2008

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics
 Extension 2

General Instructions

Reading Time- 5 minutes
Working Time - 3 hours
Write using a blue or black pen
Approved calculators may be used
A table of standard integrals is provided at the back of this paper.
All necessary working should be shown for every question.

Total marks (120)
Attempt Questions 1-8
All questions are of equal value

Total Marks - 120
Attempt Questions 1-8
All Questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
Question 1 ($\mathbf{1 5}$ marks) Use a SEPARATE answer booklet
a)

Find $\int \frac{d x}{\sqrt{16-9 x^{2}}}$

Find $\int 5 \cos x \sin ^{2} x d x$
c)

Evaluate $\int_{1}^{e} x \ln x d x$
d)

Evaluate $\int_{2}^{3} \frac{d x}{x^{2}-1}$
e)

Using the substitution $t=\tan \frac{\theta}{2}$ or otherwise find $\quad 4$

$$
\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{2+\cos \theta}
$$

End of Question 1

Question 2 ($\mathbf{1 5}$ marks) Use a SEPARATE writing booklet.
a) Let $A=3+4 i$ and $B=2-2 i$. Find in the form ${ }^{x+i y}$ (x and y real).
i) $\frac{A}{B}$
ii) \sqrt{A}
iii) $A-\bar{B}$
b) i) Write $1+\sqrt{3} i$ in the form $r(\cos \theta+i \sin \theta)$
ii) Hence write $(1+\sqrt{3} i)^{6}$ showing that it is real.
c)

The points $O A B C$ are the vertices of a rectangle on the Argand diagram with $|O A|=2|O C|$. If $O C$ represents the complex number $p+i q$, write down the complex numbers represented by:
i) $O A \quad 1$
ii) $O B$
iii) $B C$
iv) $A C$

End of Question 2

a)

The diagram shows the graph of $y=f(x)$ for $x \geq 0$.
$\mathrm{M}(1,3)$ and $\mathrm{N}(4,0)$ are stationary points of $y=f(x)$ and $\mathrm{P}(3,1)$ is a point of inflexion of $y=f(x)$. The line $y=x-9$ is an asymptote as $x \rightarrow \infty$. Draw separate one third page sketches showing any special features for the following:
i) $\quad f^{\prime}(x)$
ii) $\frac{1}{f(x)}$
iii) $\quad-(f(x))^{2}$
b) Determine the gradient of the tangent to the curve $x^{2}+2 x y-y^{2}=17$ at the point $(3,2)$
c) The zeros of $x^{3}-3 x^{2}-2 x+4$ are α, β and γ
i) Find a cubic polynomial whose zeros are α^{2}, β^{2} and γ^{2}
ii) Hence or otherwise find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$
iii) Determine the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$
d) The equation $P(x)=x^{3}+3 x^{2}-24 x+k=0$ has a double root. Find the possible 2 values of k.

End of Question 3

a) i)

$$
I_{n}=\int(\ln x)^{n} d x
$$ By applying the technique of cylindrical shells determine the exact volume of the solid formed

c)

A cake is made with base in the shape of an ellipse, with semi-major axis 15 cm and semi-minor axis 10 cm . Slices of the cake parallel to the major axis of the base are isosceles triangles, whose vertices trace out a semi-elliptical path with the same semi-major axis and semi-minor axis lengths as in the diagram below.
i) Show that the volume of a 'typical' triangular slice is given by:

$$
V_{\text {slice }} \approx x \not 2 y \mathrm{~cm}^{3}
$$

ii) Find the exact volume of the cake in Cm^{3}.

