

2008 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

Reading Time- 5 minutes

Working Time – 3 hours

Write using a blue or black pen

Approved calculators may be used

A table of standard integrals is provided at the back of this paper.

All necessary working should be shown for every question.

Total marks (**120**) Attempt Questions 1-8 All questions are of equal value

Total Marks – 120 Attempt Questions 1-8 All Questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Questi	ion 1 (15 marks) Use a SEPARATE answer booklet	Marks
a)	Find $\int \frac{dx}{\sqrt{16-9x^2}}$	2
b)	Find $\int 5\cos x \sin^2 x dx$	2
c)	Evaluate $\int_{1}^{e} x \ln x dx$	3
d)	Evaluate $\int_{2}^{3} \frac{dx}{x^2 - 1}$	4
e)	Using the substitution $t = tan\frac{\theta}{2}$ or otherwise find $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{2 + \cos\theta}$	4

End of Question 1

Question 2 (15 marks) Use a SEPARATE writing booklet.

Marks

2

2

- a) Let A = 3 + 4i and B = 2 2i. Find in the form x + iy (x and y real).
 - i) $\frac{A}{B}$
 - ii) \sqrt{A} 3
 - iii) $A-\overline{B}$ 1

b) i) Write
$$1 + \sqrt{3}i$$
 in the form $r(\cos \theta + i \sin \theta)$ 2

В

ii) Hence write $(1+\sqrt{3}i)^6$ showing that it is real.

Α

c)

0

i)	OA	1
ii)	OB	1
iii)	BC	1
iv)	AC	2

С

End of Question 2

Question 3 (15 marks) Use a SEPARATE writing booklet.

a)

The diagram shows the graph of y = f(x) for $x \ge 0$. M(1, 3) and N(4, 0) are stationary points of y = f(x) and P(3, 1) is a point of inflexion of y = f(x). The line y = x - 9 is an asymptote as $x \to \infty$. Draw separate one third page sketches showing any special features for the following:

i)
$$f'(x)$$
 2

ii)
$$\frac{1}{f(x)}$$
 2

iii)
$$-(f(x))^2$$

Question 3 continues on the next page

Question 3 continued

- b) Determine the gradient of the tangent to the curve $x^2 + 2xy y^2 = 17$ at the point (3, 2) 2
- c) The zeros of $x^3 3x^2 2x + 4$ are α , β and γ

i)	Find a cubic polynomial whose zeros are α^2 ,	β^2	and γ^2	2
----	--	-----------	----------------	---

- ii) Hence or otherwise find the value of $\alpha^2 + \beta^2 + \gamma^2$ 1
- iii) Determine the value of $\alpha^3 + \beta^3 + \gamma^3$
- d) The equation $P(x) = x^3 + 3x^2 24x + k = 0$ has a double root. Find the possible values of k. 2

End of Question 3

Marks

Question 4 (15 marks) Use a SEPARATE writing booklet.

a) i)
Show that a reduction formula for

$$I_n = \int (ln x)^n dx$$

is $I_n = x (ln x)^n - nI_{n-1}$
i)
Hence evaluate $\int_{-1}^{e^4} (ln x)^3 dx$
Hence evaluate $\int_{-1}^{1} (ln x)^3 dx$

Hence evaluate \bullet ¹

b) The arc of the curve $y = 6x - x^2 - 8$ where $y \ge 0$ is rotated about the line x = 1. By applying the technique of cylindrical shells determine the exact volume of the solid formed

A cake is made with base in the shape of an ellipse, with semi-major axis 15 cm and semi-minor axis 10 cm. Slices of the cake parallel to the major axis of the base are isosceles triangles, whose vertices trace out a semi-elliptical path with the same semi-major axis and semi-minor axis lengths as in the diagram below.

- i) Show that the volume of a 'typical' triangular slice is given by: $V_{slice} \approx x x x y cm^3$
- ii) Find the exact volume of the cake in cm^3 .

End of Question 4

Marks

4

1

Question 5 (15 marks) Use a SEPARATE writing booklet.

Marks

3

1

2

2

a)

ii)

The line y = mx + a intersects the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at two points which have x coordinates x_1 and x_2 .

- i) Express x_2 in terms of *m*, *a*, *b* and x_1 .
 - Hence or otherwise show that the line is a tangent to the ellipse at the point where $\frac{-a^3m}{b^2+a^2m^2}$.
- b) A parabola has parametric equations x = 2at and $y = at^2$.
 - Find the equation of the normal to the parabola at the point where t = p. 2 i)
 - ii) Hence show that, through the point (x_1, y_1) , it is possible to draw up to three normals to the parabola.

c) Given the complex number $z = \cos \theta + i \sin \theta$

- Use De Moivres Theorem and the binomial expansion find an 3 i) expression for $\cos 4\theta$ in terms of $\cos \theta$
- ii) Also, using $z^n + \frac{1}{z^n} = 2\cos n\theta$ determine an expansion for $\cos^4 \theta$ in terms of $\cos n\theta$
- iii) 2 $\int_{0}^{\frac{\pi}{2}} \cos^4\theta \ d\theta$ Hence evaluate

End of Question 5

Question 6 (15 marks) Use a SEPARATE writing booklet.

- a) On a suitably labelled Argand diagram sketch the region determined by $[\text{Re}(z)]^2 + |\text{m}z| < 0$
- (b) Consider the function

$$f(x) = \begin{bmatrix} e^{x} - 1 \\ x \\ 1 \end{bmatrix}, \quad x \neq 0$$

- (i) Use differentiation to show that $e^{-x} + x 1 \ge 0$ for all values of x. Hence show that f(x) is an increasing function for $x \ne 0$
- (ii) Show that f(x) is continuous at x=0. 2

(iii) Sketch the graph of
$$y = f(x)$$
 1

(c)

The curve $y = e^x$ cuts the y axis at A. B is a second point on the curve such that x = k, where k > 0. The tangent to the curve $y = e^x$ at A cuts the vertical line x = k at the point C.

