

MATHEMATICS EXTENSION 2 TRIAL HSC EXAMINATION 2003

Time allowed – 3 hours

(plus 5 minutes reading time)

DIRECTIONS

- Attempt ALL questions.
- All questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or poorly arranged work.
- Start each question in a new booklet.
- Board approved calculators may be used.
- A table of standard integrals is provided.

QUESTION 1

MARKS

(a) Evaluate $\int_{2}^{3} \frac{3}{(1-x)^2} dx$.

2

(b) Evaluate $\int_0^{\pi} \frac{\cos x}{\sin^2 x} dx$.

3

(c) Find $\int \frac{1}{x^2 + 4x + 5} dx$.

2

(d) Evaluate $\int_0^1 \sin^{-1} x dx$.

4

(e) Using the substitution $t = \tan(\frac{\theta}{2})$, or otherwise, calculate

4

$$\int_0^{\pi/2} \frac{1}{2 + \cos \theta} d\theta.$$

QUESTION 2 (Start a new booklet.)

MARKS

(a) If $z = -\sqrt{3} + i$, find:

(i) $|z^{-1}|$.

1

(ii) i^3z .

1

(iii) $\left| \operatorname{Im} z^2 \right|$.

1

(b) Simplify $\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^3$.

(c) Give two separate sketches showing regions of the Argand diagram to represent complex numbers z which satisfy each of the following conditions.

(i)
$$-\frac{\pi}{6} < \arg(z-i) < \frac{\pi}{6}.$$

2

(ii) $\operatorname{Re} z + \operatorname{Im} z < 2$.

2

- (d) Let $z = \cos \theta + i \sin \theta$.
 - (i) Show that $z + z^{-1} = 2\cos\theta$.

1

(ii) Simplify $z^2 - z^{-2}$.

2

- (e) Let $z_n = (1+i)^n$ where 0 < n < 20.
 - (i) Express z_5 in modulus-argument form.

2

(ii) For what values of n will z_n be purely imaginary?

2

QUESTION 3 (Start a new booklet.)

MARKS

- (a) If $x^3 + y^3 = 3xy$, use implicit differentiation to find $\frac{dy}{dx}$, expressing your answer in terms of x and y.
- (b) y = f(x) and y = g(x) are two functions where $g(x) = e^{f(x)}$.
 - (i) Show that for any stationary point on the graph of y = f(x) there will be a corresponding stationary point on the graph of y = g(x) with the same x coordinate.
 - (ii) If x = a corresponds to a stationary point for both functions, show that f''(a) and g''(a) will either both be zero or they will have the same sign.

QUESTION 3 (Continued.)

MARKS

- (c) (i) Sketch together on the same coordinate axes graphs of $y = \sin x$ and $y = \sqrt{\sin x}$ for $0 \le x \le 2\pi$.
 - (ii) Sketch together on the same coordinate axes graphs of $y = \cos x$ and $y = e^{\cos x}$ for $-\pi \le x \le \pi$. Give the coordinates of all turning points.
- (d) Let max(a,b) denote the maximum of the numbers a and b.
 - (i) Sketch the function $y = \max(2, x)$ over the interval $0 \le x \le 3$.
 - (ii) Evaluate $\int_0^3 \max(2, x) dx$.

QUESTION 4 (Start a new booklet.)

MARKS

- (a) (i) Write out the complex 5th roots of unity in modulus-argument form. 1
 - (ii) If ω is a complex *n*th root of unity for n > 2, show that ω^2 is also an *n*th root of unity.
 - (iii) If ω ($\neq 1$) is a complex **5th** root of unity, show that $\omega^8 + \omega^6 + \omega^4 + \omega^2 + 1 = 0.$
- (b) (i) P(x) is a polynomial and α is one of repeated roots with multiplicity r
 (r ≥ 2).
 Show that the polynomial P'(x) will also have α as a root with multiplicity r-1.
 - (ii) Hence show that $P(z) = z^n 1$ has no repeated roots.

- 1+i is one of the solutions to the equation $z^3-4z^2+6z-4=0$. Find the 2 (c) other solutions.

If $z = \cos \theta + i \sin \theta$, show that (d)

(i)
$$\frac{2z}{1+z^2} = \sec \theta.$$

(ii)
$$\frac{1}{1+z} = \frac{1}{2} \left(1 - i \tan \frac{\theta}{2} \right).$$

QUESTION 5 (Start a new booklet.)