End of Question 4

a)

The line $y=m x+a$ intersects the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at two points which have x coordinates ${ }^{x_{1}}$ and ${ }^{x_{2}}$.
i) Express x_{2} in terms of m, a, b and ${ }^{x_{1}}$.
ii) Hence or otherwise show that the line is a tangent to the ellipse at the point where $\frac{-a^{3} m}{b^{2}+a^{2} m^{2}}$.
b) A parabola has parametric equations $x=2 a t$ and $y=a t^{2}$.
i) Find the equation of the normal to the parabola at the point where $t=p$.
ii) Hence show that, through the point $\left(x_{1}, y_{1}\right)$, it is possible to draw up to three normals to the parabola.
c) Given the complex number $z=\cos \theta+i \sin \theta$
i) Use De Moivres Theorem and the binomial expansion find an expression for $\cos 4 \theta$ in terms of $\cos \theta$
ii)

$$
\begin{aligned}
& \text { Also, using } \\
& \text { of } \cos n \theta
\end{aligned} z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \text { determine an expansion for } \cos ^{4} \theta \text { in terms }
$$

iii)

Hence evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta$

End of Question 5

a) On a suitably labelled Argand diagram sketch the region determined by

$$
[\operatorname{Re}(z)]^{2}+\operatorname{Im} z<0
$$

(b) Consider the function

$$
f(x)=\begin{array}{ll}
\frac{e^{x}-1}{x}, & x \neq 0 \\
1 & , \\
x=0
\end{array}
$$

(i) Use differentiation to show that $\mathrm{e}^{-x}+x-1 \geq 0$ for all values of x. Hence
(iii) Sketch the graph of $y=f(x)$.
(c)

The curve $y=e^{x}$ cuts the y axis at A . B is a second point on the curve such that $x=k$, where $k>0$. The tangent to the curve $y=e^{x}$ at A cuts the vertical line $x=k$ at the point C .
(i)

By considering areas, show that $\frac{1}{2} k(k+2)<e^{k}-1<\frac{1}{2} k\left(1+e^{k}\right)$. Hence deduce that $2.5<e<3$.
(ii) Show that the curve $y=e^{x}$ bisects the area of $\triangle A B C$ for some value of k Newton's method once to obtain a second approximation. Give your answer to one decimal place.
a) Given that $z^{5}-1=0$
i) Solve for Z over the complex field in the form $\cos \theta+i \sin \theta$.
i) Hence express $z^{5}-1$ as the product of linear and quadratic factors.
iii) Write down the complex roots of $z^{4}+z^{3}+z^{2}+z+1=0$.
iv)

Without evaluating, show that $\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}$
b)

In the diagram, the two circles intersect at A and B . P is a point on one circle. PA and PB produced meet the other circle at M and N respectively. NA produced meets the first circle at Q . PQ and NM produced meet at R. The tangent at M to the second circle meets PR at T .
Copy or trace the diagram into your answer booklet.
(i) Show that QAMR is a cyclic quadrilateral.
(ii) Show that $\mathrm{TM}=\mathrm{TR}$.

End of Question 7

Question 8 ($\mathbf{1 5}$ marks) Use a SEPARATE writing booklet
a) i) Show that for all values of x and y :

$$
\sin (x+y)-\sin (x-y)=2 \cos x \sin y
$$

ii) Use mathematical induction to show that for all positive integers n :

$$
\cos x+\cos 2 x+\cos 3 x+\cdots \cos n x=\frac{\sin \left(n+\frac{1}{2}\right) x-\sin \frac{1}{2} x}{2 \sin \frac{1}{2} x}
$$

iii) Hence show that:
$\cos 2 x+\cos 4 x+\cos 6 x+\cdots+\cos 16 x=8 \cdot \cos 9 x \cdot \cos 4 x \cdot \cos 2 x \cdot \cos x$
b) Show that a relationship between the coefficients of $p(x)=x^{3}+a x^{2}+b x+c=0$ is $2 a^{3}-9 a b-27 c=0$, if the roots are three consecutive terms of an arithmetic series.
c)

Solve the differential equation $\frac{d y}{d x}=2 y$ for y given that when $x=1, y=1$

End of Examination

STANDARD INTEGRALS

$$
\mathrm{NOTE}: \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Part Solution
(a)

$$
\begin{aligned}
\int \frac{d x}{\sqrt{16-9 x^{2}}} & =\frac{1}{3} \int \frac{d x}{\sqrt{\frac{16}{9}-x^{2}}} \\
& =\frac{1}{3} \sin ^{-1} \frac{x}{4 / 3}+c \\
& =\frac{1}{3} \sin ^{-1} \frac{3 x}{4}+c
\end{aligned}
$$