- (i) By considering areas, show that $\frac{1}{2}k(k+2) < e^k 1 < \frac{1}{2}k(1+e^k)$. Hence deduce that 2.5 < e < 3.
- (ii) Show that the curve $y = e^x$ bisects the area of $\triangle ABC$ for some value of k such that 2 < k < 3. Taking k = 2.7 as a first approximation, apply Newton's method once to obtain a second approximation. Give your answer to one decimal place.

Marks

2

3

Question 7 (15 marks) Use a SEPARATE writing booklet.

Marks

- a) Given that $z^5 1 = 0$
 - i) Solve for Z over the complex field in the form $\cos \theta + i \sin \theta$. 3
 - i) Hence express $z^5 1$ as the product of linear and quadratic factors. 2
 - iii) Write down the complex roots of $z^4 + z^3 + z^2 + z + 1 = 0$. 1

iv)
Without evaluating, show that
$$\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$$
 2

b)

In the diagram, the two circles intersect at A and B. P is a point on one circle. PA and PB produced meet the other circle at M and N respectively. NA produced meets the first circle at Q. PQ and NM produced meet at R. The tangent at M to the second circle meets PR at T. Copy or trace the diagram into your answer booklet.

(i)Show that QAMR is a cyclic quadrilateral.3(ii)Show that TM=TR.4

End of Question 7

Question 8 (15 marks) Use a SEPARATE writing booklet

- a) i) Show that for all values of x and y: sin(x+y) - sin(x-y) = 2 cos x sin yii) Use mathematical induction to show that for all positive integers n: $cos x + cos 2x + cos 3x + \cdots cos nx = \frac{sin(n+\frac{1}{2})x - sin\frac{1}{2}x}{2 sin\frac{1}{2}x}$
 - iii) Hence show that: $cos 2x + cos 4x + cos 6x + \dots + cos 16x = 8.cos 9x.cos 4x.cos 2x.cos x$
- b) Show that a relationship between the coefficients of $p(x) = x^3 + ax^2 + bx + c = 0$ is $2a^3 - 9ab - 2\mathcal{K} = 0$, if the roots are three consecutive terms of an arithmetic series.

c)
$$\frac{dy}{dx} = 2y$$
 Solve the differential equation $\frac{dy}{dx} = 2y$ for y given that when $x = 1, y = 1$

End of Examination

Marks

4

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE : $\ln x = \log_e x$, x > 0

CORRECTED SOLNS. 195 TRIAL 2008

2 . S

Quest	ion 1 Trial HSC Examination- Mathematics	2008	
Part	Solution	Marks	Comment
(a)	$\int \frac{dx}{\sqrt{16-9x^2}} = \frac{1}{3} \int \frac{dx}{\sqrt{\frac{16}{9}-x^2}}$	2	1 for rearranging
	$= \frac{1}{3} \sin^{-1} \frac{x}{\frac{4}{3}} + c$ $= \frac{1}{3} \sin^{-1} \frac{3x}{\frac{3x}{3}} + c$		1 for inv trig integral
(b)	$\int 5\cos x \sin^2 x dx = \frac{5}{3}\sin^3 x + c$	2	2 for solution 1 if simple error made
(c)	$\int_{-\infty}^{\infty} x \ln x dx = \left[\frac{x^2}{2} \ln x\right]_{1}^{\alpha} - \int_{1}^{\infty} \frac{x^2}{2} \frac{1}{x} dx$	3	1 for breakup into parts
·	$= \left[\frac{x^2}{2}\ln x\right]_1^e - \int_1^e \frac{x}{2}dx$ $= \left[\frac{x^2}{2}\ln x - \frac{x^2}{4}\right]_1^e$		1 for integral
	$= \left[\frac{x^2}{4}(2\ln x - 1)\right]_{1}^{e}$		1 for final answer
	$= \frac{e^2}{4}(2-1) - \frac{1}{4}(-1)$ $= \frac{e^2}{4} + \frac{1}{4}$		
(d)	Let $\frac{A}{x+1} + \frac{B}{x-1} = \frac{1}{x^2 - 1}$	4	
	A(x-1) + B(x+1) = 1		1 value of B
	When $x = 1$ $2B = 1 \rightarrow B = \frac{1}{2}$ When $x = -1$ $-2A = 1 \rightarrow A = -\frac{1}{2}$		1 value of A
	$\int_{2}^{3} \frac{dx}{x^{2} - 1} = \frac{1}{2} \int_{2}^{3} \left(\frac{-1}{x + 1} + \frac{1}{x - 1}\right) dx$		
	$=\frac{1}{2}\left[ln(x-1)-ln(x+1)\right]_{2}^{3}$		1 integral
	$=\frac{1}{2}\left[ln\left(\frac{x-1}{x+1}\right)\right]_{2}^{3}$		
	$=\frac{1}{2}\left[ln\frac{1}{2}-ln\frac{1}{3}\right]_{2}^{3}$		1 for answer
	$=\frac{1}{2}ln\frac{3}{2}$		

.

.

Question 1

ş

.