MARKS

1

- The polynomial $x^3 + 2x^2 3x 2 = 0$ has roots α , β and γ . Find the 3 (a) equation with roots $\alpha^2 \beta \gamma$, $\alpha \beta^2 \gamma$ and $\alpha \beta \gamma^2$.
- 4 Prove the following by induction, where n is any positive integer: (b)

$$1 \times 1! + 2 \times 2! + 3 \times 3! + ... + n \times n! = (n+1)! -1.$$

- Sketch the locus of the point P representing the complex number z on an 3 (c) Argand diagram, if |z-3|=2|z|.
- A tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point $P(x_1, y_1)$ has the equation (d) $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$ and crosses the nearest directrix at point T. Point S is the corresponding focus.
 - Sketch a diagram to illustrate this information. (i)
 - State the coordinates of S and give the equation of the corresponding (ii) directrix.
 - 3 (iii) Prove that angle *PST* is a right angle.

- (a) The line y = mx + k crosses the ellipse $3x^2 + 5y^2 = 15$ at points P and Q. Point M is the midpoint of PQ.
 - (i) Show that the roots of the following equation represent the x coordinates of P and Q.

2

$$(5m^2+3)x^2+10mkx+5k^2-15=0.$$

(ii) Find expressions for the coordinates of point M in terms of m and k.

2

2

(iii) Show that all chords PQ with gradient $-\frac{1}{5}$ have midpoints which lie on the line y = 3x.

(b) Write down the value of the following definite integrals:

(i)
$$\int_{-3}^{3} x \sqrt{9-x^2} dx.$$

(ii)
$$\int_{-3}^{3} \sqrt{9-x^2} dx$$
.

- (c) (i) By expanding $(\cos \theta + i \sin \theta)^3$ in two different ways, show that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$.
 - (ii) Hence solve the equation $8x^3 6x 1 = 0$.
 - (iii) Hence show that $\cos \frac{\pi}{9} = \cos \frac{2\pi}{9} + \cos \frac{4\pi}{9}$.

- (a) $P(ct, \frac{c}{t})$ lies on the rectangular hyperbola $xy = c^2$.
 - (i) Show that the equation of the normal at P is $t^2x y ct^3 + \frac{c}{t} = 0$.
 - (ii) Hence find the co-ordinates of the other point where this normal cuts the hyperbola.
- (b) ABC is an equilateral triangle inscribed in a circle and P is another point on the circumference. PC crosses AB at X.

(i) Prove that $\triangle CXB \parallel \triangle CBP$.

2

(ii) Find the size of $\angle APB$, giving reasons.

- 2
- (iii) Q is a point which lies on PC such that AP = QP. Find $\angle AQC$, giving reasons.
- 2

(iv) Show that CP = AP + PB.

2

3

(c) When the polynomial P(x) is divided by (x-1) the remainder is 4, and when it is divided by (x-2), the remainder is 5. Find P(x).

- (a) $P(ct, \frac{c}{t})$ lies on the rectangular hyperbola $xy = c^2$.
 - (i) Show that the equation of the normal at P is $t^2x y ct^3 + \frac{C}{t} = 0$.
 - (ii) Hence find the co-ordinates of the other point where this normal cuts the hyperbola.
- (b) ABC is an equilateral triangle inscribed in a circle and P is another point on the circumference. PC crosses AB at X.

(i) Prove that $\triangle CXB \parallel \triangle CBP$.

2

(ii) Find the size of $\angle APB$, giving reasons.

- 2
- (iii) Q is a point which lies on PC such that AP = QP. Find $\angle AQC$, giving reasons.
- 2

2

(iv) Show that CP = AP + PB.

- 3
- (c) Find the number of ways to arrange 4 letters selected from the word DIVERSITY.

- (a) If the functions f(x) and g(x) are such that $f(x) > g(x) \ge 0$ for $a \le x \le b$, by using a sketch (or otherwise) explain why $\int_a^b f(x) dx > \int_a^b g(x) dx$.
- (b) Let

$$u_n = \int_0^1 (1-x^2)^{(n-1)/2} dx$$
,

where n = 0, 1, 2, ...

- (i) Using integration by parts, or otherwise, show that $nu_n = (n-1)u_{n-2}$ 4 for $n \ge 2$.
- (ii) Let $v_n = n u_n u_{n-1}$ for $n \ge 1$. Show by induction that $v_n = \frac{1}{2} \pi$ for all values of $n \ge 1$.
- (iii) Using part (a), or otherwise, show that $0 < u_n < u_{n-1}$ for $n \ge 1$.
- (iv) Hence prove that $\sqrt{\frac{\pi}{2n+2}} < u_n < \sqrt{\frac{\pi}{2n}}$ for $n \ge 1$.