(b) $\int 5 \cos x \sin ^{2} x d x=\frac{5}{3} \sin ^{3} x+c$
(c) $\quad \int_{1}^{e} x \ln x d x=\left[\frac{x^{2}}{2} \ln x\right]_{1}^{e}-\int_{1}^{e} \frac{x^{2}}{2} \frac{1}{x} d x$
$=\left[\frac{x^{2}}{2} \ln x\right]_{1}^{e}-\int_{1}^{e} \frac{x}{2} d x$
$=\left[\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}\right]_{1}^{e}$
$=\left[\frac{x^{2}}{4}(2 \ln x-1)\right]_{1}^{e}$
$=\frac{e^{2}}{4}(2-1)-\frac{1}{4}(-1)$
$=\frac{e^{2}}{4}+\frac{1}{4}$
(d) Let $\frac{A}{x+1}+\frac{B}{x-1}=\frac{1}{x^{2}-1}$

$$
A(x-1)+B(x+1)=1
$$

$$
\text { When } x=1 \quad 2 B=1 \quad \rightarrow B=\frac{1}{2}
$$

$$
\text { When } x=-1-2 \mathrm{~A}=1 \rightarrow \mathrm{~A}=-\frac{1}{2}
$$

$$
\int_{2}^{3} \frac{d x}{x^{2}-1}=\frac{1}{2} \int_{2}^{3}\left(\frac{-1}{x+1}+\frac{1}{x-1}\right) d x
$$

$$
=\frac{1}{2}[\ln (x-1)-\ln (x+1)]_{2}^{3}
$$

$$
=\frac{1}{2}\left[\ln \left(\frac{x-1}{x+1}\right)\right]_{2}^{3}
$$

$$
=\frac{1}{2}\left[\ln \frac{1}{2}-\ln \frac{1}{3}\right]_{z}^{3}
$$

$$
=\frac{1}{2} \ln \frac{3}{2}
$$

1 for rearranging

1 for inv trig integral

2 for solution 1 if simple error made

1 for breakup into parts

1 for integral

1 for final answer

1 value of B
1 value of A

1 integral

1 for answer

Part Solution

Marks
 Comment

(e) If $t=\tan \frac{\theta}{2}$

$$
\begin{aligned}
& \frac{d t}{d \theta}=\frac{1}{2} \sec ^{2} \frac{\theta}{2} \\
& 2 \cos ^{2} \frac{\theta}{2} d t=d \theta \\
& \cos ^{2} \frac{\theta}{2}=\frac{1}{1+t^{2}} \\
& d \theta=\frac{2}{1+t^{2}} d t
\end{aligned}
$$

$$
1 \text { for } d \theta
$$

$$
\text { Limits } \theta=\frac{\pi}{2} \longrightarrow t=1
$$

$$
\begin{aligned}
& \theta=0 \longrightarrow t=0 \\
& \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{2+\cos \theta}=\int_{0}^{1} \frac{1}{2+\frac{1-t^{2}}{1+t^{2}}} \cdot \frac{2}{1+t^{2}} d t
\end{aligned}
$$

$$
=\int_{0}^{1} \frac{1+t^{2}}{\left(2+2 t^{2}+1-t^{2}\right)} \cdot \frac{2}{1+t^{2}} d t
$$