2008 Trial HSC Examination- Mathematics Extension 2

4

Part	Solution
(e)	If $t = tan\frac{\theta}{2}$
	$\frac{dt}{d\theta} = \frac{1}{2} \sec^2 \frac{\theta}{2}$
	$2\cos^2\frac{\theta}{2}dt = d\theta$
	$\cos^2\frac{\theta}{2} = \frac{1}{1+t^2}$
	$d\Theta = \frac{2}{1+t^2} dt$
	$\text{Limits } \theta = \frac{\pi}{2} \longrightarrow t = 1$
	$\theta = 0 \longrightarrow t = 0$
	$\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{2 + \cos\theta} = \int_{0}^{1} \frac{1}{2 + \frac{1 - t^{2}}{1 + t^{2}}} \cdot \frac{2}{1 + t^{2}} dt$
	$= \int_{0}^{1} \frac{1+t^{2}}{\left(2+2t^{2}+1-t^{2}\right)} \frac{2}{1+t^{2}} dt$
	$=\int_{0}^{1}\frac{2}{\left(3+t^{2}\right)}dt$
	$=2\left[\frac{1}{\sqrt{3}}\tan^{-1}\frac{t}{\sqrt{3}}\right]_{0}^{1}$
	$=\frac{2}{\sqrt{3}}\left(\tan^{-1}\frac{1}{\sqrt{3}}-\tan^{-1}0\right)$
	$=\frac{2}{\sqrt{3}}\cdot\frac{\pi}{6}$
	$=\frac{\pi}{3\sqrt{3}}$

Marks Comment 1 for $d\theta$ 1 for correct statement of integral including limits

Ŷ

1 for completing integral

1 for result

Juest	tion 2	Trial HSC Examination- Mathematics Extension 2	2008	
rt	Solution		Marks	Comment
•	$\frac{a}{b} = \frac{3+4i}{2-2i}$ $= \frac{6+6i+}{4+}$	$\times \frac{2+2i}{2+2i}$ $\frac{8i-8}{4}$	2	1 for multiplying by conjugate.
	$= \frac{-2 + 14}{8}$ $= -\frac{1}{4} + \frac{7}{4}$	- i		1 for correct answer
ii)	Let $\sqrt{A} =$ $\therefore A = x^2 -$ $\therefore 3 + 4i =$ $\therefore 3 = x^2 -$ $\therefore 4 = 2xy$ $(1)^2 + (2)$	= x + iy $- y^{2} + 2xyi$ $x^{2} - y^{2} + 2xyi$ $- y^{2} \dots \dots$	3	1 for squaring and equating real and imaginary
	$ \begin{pmatrix} (1) & (2) \\ x^4 + 2x^2 y \\ (x^2 + y^2) \\ x^2 + y^2 = \\ (1) + (3) $	$y^{2} + y^{4} = 25$ $y^{2} = 25$ $z^{2} = 5$ (3) $2x^{2} = 8$		1 for eliminating y (or x)
	$\begin{array}{c} x = \pm 2\\ y = \pm 1\\ \sqrt{A} = \pm (\end{array}$	(2+i)		1 for final solution
iii)	$A - \overline{B} = 1$	3+4i-(2+2i)	1	1 for answer
(b) i)	$1+\sqrt{3}i=$	$= 2\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$	2	1
	$\cos\theta = \frac{1}{2}$	$\frac{1}{2}$ and $\sin\theta = \frac{\sqrt{3}}{2}$		θ
	$\therefore \theta = \frac{\pi}{3}$ $\therefore 1 + \sqrt{3}$	$i = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$		1 for result
ii)	$\left(1+\sqrt{3}i\right)$	$\int_{0}^{6} = 2^{6} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)^{6}$ = 64 (cos 2\pi + i sin 2\pi) by De Moivres Theore	2 m	1 Use of De Moivre Thm
		= 64(1+0i) = 64		1 for answer
	Which i	s totally real.		

	The second	2008	
Quest	ion 2 Trial HSC Examination Extension 2	Marks	Comment
Part	Solution	1	1 for
(c) i)	OA = 2iOC $= 2i(p+iq)$		
	= -2q + 2pi $OB = OC + QA$	1	1 for answer
11)	= (p+iq) + (-2q+2pi)	`	
	= (p-2q) + (2p+q)i BC = -OA	1	l for answer
	= 2q - 2pi	2	1 for sum of vectors
iv)	= OC - OA		
	= (p+iq) - (-2q+2pi) = (p+2q) + (q-2p)i		1 tor answer

. .

ş

.

.

