

Mathematics Extension 2 Trial Higher School Certificate Examination 2010

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question

Total marks – 120

- Attempt Questions 1 8
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

BLANK PAGE

Total Marks – 120 Attempt Questions 1-8 All Questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Que	estion 1 (15 m	Marks	
a)	Evaluate	$\int_{\frac{\pi}{16}}^{\frac{\pi}{12}} \sec 4x \ \tan 4x \ dx$	2
b)	Find	$\int x \ln x dx$	2

c) Find
$$\int \frac{9x^3 + 9x^2 + 5x + 4}{3x + 1} dx$$
 3

$$\frac{3x^2 - 2x - 3}{x^2 + 9 - x - 3} = \frac{ax + b}{x^2 + 9} + \frac{c}{x - 3}$$

ii. Hence find
$$\int \frac{3x^2 - 2x - 3}{x^2 + 9 - x - 3} dx$$
.

e) By making the substitution
$$t = \tan \frac{\theta}{2}$$
, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{1 + \sin \theta + \cos \theta}$ **4**

End of Question 1

Quest	tion 2	(15 Marks)	Begin a NEW	booklet		Marks	5
a)	Given where	A = 3 + 4i and $B = 1x and y are real num$	– i, express the bers.	e following in	the form x + iy		
	i.	AB				1	
	ii.	$\frac{A}{iB}$				2	
	iii.	\sqrt{A}				3	
b)	lf	$w=\sqrt{3}-i$,					
	i.	Find the exact value	of $ w $ and arg	W.		2	
	ii.	Find the exact value	of w^5 in the fo	orm a + ib whe	ere a and b are rea	al. 2	
c)		B	у ↑				

On the Argand diagram, OA represents the complex number $z_1 = x + iy$, $\angle AOB = \frac{\pi}{2}$ and the length of OB is twice that of OA.

i		Show that OB represents the complex number $-2y + 2ix$.	1
i	i.	Given that AOBC is a rectangle, find the complex number represented by OC.	1
i	ii.	Find the complex number represented by BA.	1
ç	Sketcl	n the region on an argand diagram where	2

$$|z-1| \ge \sqrt{2}$$
 and $0 \le \arg(z+i) \le \frac{\pi}{4}$ both hold.

d)

End of Question 2

The diagram shows the graph of the function y = f(x) which has asymptotes, vertically at x = 0 and horizontally at y = 1 for $x \ge 0$ and at y = 0 for $x \le 0$.

Draw separate sketches of the following showing any critical features.

i.	$y = \frac{1}{f(x)}$	2
ii.	$y = \left[f(x) \right]^2$	2
iii.	y = f'(x)	2

Question 3 continues

Question 3 continued

b)

Marks

The point A $\left(ca, \frac{c}{a}\right)$, where $a \neq \pm 1$ lies on the hyperbola $xy = c^2$. The normal through A meets the other branch of the curve at B.

i. Show that the equation of the normal through A is **2**

$$y = a^{2}x + \frac{c}{a}(1 - a^{4})$$

ii. Hence if B has coordinates
$$\left(cb, \frac{c}{b}\right)$$
, show that $b = \frac{-1}{a^3}$.

iii. If this hyperbola is rotated clockwise through 45°, show that the equation **4** becomes

$x^2 - y^2 = 2c^2.$

End of Question 3

Question 4 (15 Marks) Begin a NEW booklet

Marks

2

2

a) A solid shape has as its base an ellipse in the XY plane as shown below. Sections taken perpendicular to the X-axis are equilateral triangles. The major and minor axes of the ellipse are 4 metres and 2 metres respectively.

- i. Write down the equation of the ellipse. **1**
- ii. Show that the area of the cross-section at x = k is given by

$$A = \frac{\sqrt{3}}{4} (4 - k^2)$$

- iii. By using the technique of slicing, find the volume of the solid.
- b) The region enclosed by the curve $y = 5x x^2$, the x axis and the lines x = 1 **4** and x = 3 is rotated about the y axis. By using the method of cylindrical shells, find the volume of the solid so produced.