$$
=\int_{0}^{1} \frac{2}{\left(3+t^{2}\right)} d t
$$

$$
=2\left[\frac{1}{\sqrt{3}} \tan ^{-1} \frac{t}{\sqrt{3}}\right]_{0}^{1}
$$

$$
=\frac{2}{\sqrt{3}}\left(\tan ^{-1} \frac{1}{\sqrt{3}}-\tan ^{-1} 0\right)
$$

$$
=\frac{2}{\sqrt{3}} \cdot \frac{\pi}{6}
$$

1 for correct statement of integral including limits

1 for completing integral

1 for result

$$
=\frac{\pi}{3 \sqrt{3}}
$$

Question 2	ion 2 \quad Trial HSC Examination- Mathematics $\mathbf{2 0}^{20}$	2008	
Part	Solution	Marks	Comment
(a) i)	$\begin{aligned} & \frac{a}{b}=\frac{3+4 i}{2-2 i} \times \frac{2+2 i}{2+2 i} \\ & =\frac{6+6 i+8 i-8}{4+4} \\ & =\frac{-2+14}{8} i \\ & =-\frac{1}{4}+\frac{7}{4} i \end{aligned}$	2	1 for multiplying by conjugate. 1 for correct answer
ii)	$\begin{align*} & \text { Let } \sqrt{A}=x+i y \\ & \therefore A=x^{2}-y^{2}+2 x y i \\ & \therefore 3+4 i=x^{2}-y^{2}+2 x y i \\ & \therefore 3=x^{2}-y^{2} \quad \ldots \ldots \ldots \ldots \tag{1}\\ & \therefore 4=2 x y \quad \ldots \ldots \ldots \ldots \tag{2}\\ & (1)^{2}+(2)^{2} \\ & x^{4}+2 x^{2} y^{2}+y^{4}=25 \\ & \left(x^{2}+y^{2}\right)^{2}=25 \\ & x^{2}+y^{2}=5 \quad \ldots \ldots . \ldots \ldots \tag{3}\\ & (1)+(3) \quad 2 x^{2}=8 \\ & x= \pm 2 \\ & y= \pm 1 \\ & \sqrt{A}= \pm(2+i) \end{align*}$	3	1 for squaring and equating real and imaginary 1 for eliminating y (or x) 1 for final solution
iii)	$\begin{aligned} A-\bar{B} & =3+4 i-(2+2 i) \\ & =1+2 i \end{aligned}$	1	1 for answer
(b) i)	$\begin{aligned} & 1+\sqrt{3} i=2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\ & \cos \theta=\frac{1}{2} \text { and } \sin \theta=\frac{\sqrt{3}}{2} \\ & \therefore \theta=\frac{\pi}{3} \\ & \therefore 1+\sqrt{3} i=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \end{aligned}$	2	1 value of θ 1 for result
ii)	$\begin{aligned} (1+\sqrt{3} i)^{6} & =2^{6}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{6} \\ & =64(\cos 2 \pi+i \sin 2 \pi) \text { by De Moivres Theorem } \\ & =64(1+0 i) \\ & =64 \end{aligned}$ Which is real.	2	1 Use of De Moivre Thm 1 for answer

		HSC Examination- Mathematics	2008	
Question 2		Trial HSC Extension 2	Marks	Comment
Part	Solution		1	1 for answer
$\begin{array}{\|l} \hline \text { (c) } \\ \text { i) } \end{array}$	$\begin{aligned} O A & =2 i O C \\ & =2 i(p+i q) \end{aligned}$			
		$+2 p i$	1	1 for answer
ii)	$\begin{aligned} O B & =O C+O A \\ & =(p+i q)+(-2 q+2 p i) \\ & =(p-2 q)+(2 p+q) i \end{aligned}$			
			1	1 for answer
iii)		$\begin{aligned} & q A \\ & q-2 p i \end{aligned}$	2	1 for sum of vectors
iv)	$\begin{aligned} & A C=A B+B C \\ & =O C-O A \\ & =(p+i q)-(-2 q+2 p i) \\ & =(p+2 q)+(q-2 p) i \end{aligned}$			1 for answer

Question 3	tion 3 Trial HSC Examination- Mathematics	2008	
Part	Solution	Marks	Comment
$\begin{aligned} & \text { (a) } \\ & \text { i) } \end{aligned}$		2	1 for basic shape 1 for asymptote
ii)		2	1 for basic shape 1 for discontinuity
iii)		2	1 for shape 1 for below axis
(b)	$\begin{aligned} & x^{2}+2 x y-y^{2}=17 \\ & 2 x+2 y+2 x \frac{d y}{d x}-2 y \frac{d y}{d x}=0 \\ & \frac{d y}{d x}(2 x-2 y)=-(2 x+2 y) \\ & \frac{d y}{d x}=\frac{-(x+y)}{(x-y)} \\ & =\frac{x+y}{y-x} \\ & \text { At }(3,2) \\ & \text { Gradient of tangent }=\frac{3+2}{2-3}=-5 \end{aligned}$	2	1 for implicit differentiation 1 for derivative