2÷

Part Solution (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	Ques	stion 3 Trial HSC Examination- Mathematics	2008	08	
(a) i) i) i) i) i) i) i) ii) ii)	Part	Solution	Marks	Comment	
ii) iiii) iiii) iii)	(a) i)	Asymptote as $x > \infty$ $y = f(x)$	2	1 for basic shape	
ii) $y = \frac{1}{l(x)}$ $y = \frac{1}{l(x)}$		1 4 Minimum (3, k)		1 for asymptote	
$\frac{y = \frac{1}{(x)}}{(1, 1/3)}$ $\frac{y = \frac{1}{(x)}}{x}$ $\frac{1 \text{ for discontinu}}{1 \text{ discontinu}}$ $\frac{y = -(f(x))^2}{x}$ $\frac{1 \text{ for shape}}{x}$ $\frac{1 \text{ for the low axis}}{x}$	ii)		2	1 for basic shape	
iii) 4 $y = -(l(x))^{2}$ (b) $x^{2} + 2xy - y^{2} = 17$ $2x + 2y + 2x \frac{dy}{dx} - 2y \frac{dy}{dx} = 0$ $\frac{dy}{dx}(2x - 2y) = -(2x + 2y)$ $\frac{dy}{dx} = \frac{-(x + y)}{(x - y)}$ $= \frac{x + y}{y - x}$ At (3,2) 2 1 for shape 2 1 for shape $1 for implify the second $		$y = \frac{1}{f(x)}$ Minimum (1,1/3) 4 X		1 for discontinuity	
$y = -(f(x))^{2}$ 1 for below axis $(b) x^{2} + 2xy - y^{2} = 17$ $2x + 2y + 2x \frac{dy}{dx} - 2y \frac{dy}{dx} = 0$ $\frac{dy}{dx}(2x - 2y) = -(2x + 2y)$ $\frac{dy}{dx} = \frac{-(x + y)}{(x - y)}$ $= \frac{x + y}{y - x}$ At (3,2) $(b) y = -(f(x))^{2}$ $1 for implify in the equation of the equa$	iii)	4 ×	2	1 for shape	
(b) $\frac{\sqrt{1-x^2}}{x^2+2xy-y^2=17}$ $2x+2y+2x\frac{dy}{dx}-2y\frac{dy}{dx}=0$ $\frac{dy}{dx}(2x-2y)=-(2x+2y)$ $\frac{dy}{dx}=\frac{-(x+y)}{(x-y)}$ $=\frac{x+y}{y-x}$ At (3,2) 2 $1 for implicit of the second seco$		$y = -(f(x))^2$ (1, -9)		1 for below axis	
$2x + 2y + 2x \frac{dy}{dx} - 2y \frac{dy}{dx} = 0$ $\frac{dy}{dx}(2x - 2y) = -(2x + 2y)$ $\frac{dy}{dx} = \frac{-(x + y)}{(x - y)}$ $= \frac{x + y}{y - x}$ At (3,2) At (3,2)	(b)	$\frac{\psi}{x^2 + 2xy - y^2 = 17}$	2	1 for implici	
$\frac{dy}{dx}(2x-2y) = -(2x+2y)$ $\frac{dy}{dx} = \frac{-(x+y)}{(x-y)}$ $= \frac{x+y}{y-x}$ At (3,2) 1 for derivative		$2x + 2y + 2x\frac{dy}{dx} - 2y\frac{dy}{dx} = 0$		differentiatio	
$\frac{dy}{dx} = \frac{-(x+y)}{(x-y)}$ $= \frac{x+y}{y-x}$ At (3,2) 1 for derivative		$\frac{dy}{dx}(2x-2y) = -(2x+2y)$			
$=\frac{x+y}{y-x}$ At (3,2)		$\frac{dy}{dx} = \frac{-(x+y)}{(x-y)}$		1 for derivative	
At (3,2)		$=\frac{x+y}{y-x}$			
$C_{m} = \frac{3+2}{3+2}$		At $(3,2)$			

,

* 、 、

		Mathematics	2008	
Jues	tion 3	Trial HSC Examination data	Marks	Comment
art	Solution		2	Any method
2)	For $x^3 - 3$:	$x^2 - 2x + 4 = 0$		okay.
	$x = \alpha, \beta$	and γ		
	Let $X =$	$=x^2$		
	$\sqrt{X} = x$			1 mark for
	$\int X\sqrt{X} - x$	$3X - 2\sqrt{X} + 4 = 0$		partial
	$\sqrt{X}(X -$	(-2) = 3X - 4		complete
	Squarin	$X(X^2-4X+4)=9X^2-24X+16$		solution with
	V ³ 4 1	$X^2 + 4X = 9X^2 - 24X + 16$		simple enor.
		pired polynomial is $x^3 - 13x^2 + 28x - 16 = 0$		1 for answer
	A a abox	we has roots α^2 , β^2 and γ^2		
11)	AS abo	$2 + a^2 - b = 13$		1.1
	$\alpha^2 + \beta$	$a = \frac{1}{a} + \gamma = \frac{1}{a} = \frac{1}{a} + \frac{1}{a$	2	Any method
iii	$As \alpha,$	β and γ are roots of $x - 3x - 2x + 3$		UKdy.
	Then	$\alpha^3 - 3\alpha^2 - 2\alpha + 4 = 0$		1 mark for
		$\beta^3 - 3\beta^2 - 2\beta + 4 = 0$		solution or
	Addin	$\gamma^3 - 3\gamma^2 - 2\gamma^2 + 1$		complete
	$\int \alpha^3 +$	$\frac{19}{16} + \beta^3 + \gamma^3 - 3(\alpha^2 + \beta^2 + \gamma^2) - 2(\alpha + \beta + \gamma) + 12 =$	0	solution with
	$(\alpha^3 - (\alpha^3 - $	$+ \beta^{3} + \gamma^{3} - 3(13) - 2(3) + 12 = 0$		Simple
	$\left(\alpha^{3}\right)$	$+\beta^{3}+\gamma^{3}=33$		1 possible
		$\frac{1}{1} \frac{1}{1} \frac{1}$	2	zeros
	$P(\mathbf{x}) = P(\mathbf{x})$	$2x^{2} + 5x^{2} + 6x - 24$		
	P'($x = 3x + 6x - 2^{-1}$		
	=3	(x-2)(x+4)		
	If	P'(x) = 0 x = 2, x = 1		1 values o
	If J	x = 2 is a double zero, $x = 2 (x)^3 - 2(x)^2 - 24(x) + k = 0$		
		$P(2) = (2)^{2} + 3(2) - 24(2) + k = 0$		
	k	=28		
		$(-4) = (-4)^{3} + 3(-4)^{2} - 24(-4) + \kappa = 0$		
	k	= -80		

•

. --- •

.