Question 4 continues

Question 4 continued

Marks

c) The roots of the equation $x^3 - 3x^2 + 9 = 0$ are α , β and γ .

i.	Determine the polynomial equation with roots α^2 , β^2	and γ^2 .	1

- ii. Find the value of $\alpha^2 + \beta^2 + \gamma^2$ and hence evaluate $\alpha^3 + \beta^3 + \gamma^3$.
- d) Given that the polynomial P(x) has a double root at $x = \alpha$, show that the polynomial P'(x) will have a single root at $x = \alpha$.

End of Question 4

Marks

3

1

2

Question 5 (15 Marks)

a)

satellite

Begin a NEW booklet

The gravitational force between two objects of masses m and M placed at a distance r metres apart is proportional to their masses and inversely proportional to the square of

their distance apart, ie $F = k \frac{mM}{r^2}$, $k \ge 0$. A satellite is to be placed in orbit so that it will rotate at

A satellite is to be placed in orbit so that it will rotate about the earth once every 36 hours.

- i. Show that $F = \frac{R^2 mg}{r^2}$ Taking $g = 9.8 m / s^2$ and the earth's radius $R = 6400 \ km$, find:
- ii. The height of the satellite from the earth's surface
- iii. The linear velocity of the satellite.
- b) By taking logarithms of both sides and then differentiating implicitly, verify the rule for differentiating the quotient $y = \frac{u(x)}{v(x)}$ is given by

$$\frac{dy}{dx} = \frac{v \ x \ u' \ x^{-} u \ x \ v' \ x}{v \ x^{2}}$$

Question 5 continues

Marks

Question 5 continued

c) i. Show that the recurrence (reduction) formula for **4** $I_n = \int tan^n x dx$ is $I_n = \frac{1}{n-1} \tan^{n-1} x - I_{n-2}$. ii. Hence evaluate $\int_{0}^{\frac{\pi}{4}} tan^3 x dx$ **3**

End of Question 5

10

Question 6 (15 Marks) Begin a NEW booklet

- A solid of unit mass is dropped under gravity from rest at a height of H metres. a) Air resistance is proportional to the speed (V) of the mass. (acceleration under gravity = q)
 - 1 Write the equation for the acceleration of the mass. (Use k as the constant i. of proportionality)
 - ii. Show that the velocity (V) of the solid after t seconds is given by

$$V = \frac{g}{k} \left(1 - e^{-kt} \right)$$

By using the fact that $\frac{d}{dx}\left(\frac{1}{2}V^2\right) = \ddot{x}$, show that iii.

$$x = \frac{g}{k^2} \left[\ln \frac{g}{g - kV} - \frac{kV}{g} \right].$$

- Given $z = \cos \theta + i \sin \theta$, and using De Moivres' Theorem b)
 - Find an expression for $\cos 4\theta$ in terms of powers of $\cos \theta$. i. 3 Hint: you may use the expansion: $(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}.$
 - Determine the roots of the equation $z^4 = -1$. ii.
 - Using the fact that $z^n + \frac{1}{z^n} = 2 \cos n\theta$, find an expression for $\cos^4 \theta$ iii. 2 in terms of $\cos n\theta$.

End of Question 6

Marks

4

3

2

3

Que	stion 7	7 (15 Marks) Begin a NEW booklet	Marks
a)	i.	Prove that $\cos (k-1) \theta_{-2} \cos \theta \cos k\theta = -\cos (k+1)\theta$	1
	ii.	Hence, using mathematical induction, prove that if n is a positive integer then	4
	$1 + \cos \theta$	$\theta + \cos 2\theta + \dots + \cos n - 1 \theta = \frac{1 - \cos \theta - \cos n\theta + \cos (n - 1)\theta}{2 - 2\cos \theta}$	
b)	A mas by wir unifor	ass of 20kg hangs from the end of a rope and is hauled up vertically from re vinding up the rope. The pulling force on the rope starts at 250N and decrea ormly at a rate of 10N for every metre wound up.	st 3 ses
	Find th	the velocity of the mass when 10 metres have been wound up.	
	(Negle	glect the weight of the rope and take $g = 10 \text{ms}^{-2}$)	
C)	When by (x - by (x -	en a polynomial P(x) is divided by $(x - 1)$ the remainder is 3 and when divided (-2) the remainder is 5. Find the remainder when the polynomial is divided $(-1)(x - 2)$.	3
d)	How r word	/ many different words can be formed from the letters A, A, B, C, D, E, E if th d must contain:	าย
	i.	All seven letters (1 mark)	1

End of Question 7

Exactly four letters

ii.