Question 4	Trion 4 Trial HSC Examination- Mathematics Extension 2	2008	
Part	Solution	Marks	Comment
(a)	$\begin{aligned} & I_{n}=\int(\ln x)^{n} d x=x(\ln x)^{n}-\int x \cdot n(\ln x)^{n-1} \cdot \frac{1}{x} \\ & =x(\ln x)^{n}-n \int(\ln x)^{n-1} d x \\ & =x(\ln x)^{n}-n I_{n-1} \end{aligned}$	3	1 for use of Int by parts 1 for simplifying 1 for result in terms of I_{n}
(b)	$\begin{aligned} & \text { Consider } \int(\ln x)^{3} d x=I_{3} \\ & \therefore I_{3}=x(\ln x)^{3}-3 I_{2} \\ & \text { Now } I_{2}= x(\ln x)^{2}-2 I_{1} \\ & \text { and } I_{1}= x(\ln x)-1 I_{0} \\ &= x(\ln x)-x \\ & \therefore I_{3}=x(\ln x)^{3}-3\left(x(\ln x)^{2}-2(x(\ln x)-x)\right) \\ &= x(\ln x)^{3}-3 x(\ln x)^{2}+6 x(\ln x)-6 x \\ & \therefore \int_{11}^{4}(\ln x)^{3} d x=\left(e^{4} .64-3 e^{4} \cdot 16+6 e^{4} .4-6 e^{4}\right)-(-6) \\ &= 34 e^{4}+6 \end{aligned}$	4	1 for I_{3} 1 for I_{2} 1 full expression including I_{1} 1 sub and evaluate
(b)	$\begin{aligned} & y=6 x-x^{2}-8 \\ & y=0 \quad x=2,4 \end{aligned}$ For shells about Y axis $V=2 \pi \int_{a}^{b} x y d x$ About $x=1$ $\begin{aligned} V & =2 \pi \int_{a}^{b}(x-1) y d x \\ & =2 \pi \int_{2}^{4}(x-1)\left(6 x-x^{2}-8\right) d x \\ & =2 \pi \int_{2}^{4}\left(7 x^{2}-x^{3}-14 x+8\right) d x \\ & =2 \pi\left[\frac{7 x^{3}}{3}-\frac{x^{4}}{4}-7 x^{2}+8 x\right]_{2}^{4} \\ & =2 \pi\left[\left(\frac{448}{3}-64-112+32\right)-\left(\frac{56}{3}-4-28+16\right)\right] \\ & =\frac{16 \pi}{3} \text { units }^{3} \end{aligned}$	4	4 marks for full solution 3 marks if simple error made 2 marks if major error or 2 simple errors 1 mark if start made using correct formula or from scratch with correct method.