•

,

Question 4		Trial HSC Examination- Mathematics Extension 2	2008	
Part	Solution		Marks	Comment
(a) i)	$\begin{vmatrix} I_n = \int (\ln x)^n \\ = x (\ln x)^n \\ = x (\ln x)^n \end{vmatrix}$	$x)^{n} dx = x(\ln x)^{n} - \int x \cdot n(\ln x)^{n-1} \cdot \frac{1}{x}$ $-n \int (\ln x)^{n-1} dx$ $-nI_{n-1}$	3	1 for use of Int by parts 1 for simplifying 1 for result in terms of
· ii)		$\frac{1}{2}$	4	In
	\therefore Now $I_2 =$	$J(\ln x) dx = I_3$ $I_3 = x(\ln x)^3 - 3I_2$ $x(\ln x)^2 - 2I_1$		1 for I ₃
	and $I_1 =$	$\frac{x(\ln x) - 1I_0}{x(\ln x) - x}$		1 for I ₂
	:: = ::	$I_{3} = x(\ln x)^{3} - 3(x(\ln x)^{2} - 2(x(\ln x) - x))$ $x(\ln x)^{3} - 3x(\ln x)^{2} + 6x(\ln x) - 6x$ $\int_{a}^{a} (\ln x)^{3} dx = (e^{4}.64 - 3e^{4}.16 + 6e^{4}.4 - 6e^{4}) - (-6)$		1 full expression including I ₁
(b)		$\frac{4}{34e^4+6}$	A	1 sub and evaluate
	y = 0 Fo	x = 2, 4 or shells about Y axis		4 marks for full solution
	V = 2 About $x = 1$	$2\pi \int_{a}^{b} xy dx$		3 marks if simple error made
	V = 2 = 2	$2\pi \int_{a}^{a} (x-1) y dx$ $2\pi \int_{2}^{4} (x-1) (6x - x^{2} - 8) dx$		2 marks if major error or 2 simple errors
	= 2 = 2	$2\pi \int_{2} \left(7x^{2} - x^{3} - 14x + 8 \right) dx$ $2\pi \left[\frac{7x^{3}}{3} - \frac{x^{4}}{4} - 7x^{2} + 8x \right]_{2}^{4}$		l mark if start made using correct
	=2 $=\frac{1}{2}$	$\pi \left[\left(\frac{448}{3} - 64 - 112 + 32 \right) - \left(\frac{56}{3} - 4 - 28 + 16 \right) \right]$ $\frac{6\pi}{2} \text{ units}^{3}$		formula or from scratch with
		3		correct method.

	Duringtion-Mathematics	2008	
Duestion 4	Trial HSC Examination	Marks	Comment
Part Solution		4	
(c)	Vence & Ahoy * 12 * 2x. 2. Soy		1 dimensions of slice
	≈ 2czóy Vsolid = [xzdy		x = f(y) 1 $z = f(y)$
	$\frac{x^{2} + 4^{2}}{13^{2} + 10^{2}} = 1$ $\frac{1}{15^{2} + 10^{2}} = \sqrt{15^{2} (1 - \frac{y^{2}}{10^{2}})}$		l correct integrand and limits
	$\frac{2100}{15^{2}} + \frac{4y^{2}}{10^{2}} = 1$ $\therefore Z = \sqrt{15^{2}(1 - \frac{4y^{2}}{10^{2}})}$ $\therefore V_{\text{solud}} = 450^{10} \int (1 - \frac{4y^{2}}{10^{2}}) dy$		1 correc
	$= 450 \left[y - \frac{y^3}{300} \right]_0^{10}$ = 3000 cms		exact volume

.

Ques	stion 5	Trial HSC Examination- Mathematics Extension 2	2008	
Part	Solution		Marks	Comment
(a)	Solving	simultaneously	3	
i)	y = mx +	- <i>a</i> (1)		
	$b^2x^2 + a$	$y^2 = a^2 b^2$ (2)		
	sub (1)	nto (2)		
	$b^2x^2 + a$	$(mx+a)^2 = a^2b^2$		
	$b^2 r^2 + a$	$(2^{2}m^{2}x^{2} + 2a^{3}mx + a^{4} = a^{2}b^{2}$		1 for sub
	$\left(b^2 \pm a^2 \right)$	m^{2}) $r^{2} + 2a^{3}mr + a^{4} - a^{2}b^{2} = 0$		
		and u are the resta then		
	$ II x = x_1$	and x_2 are the roots then		1 for
	$x_1 + x_2 =$	$=\frac{-2a^{3}m}{L^{2}+a^{2}m^{2}}$		simplify
		b + a m $-2a^3m$		
	$\therefore x_2 = -\frac{1}{2}$	$\frac{1}{b^2 + a^2 m^2} - x_1$		1 tor
				for x ₂
ii)	For a ta	ngent $x_1 = x_2 = x$	1	1 for answer
)	1 01 4 4	$-2a^{3}m$		
	$x_1 + x_2 =$	$=2x = \frac{2a}{b^2 + a^2m^2}$		
		$-a^3m$		
	$\therefore x = -\frac{1}{b}$	$a^{2} + a^{2}m^{2}$		
(b)	x = 2at	and $y = at^2$	2	1 for
i)	Grada	$f_{tongent} = dy_{-t}$		gradient of
	Ulau U	$t \operatorname{tangent} - \frac{dx}{dx} = t$		normai
	Grad o	f normal = $=$ $\frac{-1}{-1}$		
ļ		t		
	At $t =$	$p m = \frac{-1}{n} [\text{point}(2ap, ap^2)]$		
	Equation	on of normal		1 for
	y-ap	$a^2 = \frac{-1}{n}(x-2ap)$		normal
	py-a	$p^3 = -x + 2ap$		
	x + py	$-ap^3 - 2ap = 0$		
ii)	Norma	l passes through (x_1, y_1) then	2	2 for any
	$x_1 + py$	$y_1 - ap^3 - 2ap = 0$		explanation
	To find	d intersection with the parabola, this equation		
	must b	e solved for p.		
	As the	equation is a cubic in p , there can be from 1 to	0	
	3 value	es for p.		