Marks Question 8 (15 Marks) Begin a NEW booklet a) In the diagram PCQ is a straight line joining the centres of the circles P and Q. AB and DC are common tangents. i. Explain why PADC and CDBQ are cyclic quadrilaterals. 2 Show that $\triangle ADC \parallel \mid \triangle BQC$. ii. 2 2 iii. Show that PD || CB. b) Given $2 \cos A \sin B = \sin (A + B) - \sin (A - B)$ $P = 1 + 2\cos\theta + 2\cos 2\theta + 2\cos 3\theta$ lf Prove that $P \sin \frac{\theta}{2} = \sin \frac{7\theta}{2}$. i. 3 Hence show that if $\theta = \frac{2\pi}{7}$ then 2 ii. $P = 1 + 2 \cos \theta + 2 \cos 2\theta + 2 \cos 3\theta = 0$ By writing P in terms of $\cos \theta$, prove that $\cos \frac{2\pi}{7}$ is a root of the iii. 4 Polynomial equation

$$8x^3 + 4x^2 - 4x - 1 = 0$$

End of Examination

STANDARD INTEGRALS

 $\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE : $\ln x = \log_e x$, x > 0

Mathematics Extension 2 Trial Higher School Certificate Examination 2010

SOLUTIONS

._ _ _

Quest	tion 1	Trial HSC Examination - Mathemati	cs Extension 2	n 2 2010		
Part Solution			Ma	rks	Comment	
a)	$\int_{\frac{\pi}{16}}^{\frac{\pi}{12}} \sec 4.$	x .tan 4x $dx = \left[\frac{\sec 4x}{4}\right]_{\frac{\pi}{16}}^{\frac{\pi}{12}}$	1		Use standard integral sheet	
		$=\frac{1}{4}\left[\sec\frac{\pi}{3}-\sec\frac{\pi}{4}\right]$				
		$=\frac{1}{4}\left[2-\sqrt{2}\right]$	1	-		
		$=\frac{2-\sqrt{2}}{4}$				
b)	$\int x \ln x dx$	$x = \frac{1}{2} x^2 \ln x - \int \frac{1}{2} x^2 \cdot \frac{1}{x} dx$	1	<u>.</u>		
		$= \frac{1}{2} x^2 \ln x - \frac{1}{2} \int x dx$, ,		1	
		$= \frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + c$	1	L		
c)	$\int \frac{9x^3 + 9x^3}{2x^3}$	$\frac{x^2 + 5x + 4}{x + 1} dx = \int \left(-3x^2 + 2x + 1 + \frac{3}{2x} \right)^2 dx$	$=$ dx^{-} dx^{-}	;	By division	
	;	$\frac{-1}{x^{3} + x^{2} + x + \ln(3x + 1)}$	1) + c 1			
d)	i. $\frac{3x^2 - x^2}{(x^2 + 9)^2}$	$\frac{2x-3}{(x-3)} = \frac{ax+b}{x^2+9} + \frac{c}{x-3}$				
	$3x^2 - 2x$ $x = 3 \rightarrow 1$	c - 3 = (ax + b)(x - 3) + c(x2 + 9) 8 = 18c	1	l		
	$x = 0 \rightarrow -$	c = 1 3 = -3b + 9 b = 4			Any fair method	
	$x = 1 \rightarrow -$	2 = (a+4)(-2) + 10 = -2a + 2				
	$\therefore a = 2, b$	$\therefore a = 2$ $= 4, c = 1$	1	L		
	ii. $\int \frac{3x^2}{(x^2 + x^2)^2}$	$\frac{-2x-3}{9(x-3)} dx = \int \left(\frac{2x+4}{x^2+9} + \frac{1}{x-3}\right) dx$				
		$= \int \left(\frac{2x}{x^2 + 9} + \frac{4}{x^2 + 9} + \frac{1}{x - 1} \right)$	$\frac{1}{3}dx$ 1	L		
		$= \ln(x^{2} + 9) + \frac{4}{3} \tan^{-1} \frac{x}{3} + \ln(x - 1)$	3) + c 1	1	Fully	
		$= \ln(x^{2} + 9)(x - 3) + \frac{4}{3} \tan^{-1}$	$\frac{x}{3}+c$		not needed	

-

-- .