Question 5		Trial HSC Examination- Mathematics Extension 2	2008	
Part	Solution		Marks	Comment
(a) i)	Solving simultaneously $\begin{align*} & y=m x+a \tag{1}\\ & b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} \tag{2} \end{align*}$ sub (1) into (2) $\begin{aligned} & b^{2} x^{2}+a^{2}(m x+a)^{2}=a^{2} b^{2} \\ & b^{2} x^{2}+a^{2} m^{2} x^{2}+2 a^{3} m x+a^{4}=a^{2} b^{2} \\ & \left(b^{2}+a^{2} m^{2}\right) x^{2}+2 a^{3} m x+a^{4}-a^{2} b^{2}=0 \end{aligned}$ If $x=x_{1}$ and x_{2} are the roots then $\begin{aligned} & x_{1}+x_{2}=\frac{-2 a^{3} m}{b^{2}+a^{2} m^{2}} \\ & \therefore x_{2}=\frac{-2 a^{3} m}{b^{2}+a^{2} m^{2}}-x_{1} \end{aligned}$		3	1 for sub into equation 1 for simplify 1 for expression for x_{2}
ii)	For a $x_{1}+x$ $\therefore x=$	$\begin{aligned} & \text { ngent } x_{1}=x_{2}=x \\ & =2 x=\frac{-2 a^{3} m}{b^{2}+a^{2} m^{2}} \\ & \frac{-a^{3} m}{2^{2}+a^{2} m^{2}} \end{aligned}$	1	1 for answer
(b) i)	$x=2$ Grad Grad At t Equa $y-a p$ py $x+p y$	$\begin{aligned} & \text { and } y=a t^{2} \\ & \text { f tangent }=\frac{d y}{d x}=t \\ & \text { f normal }==\frac{-1}{t} \\ & p \quad m=\frac{-1}{p} \quad\left[\text { point }\left(2 a p, a p^{2}\right)\right] \end{aligned}$ n of normal $\begin{aligned} & 2=\frac{-1}{p}(x-2 a p) \\ & p^{3}=-x+2 a p \\ & -a p^{3}-2 a p=0 \end{aligned}$	2	1 for gradient of normal 1 for equation of normal
ii)	Nor $x_{1}+$ To fi must As th 3 val \therefore U	passes through $\left(x_{1}, y_{1}\right)$ then $y_{1}-a p^{3}-2 a p=0$ intersection with the parabola, this equatio e solved for p. equation is a cubic in p, there can be from es for p. to three normals can be drawn	to ${ }^{2}$	2 for any reasonable explanation

Question 6	tion 6 Trial HSC Examination- Mathematics Extension 2	2008	
Part	Solution	Marks	Comment
(a)	$\begin{aligned} {[\operatorname{Re}(z)]^{2}+\ln z } & <0 \\ x^{2}+y & <0 \\ y & <-x^{2} \end{aligned}$	2	1 for correct Cartesian equation 1 mark for correct region
b) i)	i. Consider the function $g(x)=e^{-x}+x-1$. $g(0)=0 \text { and } g^{\prime}(x)=-e^{-x}+1 \Rightarrow g^{\prime}(0)=0$ Also $g^{\prime \prime}(x)=e^{-x}>0$ for all x $\therefore g(x)$ has a minimum value of 0 when $x=0$. $\therefore e^{-x}+x-1 \geq 0$ for all x, with equality only if $x=0$. For $x \neq 0, f^{\prime}(x)=\frac{d}{d x}\left(\frac{e^{x}-1}{x}\right)$ $\begin{aligned} & =\frac{e^{x} \cdot x-\left(e^{x}-1\right) \cdot 1}{x^{2}} \\ & =\frac{1+x e^{x}-e^{x}}{x^{2}} \\ & =\frac{e^{x}}{x^{2}}\left(e^{-x}+x-1\right) \\ & >0 \end{aligned}$ Hence $f(x)$ is an increasing function for $x \neq 0$.	3	1 shows by differentiation that $e^{-x}+x+1$ has min value of 0 when $\mathrm{x}=0$ 1 finds $f^{\prime}(x)$ 1 rearranges $f^{\prime}(x)$ as a product of $e^{-x}+x+1$ and deduces $f^{\prime}(x)>0$
i)	ii. Let $h(x)=e^{x}$. Then $h^{\prime}(x)=e^{x}$. $\begin{aligned} \lim _{x \rightarrow 0} \frac{e^{x}-1}{x} & =\lim _{x \rightarrow 0} \frac{e^{x}-e^{0}}{x-0} \\ & =h^{\prime}(0) \\ & =1 \\ & =f(0) \end{aligned}$ $\therefore f(x)$ is continuous at $x=0$.	2	1 Expresses the limiting value of $f(x)$ as $x \rightarrow 0$ as the derivative of e^{x} at $\mathrm{x}=0$ 1 Evaluates this derivative to show limiting value is 1