Orrection 5 Trial HSC Examination- Mathematics		2008	
Extension 2			Comment
Part	Solution $z = \cos\theta + i\sin\theta = c + is$	3	1 for expanding
i)	$z^{4} = (c + is)^{4}$		
	$= c^{4} + 4c^{3}(is) + 6c^{2}(-s^{2}) + 4c(-is^{3}) + s^{4}$ = $c^{4} - 6c^{2}s^{2} + s^{4} + i(4c^{3}s - 4cs^{3})$ By De Moivres Thm		1 for De Moivre
	$z^{4} = \cos 4\theta + i \sin 4\theta$ Equating real parts $\cos 4\theta = c^{4} - 6c^{2} (1 - c^{2}) + (1 - c^{2})^{2}$ $c^{4} - 6c^{2} + 6c^{4} + 1 - 2c^{2} + c^{4}$		1 for solution
	$= c^{4} - 8c^{2} + 1$ = $8c^{4} - 8c^{2} + 1$ = $8cos^{4} \theta - 8cos^{2} + 1$	2	
(ii)	$\left[\left(z+\frac{1}{z}\right)^4 = \left(2\cos\theta\right)^4$		
	$= 16\cos^4\theta$ and $\left(z + \frac{1}{z}\right)^4 = z^4 + 4z^3\frac{1}{z} + 6z^2\frac{1}{z^2} + 4z\frac{1}{z^3} + \frac{1}{z^4}$		1 for expansion
	$= z^{4} + \frac{1}{z^{4}} + 4\left(z^{2} + \frac{1}{z^{2}}\right) + 6$ 16 cos ⁴ θ = 2 cos 4 θ + 8 cos 2 θ + 6		1 for
	$\cos^4 \theta = \frac{1}{8}\cos 4\theta + \frac{1}{2}\cos 2\theta + \frac{3}{8}$		expression
ii	$\int_{0}^{\frac{\pi}{2}} \cos^{4}\theta d\theta = \int_{0}^{\frac{\pi}{2}} \left(\frac{1}{8}\cos 4\theta + \frac{1}{2}\cos 2\theta + \frac{3}{8}\right) d\theta$)	
	$= \left[\frac{1}{32}\sin 4\theta + \frac{1}{4}\sin 2\theta + \frac{3}{8}\theta\right]_{0}^{\frac{\pi}{2}}$		1 for integral
	$= \left[\left(\frac{3}{8}, \frac{\pi}{2} \right) - (0) \right]$ 3π		1 for evaluating
	$=$ $\overline{16}$		

Ques	stion 6	Trial HSC Examination- Mathematics Extension 2	2008	2008	
Part	Solution		Marks	Comment	
(a)		$\left[\frac{\text{Re}(z)}{x^2} + \frac{\text{Im} z}{y} < 0 \right]$ $\frac{y^2}{y^2} + \frac{y}{y} < 0$	2	1 for correct Cartesian equation	
· .				1 mark for correct region	
b) i)	i. Cong(0) $\therefore g(x)$ $\therefore e^{-x}$ For	sider the function $g(x) = e^{-x} + x - 1$. $y = 0$ and $g'(x) = -e^{-x} + 1 \Rightarrow g'(0) = 0$ Also $g''(x) = e^{-x} > 0$ for all x y has a minimum value of 0 when $x = 0$. $+x - 1 \ge 0$ for all x, with equality only if $x = 0$ $x \ne 0$, $f'(x) = \frac{d}{dx} \left(\frac{e^x - 1}{x} \right)$ $= \frac{e^x \cdot x - (e^x - 1) \cdot 1}{x^2}$	3	1 shows by differentiation that $e^{-x} + x + 1$ has min value of 0 when x=0 1 finds $f'(x)$	
	He	$= \frac{1+xe^{x}-e^{x}}{x^{2}}$ $= \frac{e^{x}}{x^{2}}(e^{-x}+x-1)$ > 0 once $f(x)$ is an increasing function for $x \neq 0$.		1 rearranges f'(x) as a product of $e^{-x} + x + 1$ and deduces $f'(x) \ge 0$	
ii)	ii. L	Let $h(x) = e^x$. Then $h'(x) = e^x$. $\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x - e^0}{x - 0}$ $= h'(0)$ $= 1$	2	1 Expresses the limiting value of $f(x)$ as $x \rightarrow 0$ as the derivative of e^x at x=0	
	•••	= f(0) f(x) is continuous at $x = 0$.		1 Evaluates this derivative to show limiting value is 1	

	tion 6	16 Trial HSC Examination- 2008			
Ques	tion o	Mathematics Extension 2	Ma	rks	Comment
Part	Solution		1		Correct shape
iii)	iii.	$y \land y = f(x)$			curve with y intercept of 1 and asymptote
(c)			4		1 for equation of tangent AC
i)	i. $\frac{dy}{dx}$ Hen	$e^{x} = e^{x} = 1$ at $x = 0$ ce tangent AC has equation $y = x + 1$.			and coords of C
	$\therefore C(k)$ Area	$AODC < \int_{0}^{k} e^{x} dx < Area AODB$			1 for lower bound for $e^k - 1$ using area AODC
	$\dot{\overline{2}}$	$k(k+2) < \lfloor c \rfloor_0 + 2$ $k(k+2) < e^k - 1 < \frac{1}{2}k(1+e^k)$			1 for upper bound using
	For	$k=1, 1\cdot 5 < e-1 < 0\cdot 5 + \frac{1}{2}e$			area AODB
	. Hen	ce $2.5 < e$ and $\frac{1}{2}e < 1.5$ $\therefore 2.5 < e < 3$		3	1 for using k=1 and rearranging
ii)	ii. A	Area of $\triangle ABC$ is bisected if $(e^k - 1) - \frac{1}{2}k(k+2) = \frac{1}{2}k(1+e^k) - (e^k - 1)$		2	if triangle area bisected
	(4 Le T a F	$f(k) = (4-k)e^{k} - k^{2} - 3k - 4 = 0$ f(k) = $(4-k)e^{k} - k^{2} - 3k - 4$ then $f(2) \approx 0.78 > 0$, $f(3) \approx -1.9 < 0$ and $f(k)$ is continuous. Hence $f(k) = 0$, and the area is bisected, for some k such that $2 < k < 3$			1 for f(k)=0 and establishes existence of root k 2 <k<3< td=""></k<3<>
		$f(k) = (4-k)e^{k} - k^{2} - 3k - 4$ $f'(k) = \left\{-e^{k} + (4-k)e^{k}\right\} - 2k - 3$ $= (3-k)e^{k} - 2k - 3$ Taking $k_{0} = 2 \cdot 7$, $k_{1} = 2 \cdot 7 - \frac{f(2 \cdot 7)}{f'(2 \cdot 7)}$ $k = 2 \cdot 7 - \frac{-0 \cdot 04}{63}$	35		1 for using Newton's method for
		Hence second approximation is 2.7 (to one decimal place).	9		approxim a t