Question 1		Trial HSC Examination - Mathemat	ics Extension 2	2010
Part Solution			Marks	Comment
e)	$\int_0^{\frac{\pi}{2}} \frac{1}{1+\sin^2 n}$	$\frac{d\theta}{\theta + \cos\theta} \text{if } t = \tan\frac{\theta}{2}$		
		$\frac{dt}{d\theta} = \frac{1}{2} \sec^2 \frac{\theta}{2}$		
		$=\frac{1}{2}\left(1+\tan^2\frac{\theta}{2}\right)$		
		$=\frac{1}{2}\left(1+t^{2}\right)$		
		$\frac{d\theta}{dt} = \frac{2}{1+t^2}$:
		$d\theta = \frac{2 dt}{1+t^2}$	1	
		$\theta = \frac{\pi}{2}, t = 1$	1	
		$\theta = 0, t = 0$. <u></u> .	
	$\int_{0}^{1} \frac{1}{1+\frac{2i}{1+1$	$\frac{2}{t^2} \frac{dt}{dt} = \int_0^1 \frac{2 dt}{1 + t^2} = \int_0^1 \frac{2 dt}{1 + t^2 + 2t + 1 - t^2}$		
		$=\int_0^1\frac{2\ dt}{2+2t}$		
		$= \left[\ln\left(1+t\right)\right]_{0}^{1}$		
		= ln 2 - ln 1		
		= ln 2	1	
	·		/15	

r

_____ ·

-

= = - - - -

_ _ ___

.

Question 2	Trial HSC Examination - Mathem	atics Extension 2	2010	
Part Solu	tion	Marks	Comment	
a) i. Al	B = (3 + 4i)(1 - i) = 3 - 3i + 4i + 4 = 7 + i	1		
ii. - <i>i</i>	$\frac{A}{B} = \frac{3+4i}{i(1-i)}$ $= \frac{3+4i}{1+i} \times \frac{1-i}{1-i}$	1		
,	$= \frac{3-3i+4i+4}{2}$ $= \frac{7+i}{2} = \frac{7}{2} + \frac{1}{2}i$	1		
iii. 1	Let $\sqrt{A} = a + ib$ (a and b real) $\therefore A = a^2 - b^2 + 2abi$ $\therefore a^2 - b^2 = 3$, $2ab = 4$	1		
	ab=2			
	$\therefore b = \frac{1}{a}$ $\therefore a^2 - \frac{4}{a^2} = 3$ $a^4 - 3a^2 - 4 = 0$		Any fair method	
∴ <i>a</i> ∴ b	$(a^2 - 4)(a^2 + 1) = 0$ = ± 2 only real solution = ± 1	1		
	$\therefore \sqrt{A} = \pm (2+i)$	1		

Ques	on 2 Trial HSC Examin	nation - Mathematics Exte	ension 2	2010]
Part	Solution		Marks	Comment	
b)	i. $ w = \sqrt{3+1} = 2$		1	· · · · · · · · · · · · · · · · · · ·	-
	$w = 2\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)$				
	If $Arg w = \theta$ $\cos \theta$	$=\frac{\sqrt{3}}{2}$, sin $\theta=-\frac{1}{2}$			
	$\therefore \theta = -\frac{\pi}{6}$				
	$\therefore Arg w = -\frac{\pi}{6}$		1		
	ii. $w = \sqrt{3} - i = 2 \left[\cos\left(-\frac{\pi}{6}\right) \right]$	$\left(+ i \sin \left(-\frac{\pi}{6} \right) \right)$			
	$\therefore w^5 = 32 \left[\cos\left(-\frac{5\pi}{6}\right) + \right]$	$i\sin\left(-\frac{5\pi}{6}\right)$	1		
 ·· .	$= 32\left(-\frac{\sqrt{3}}{2}-\frac{1}{2}i\right)$			· · · · · · · · · · · · · · · · · · ·	
	$= -16\sqrt{3} - 16i$		1		
c)	i. $OB = iOA \times 2$ = $i(x + iy) \times 2$				-
	=-2y+2ix		1		
	ii. $OC = OB + OA$				
	= (-2y + 2ix) + (x + i) = (x - 2y) + (2x + y)	(y) i	1		
	iii. $BA = BO + OA$				
	= -(-2y + 2ix) + (x)	+iy)		0 if signs	
	=(x+2y)+(y-2x)) <i>i</i>	1	incorrect	

