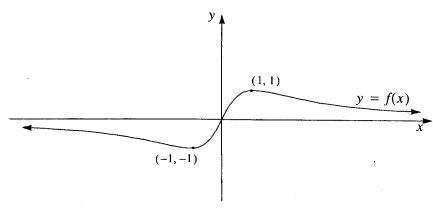
QUESTION 4.

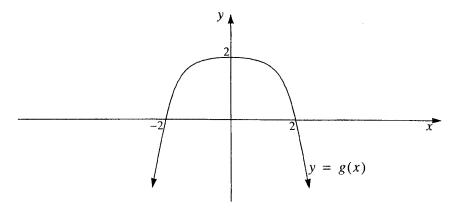
Use a separate Writing Booklet.

Marks

- If P(x) is an odd function and Q(x) is an even function, determine whether the following are odd, even or neither:
 - 2

- (i) P(Q(x));
- (ii) Q(P(x)).
- The diagrams represent the curves $f(x) = \frac{2x}{x^2 + 1}$ and $g(x) = 2 \frac{x^4}{8}$. (b) 8





Use these diagrams to sketch the following functions without calculus, showing all essential features:

(i)
$$y = |f(x)|;$$

(ii)
$$y = \frac{1}{g(x)}$$
;

(iii)
$$y = [g(x)]^2$$
.

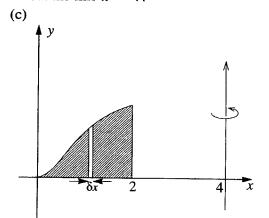
For parts (iv) and (v), you do not need to show the coordinates of any stationary points.

(iv)
$$y = g(f(x));$$

$$(v) \quad y = f(g(x)).$$

5

(c) The region shown below, bounded by the curve $y = \frac{x^2}{x^2 + 1}$, the x-axis and the line x = 2, is rotated about the line x = 4.



(i) Using the method of cylindrical shells, show that the volume δV of a shell distant x from the origin and with thickness δx is given by

$$\delta V = 2\pi (4-x) \left(1 - \frac{1}{1+x^2}\right) \delta x$$

(ii) Hence find the volume of the solid.

QUESTION 5.

Use a separate Writing Booklet.

Marks

- (a) Solve $x^4 6x^3 + 12x^2 10x + 3 = 0$, given that it has a root of multiplicity 3.

12

(b) Consider the equation

(1)

where $r \neq s$.

(i) Show that $p\cos^2 x + r\sin^2 x = \frac{p-r}{2}\cos 2x + \frac{p+r}{2}$

 $p\cos^2 x + 2q\cos x\sin x + r\sin^2 x = s$

- (ii) Show that equation (1) above can be rewritten as $R\cos(2x-\alpha) = 2s-r-p$, where $R = \sqrt{(p-r)^2 + 4q^2}$ and $\tan \alpha = \frac{2q}{p-r}$.
- (iii) Show that the condition for equation (1) above to have real solutions is $q^2 \ge (s-p)(s-r)$.
- (iv) Show that if $q^2 > (s-p)(s-r)$, then there are two solutions in the domain $0 \le x < \pi$.
- (v) If θ and ϕ are the solutions found in part (iv), show that $\tan(\theta + \phi) = \frac{2q}{p-r}$.

(a) A stone of mass 80 grams is attached to a string of length 50 cm. The string is twirled so that the stone moves in a horizontal circle with a speed of 70 revolutions per minute.

4

- (i) Draw a force diagram of the situation.
- (ii) By resolving forces vertically and horizontally, find the tension in the string.
- (b) An object of mass m kg is thrown vertically upwards. Air resistance is given by $R = 0.05mv^2$ where R is in newtons and v ms⁻¹ is the speed of the object. (Take g = 9.8 ms⁻².)