. ′

Question 7		Trial HSC Examination- Mathematics Extension 2	2008	
Part	Solution		Marks	Comment
(a)	$z^{5} = 1$		3	
i)	By De Mo	ivres Thm		
	$\cos 5\theta + is$	$\cos 5\theta + i \sin 5\theta = 1$		
	Equating 1	real and imaginary		
	$\cos 5\theta = 1$	$\sin 5\theta = 0$		
{	$\therefore 5\theta = 0$	$, 2\pi, 4\pi, 6\pi, 8\pi$		
	$\theta = 0, \ \frac{2\pi}{5}$	$\frac{4\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}$		1 values of θ
	$z_1 = cis0 =$	= 1		
	$z_2 = cis\frac{2i}{5}$	$\frac{\pi}{6}$		
	$z_3 = cis\frac{4z}{5}$	$\frac{\pi}{5}$		2 for
	$z_4 = cis \frac{6}{3}$	$\frac{\pi}{5} = cis \frac{-4\pi}{5} = \overline{z}_3$		values of $z_1 - z_5$
	$z_5 = cis \frac{8}{3}$	$\frac{\pi}{5} = cis \frac{-2\pi}{5} = \overline{z}_2$		1.6
ii)	$\int z^5 - 1 = (z)$	$(z-z_1)(z-z_2)(z-z_5)(z-z_3)(z-z_4)$	2	1 factors
	=(:	$(z - z_1)(z^2 - (z_2 + z_5)z + z_2z_5)(z^2 - (z_3 + z_4)z + z_3z_4)$	-	1 in
	=($z - z_1^{i} \left(z^2 - 2\cos\frac{2\pi}{5}z + 1 \right) \left(z^2 - 2\cos\frac{4\pi}{5}z + 1 \right)$		quadratics
iii)	$z^5 - 1 = 0$	· · · · · · · · · · · · · · · · · · ·	1	
	(z-1)(z	${}^{4}+z^{3}+z^{2}+z+1 = 0$		
	Roots ar	z_2, z_3, z_4, z_5 from above.		
iv)	Sum of r	oots of $z^5 - 1 = 0$ is zero.	2	
	$\therefore z_1 + z_2$	$+z_3 + z_4 + z_5 = 0$		
	$z_1 + z_2 +$	$\overline{z}_2 + z_3 + \overline{z}_3 = 0$		1 for
	$1+2\cos$	$\frac{2\pi}{5} + 2\cos\frac{4\pi}{5} = 0$		conjugates
	$2\cos\frac{2\pi}{5}$	$+2\cos\frac{4\pi}{5} = -1$		
	$\cos\frac{2\pi}{5}$	$-\cos\frac{4\pi}{5} = \frac{-1}{2}$		1 for answer

(b)	P M S R		1		
i)	$ \mathbb{A} = \mathbb{A}BN \text{ (exterior angle of cyclic quad.} \\ ABNM \text{ is equal to interior} \\ opposite angle) \\ \text{Similarly} \\ \mathbb{A}BN = \mathbb{A}QP \text{ in cyclic quadrilateral } ABPQ. \\ \text{Hence quadrilateral } QAMR \text{ is cyclic.} \\ \text{(exterior angle } AQP \text{ is equal to interior opposite} \\ angle RMA) \\ \end{array} $	3	2 t fo pr of di ei a 1 a t t	marks or using coperties f cyclic uads to educe qual ngles for applying test to QAMR	
	 ii. Produce TM to S. Then ∠TMR = ∠SMN (vertically opposite angles are equal) ∠SMN = ∠MAN (angle between tangent and chord drawn to point of contact is equal to angle subtended by that chord in the alternate segment) ∠MAN = ∠PAQ (vertically opposite angles are equal) ∠PAQ = ∠TRM (exterior angle of cyclic quad. QAMR is equal to interior opposite angle) Hence in ΔTMR, ∠TMR = ∠TRM and hence TM = TR (sides opposite equal angles are equal) 			 1 alt seg theorem 1 vert opp angles 1 equality of angles 1 deduces 1 deduces TMR has equal angles so equal sides 	

.