Question 7	tion 7 Trial HSC Examination- Mathematics Extension 2 2008	2008	
Part	Solution	Marks	Comment
$\begin{aligned} & \text { (a) } \\ & \text { i) } \end{aligned}$	$z^{5}=1$ By De Moivres Thm $\cos 5 \theta+i \sin 5 \theta=1$ Equating real and imaginary $\begin{aligned} & \cos 5 \theta=1 \quad \sin 5 \theta=0 \\ & \therefore 5 \theta=0,2 \pi, 4 \pi, 6 \pi, 8 \pi \\ & \theta=0, \frac{2 \pi}{5}, \frac{4 \pi}{5}, \frac{6 \pi}{5}, \frac{8 \pi}{5} \\ & z_{1}=\operatorname{cis} 0=1 \\ & z_{2}=\operatorname{cis} \frac{2 \pi}{5} \\ & z_{3}=\operatorname{cis} \frac{4 \pi}{5} \\ & z_{4}=\operatorname{cis} \frac{6 \pi}{5}=\operatorname{cis} \frac{-4 \pi}{5}=\bar{z}_{3} \\ & z_{5}=\operatorname{cis} \frac{8 \pi}{5}=\operatorname{cis} \frac{-2 \pi}{5}=\bar{z}_{2} \end{aligned}$	3	1 values of θ 2 for values of $\mathrm{Z}_{1}-\mathrm{Z}_{5}$
ii)	$\begin{aligned} z^{5}-1 & =\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{5}\right)\left(z-z_{3}\right)\left(z-z_{4}\right) \\ & =\left(z-z_{1}\right)\left(z^{2}-\left(z_{2}+z_{5}\right) z+z_{2} z_{5}\right)\left(z^{2}-\left(z_{3}+z_{4}\right) z+z_{3} z_{4}\right)= \\ & =\left(z-z_{1}\right)\left(z^{2}-2 \cos \frac{2 \pi}{5} z+1\right)\left(z^{2}-2 \cos \frac{4 \pi}{5} z+1\right) \end{aligned}$	2	1 factors 1 in quadratics
iii)	$\begin{aligned} & z^{5}-1=0 \\ & (z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right)=0 \end{aligned}$ Roots are $z_{2}, z_{3}, z_{4}, z_{5}$ from above.	1	
iv)	$\begin{aligned} & \text { Sum of roots of } z^{5}-1=0 \text { is zero. } \\ & \therefore z_{1}+z_{2}+z_{3}+z_{4}+z_{5}=0 \\ & z_{1}+z_{2}+\bar{z}_{2}+z_{3}+\bar{z}_{3}=0 \\ & 1+2 \cos \frac{2 \pi}{5}+2 \cos \frac{4 \pi}{5}=0 \\ & 2 \cos \frac{2 \pi}{5}+2 \cos \frac{4 \pi}{5}=-1 \\ & \cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=\frac{-1}{2} \end{aligned}$	2	1 for conjugates 1 for answer

(b)			
i)	$\angle R M A=\angle A B N$ (exterior angle of cyclic quad. $A B N M$ is equal to interior opposite angle) $\angle A B N=\angle A Q P$ in cyclic quadrilateral $A B P Q$. Similarly Hence quadrilateral $Q A M R$ is cyclic. (exterior angle $A Q P$ is equal to interior opposite angle RMA)	3	2 marks for using properties of cyclic quads to deduce equal angles 1 for applying test to QAMR
	ii. Produce TM to S. Then $\angle T M R=\angle S M N$ (vertically opposite angles are equal) $\angle S M N=\angle M A N$ (angle between tangent and chord drawn to point of contact is equal to angle subtended by that chord in the alternate segment) $\angle M A N=\angle P A Q \quad$ (verically opposite angles are equal) $\angle P A Q=\angle T R M$ (exterior angle of cyclic quad $Q A M R$ is equal to interior opposite angle) Hence in $\triangle T M R, \angle T M R=\angle T R M$ and hence $T M=T R$ (sides opposite equal angles are equal)	4	1 alt seg theorem 1 vert opp angles 1 equality of angles 1 deduces TMR has equal angles so equal sides