6

- (i) Explain why the equation of motion is $\ddot{x} = -\left(\frac{196 + v^2}{20}\right)$, where x is the height of the object t seconds after it is thrown.
- (ii) If the velocity of projection is 50 ms⁻¹, find the time taken to reach the highest point.
- (c) A particle is describing simple harmonic motion in a straight line. Its centre of motion is not at the origin O, but at $x = x_0$. Its speeds at distances 2, 3 and 5 metres from O are 0, 4 and 2 ms⁻¹ respectively.
 - from O are 0, 4 and 2 ms⁻¹ respectively.
 (i) Given that the particle's equation of motion is \(\bar{x} = -n^2(x x_0)\), where n is a constant, show that its velocity is given by \(\nu^2 = n^2(a^2 (x x_0)^2)\),
 - (ii) Find the distance of the centre of the motion from the origin.

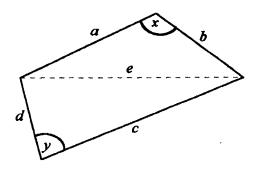
where a is the amplitude.

(a) (i) Prove that $\int_0^a f(x)dx = \int_0^a f(a-x)dx.$

5

- (ii) Hence show that $\int_0^{\frac{\pi}{2}} (a\cos^2 x + b\sin^2 x) dx = \int_0^{\frac{\pi}{2}} (a\sin^2 x + b\cos^2 x) dx.$
- (ii) Deduce that $\int_0^{\frac{\pi}{2}} (a\cos^2 x + b\sin^2 x) dx = \frac{\pi(a+b)}{4}.$

(b)



NOT TO SCALE

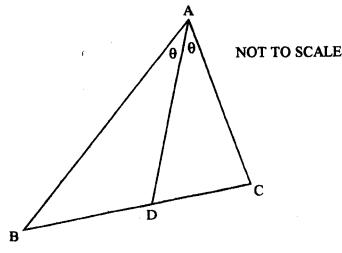
6

(i) By using the cosine rule in both triangles show that

$$\frac{dy}{dx} = \frac{ab \sin x}{cd \sin y}$$

(ii) Hence show that the area of the quadrilateral is a maximum when it is cyclic quadrilateral

(c)



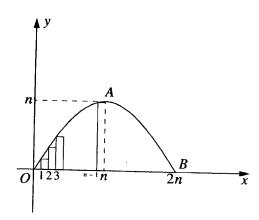
1

In the triangle ABC it is given that AD is the bisector of angle BAC.

Prove that $\frac{AB}{BD} = \frac{AC}{DC}$.

(a)

5



The diagram above represents the curve $y = n \sin \frac{\pi x}{2n}$, $0 \le x \le 2n$, where n is any integer $n \ge 2$. The points O(0,0), A(n,n) and B(2n,0) lie on this curve.

(i) By considering the areas of the lower rectangles of width 1 from x = 0 to x = n, prove that

$$\sin\frac{\pi}{2n} + \sin\frac{2\pi}{2n} + \sin\frac{3\pi}{2n} + \dots + \sin\frac{\pi(n-1)}{2n} < \frac{2n}{\pi}.$$

(ii) Hence or otherwise, explain why

$$2n\sum_{r=1}^{n-1}\sin\frac{\pi r}{2n}<\frac{\pi n^2}{2}.$$

QUESTION 8. (continued)

Marks

(b) Two circles touch externally at a point T.

10

A and B are points on the first circle such that AT = BT, and AT and BT produced meet the second circle at C and D respectively. RS is the common tangent at T. Let $\angle BAT = \alpha$.



- (i) Copy the diagram and include the information above.
- (ii) Prove that $\angle BAC = \angle ACD$.
- (iii) Prove that ABCD is a trapezium with two equal sides.

The line BC cuts the first circle again in V and the second circle again in W, and the line AD cuts the first circle again in U and the second circle again in X.

- (iv) Prove that the points U, V, W and X are concyclic.
- (v) Prove that UT = TX, and hence show that T is the centre of the circle passing through U, V, W and X.

COPYRIGHT © 1999 NEAP

11-NM49 FM