x

,

Question 8		Trial HSC Examination- Mathematics	2008		
Part	Solution	Extension 2	Marks	Comment	
(a)	$\sin(x+y) - \sin(x+y)$	$(x-y) = \sin x \cos y + \cos x \sin y - (\sin x \cos y - \cos x \sin y)$	1	1 for answer	
		$= 2 \cos x \sin y$			
a)	If $n = 1$ L	$HS = \cos x$	4		
ii)		$RHS = \frac{\sin\left(\frac{3x}{2}\right) - \sin\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)}$			
	Using i) above	$RHS = \frac{2\cos x \sin\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)}$ $= \cos x = 1.HS$			
	\therefore true for $n = 1$				
	Assume true for $n =$	- k		1 for n = 1	
	i.e $\cos x + \cos 2x$	$+\cos 3x+\cos kx = \frac{\sin\left(k+\frac{1}{2}\right)x-\sin\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)}$		case	
	When $n = k + 1$.27			
	$\cos x + \cos 2x + \cos 2x$	$\sin 3x+\cos kx + \cos (k+1)x = \frac{\sin \left(k+\frac{1}{2}\right)x - \sin \left(\frac{x}{2}\right)}{2\sin \left(\frac{x}{2}\right)} + \cos (k+1)x$			
	$=\frac{\sin\left(k+\frac{1}{2}\right)x-1}{2}$	$\frac{\sin\left(\frac{x}{2}\right) + \cos\left(k+1\right)x.2\sin\left(\frac{x}{2}\right)}{\cos\left(k+1\right)x.2\sin\left(\frac{x}{2}\right)}$			
	$=\frac{\sin\left(k+\frac{1}{2}\right)x-\frac{1}{2}}{2}$	$\frac{2\sin\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right) + \sin\left((k+1)x + \frac{x}{2}\right) - \sin\left((k+1)x - \frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)}$ using i) above			
·	$=\frac{\sin\left(k+\frac{1}{2}\right)x-\frac{1}{2}}{2}$	$\frac{\sqrt{2}}{\sin\left(\frac{x}{2}\right) + \sin\left(\frac{x}{4} + \frac{3}{2}\right)x - \sin\left(\frac{x}{4} + \frac{1}{2}\right)x}$		1 for using i)	
	$\sin\left((k+1)+\frac{1}{2}\right)$	$2\sin\left(\frac{x}{2}\right)$ $\frac{1}{2}x - \sin\left(\frac{x}{2}\right)$		1 for simplifying	
	$= \frac{1}{2 \sin n}$	$\left(\frac{x}{2}\right)$ +1		1 for stating	
	\therefore Since true for <i>n</i>	= 1, by induction is true for all positive integral values of $k \ge 1$		K I Case	

والمحمد والمحمد والروان والمراجع والمراجع والمراجع والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والم

.

• •

Trial HSC Examination- Mathematics 2008			
estion 8	Extension 2	Marks	Comment
Solution	$(2x) + \cos(2x) + \cos(2x) + \cos(2x) + \cos(2x)$)+ $\cos 8(2x)$ 4	
$\frac{\cos 2x + \cos 4x}{\sin \left(8 + \frac{1}{2}\right)}$ $= \frac{\sin \left(8 + \frac{1}{2}\right)}{2\sin 2x}$	$\frac{2x - \sin\left(\frac{2x}{2}\right)}{\ln\left(\frac{2x}{2}\right)}$		1 for sub into expression
$= \frac{\sin 17x - \sin 2x}{2\sin x}$ $= \frac{\sin (9+8)}{2\cos 9x \sin 2x}$	$\frac{n x}{x - \sin(9 - 8) x}$ $2 \sin x$ $n 8 x$ Using i) above		1 for breaking up 17x
$=\frac{2\cos 9x}{2\sin 2}$ $=\frac{2\cos 9x}{2}$ $4\cos 9x$	$\frac{1}{x} = \frac{1}{x} + \frac{1}{x} \cos \frac{4x}{2}$ Using double angle on sin 8x Using double angle on sin 8x Using double angle on sin 4x	¢	
$= \frac{8\cos 9x.7}{8\cos 9x.7}$	$2 \sin x$ $2 \sin x \cos x \cos 2x \cos 4x$ $2 \sin x$ $2 \sin x$ $2 \sin x \cos x \cos 2x \cos 4x$ $4 \sin x$ $2 \sin x \cos x \cos 2x \cos 4x$	2 <i>x</i>	2 for completing simplification
b) Let root \therefore Sum ($2 \sin x$ $\frac{\cos 4x \cos 2x \cos x}{\sin 2x \cos 4x - d}, \alpha \text{ and } \alpha + d$ of the roots = $(\alpha - d) + \alpha + (\alpha + d) = -a$. 4	1 each for
$\therefore 3\alpha = -\frac{\alpha}{3}$ $\alpha = -\frac{\alpha}{3}$	-a of the roots 2 at a time = $(\alpha - d)\alpha + (\alpha - d)(\alpha + d)$	$d) + (\alpha + d)\alpha = b$	expressions for sums & products = marks
$\begin{vmatrix} \alpha^2 - \alpha \\ 3\alpha^2 - \alpha \\ d^2 = 3 \end{vmatrix}$	$d + \alpha^{2} - d^{2} + \alpha^{2} + \alpha d = b$ $d^{2} = b$ $\alpha^{2} - b$		
$d^2 = 3$ $\therefore \text{ Pro}$	$\left(\frac{-a}{3}\right)^2 - b = \frac{a^2}{3} - b$ duct of the roots $= \alpha (\alpha - d)(\alpha + d) = c$		
$\begin{pmatrix} \alpha^3 - \alpha \\ \left(\frac{-a}{3}\right) \end{pmatrix}$	$xd^{2} = c$ $\int_{-\frac{a}{3}}^{3} - \left(\frac{-a}{3}\right) \left(\frac{a^{2}}{3} - b\right) = c$		1 for substituti and simplify
$\begin{array}{c} -a^{3} \\ \hline 27 \\ 2a^{3} \\ \hline 27 \\ \hline 27 \\ \hline 27 \end{array}$	$+\frac{a^{2}}{9} - \frac{ab}{3} = c$ $-\frac{ab}{3} = c$		

. .

Algeneric and a second s

Question 8		Trial HSC Examination- Mathematics Extension 2	2008	
Part	Solution		Marks	Comment
(c)	$\frac{dy}{dx} = 2y$		2	
	$\therefore \frac{dx}{dy} = \frac{1}{2y}$			
	$\therefore x = \frac{1}{2}\ln y + c$:		
	When $x = 1, y =$	1		
	$\therefore c = 1$ $\therefore x = \frac{1}{2} \ln y + 1$			1 for expression for x
	$\frac{1}{2}\ln y = x - 1$			
	$\ln y = 2x - 2$ $y = e^{2x-2}$			1 for result

.