Question 8		Trial HSC Examination- Mat Extension 2
Part	Solution	
(a)	$\begin{aligned} \sin (x+y)-\sin (x-y) & =\sin x \cos y+\cos x \sin y-(\sin x \\ & =2 \cos x \sin y \end{aligned}$	
a) ii)	$\begin{array}{ll} \text { If } n=1 \quad \text { LHS }=\cos x \\ \text { RHS }=\frac{\sin \left(\frac{3 x}{2}\right)-\sin \left(\frac{x}{2}\right)}{2 \sin \left(\frac{x}{2}\right)} \end{array}$	
	Using i) above	($2 \cos x \sin \binom{x}{2}$
		$2 \sin \left(\frac{x}{2}\right)$
		$=\cos x=$ LHS
	\therefore true for $n=1$	
	Assume true for $n=k$	
	$\text { i.e } \cos x+\cos 2 x+\cos 3 x \ldots \ldots+\cos k x=\frac{\sin \left(k+\frac{1}{2}\right) x-\sin \left(\frac{x}{2}\right)}{2 \sin \left(\frac{x}{2}\right)}$	

When $n=k+1$
$\cos x+\cos 2 x+\cos 3 x \ldots \ldots+\cos k x+\cos (k+1) x=\frac{\sin \left(k+\frac{1}{2}\right) x-\sin \left(\frac{x}{2}\right)}{2 \sin \left(\frac{x}{2}\right)}+\cos (k+1) x$
$=\frac{\sin \left(k+\frac{1}{2}\right) x-\sin \left(\frac{x}{2}\right)+\cos (k+1) x \cdot 2 \sin \left(\frac{x}{2}\right)}{2 \sin \left(\frac{x}{2}\right)}$
$=\frac{\sin \left(k+\frac{1}{2}\right) x-\sin \left(\frac{x}{2}\right)+\sin \left((k+1) x+\frac{x}{2}\right)-\sin \left((k+1) x-\frac{x}{2}\right)}{2 \sin \left(\frac{x}{2}\right)} \quad$ using i) above
$=\frac{\sin \left(k+\frac{1}{2}\right) x-\sin \left(\frac{x}{2}\right)+\sin \left(k+\frac{3}{2}\right) x-\sin \left(k+\frac{1}{2}\right) x}{2 \sin \left(\frac{x}{2}\right)}$

$$
=\frac{\sin \left((k+1)+\frac{1}{2}\right) x-\sin \left(\frac{x}{2}\right)}{2 \sin \left(\frac{x}{2}\right)}
$$

\therefore True for $n=k+1$
\therefore Since true for $n=1$, by induction is true for all positive integral values of $k \geq 1$

$\alpha^{2}-\alpha d+\alpha^{2}-d^{2}+\alpha^{2}+\alpha d=b$
$3 \alpha^{2}-d^{2}=b$
$d^{2}=3 \alpha^{2}-b$
$d^{2}=3\left(\frac{-a}{3}\right)^{2}-b=\frac{a^{2}}{3}-b$
\therefore Product of the roots $=\alpha(\alpha-d)(\alpha+d)=c$
$\alpha^{3}-\alpha d^{2}=c$
$\left(\frac{-a}{3}\right)^{3}-\left(\frac{-a}{3}\right)\left(\frac{a^{2}}{3}-b\right)=c$
$\frac{-a^{3}}{27}+\frac{a^{3}}{9}-\frac{a b}{3}=c$
$\frac{2 a^{3}}{27}-\frac{a b}{3}=c$

Question 8		Trial HSC Examination- Mathematics Extension 2	$\mathbf{2 0 0 8}$	
Part	Solution	Marks	Comment	
(c)	$\frac{d y}{d x}=2 y$	2		
$\therefore \frac{d x}{d y}=\frac{1}{2 y}$				
$\therefore x=\frac{1}{2} \ln y+c$		1 for		
When $x=1, y=1$	expression			
$\therefore c=1$	for x			
$\therefore x=\frac{1}{2} \ln y+1$				
$\frac{1}{2} \ln y=x-1$		1 for result		
$\ln y=2 x-2$	$y=e^{2 x-2}$			