- -

•

.

stion 3 Trial HSC Examination - Mathematics Extension 2 2010					
art Solution	Marks	Comment			
i. $y = \frac{c^2}{x}$ $\frac{dy}{dx} = -\frac{c^2}{x^2}$, at $x = ca$ $\frac{dy}{dx} = -\frac{1}{x^2}$					
$dx x^{-} dx d$: Gradient of normal = a^{2}	1				
$\therefore \text{ Equation of normal is } y - \frac{c}{a} = a^2 (x - ca)$					
$= a^2 x - ca^3$ $y = a^2 x + \frac{c}{c} - ca^3$					
$y = a^{2}x + \frac{c}{a}(1 - a^{4})$ $y = a^{2}x + \frac{c}{a}(1 - a^{4})$	1				
ii. Solving $y = \frac{c^2}{x}$ with equation in (i)					
$\frac{c^2}{x} = a^2 x + \frac{c}{a} (1 - a^4)$	1				
$\therefore a^2 x^2 + \frac{1}{a} (1 - a^4) x - c^2 = 0$					
Product of roots = $-\frac{c^2}{a^2}$	1				
The roots are $x = cb$ and $x = ca$					
$\therefore c^{2}ab = -\frac{c^{2}}{a^{2}}$ $\therefore b = -\frac{1}{a^{3}}$ iji Asymptotes become $y = \pm x$	1				
Original Vertices $(\pm c, \pm c)$	1	Any logical reasoning			
Distance from O is $\sqrt{2} c$ $2b$ \therefore New vertices	1				
$a = \sqrt{2} c$ $a = \sqrt{2} c$ $a = \sqrt{2} c$ As it is rectangular $b = \sqrt{2} c$	1				
$\therefore \frac{x^2}{2c^2} - \frac{y^2}{2c^2} = 1$ $\therefore x^2 - y^2 = 2c^2$	1				

	Question 4		Trial HSC Examination - Mathematics Ext	ension 2	2010	
-	Part	Solution		Marks	Comment	
	a)	i. $a = 2$, \therefore Equat	b = 1 ion is $\frac{x^2}{4} + y^2 = 1$	1		
		ii. At <i>x</i> ∴Length	$= k, \qquad y^{2} = 1 - \frac{k^{2}}{4}$ $\therefore y = \pm \sqrt{\frac{4 - k^{2}}{4}}$ the of side of triangle = $\sqrt{4 - k^{2}}$	1		
		∴ Area =	$= \frac{1}{2}\sqrt{4-k^{2}} \cdot \sqrt{4-k^{2}} \sin 60^{\circ}$ $= \frac{1}{2}(4-k^{2}) \cdot \frac{\sqrt{3}}{2}$ $= \frac{\sqrt{3}}{2}(4-k^{2})$	1		
		· · · · ·	4 (*** /	· · ·		
		⊤iii. Let s ∴Volum	lice thickness = δk he of slice $\delta V = \frac{\sqrt{3}}{4} (4 - k^2) \cdot \delta k$			
		∴ <i>V</i>	$= \int_{-2}^{2} \frac{\sqrt{3}}{4} \left(4 - k^{2}\right) dk$ $= \frac{\sqrt{3}}{4} \left[4k - \frac{k^{3}}{3}\right]_{-2}^{2}$ $= \sqrt{3} \left[\left(2 - \frac{8}{3}\right) - \left(-2 + \frac{8}{3}\right)\right]$	1		
		Volume	$= \frac{1}{4} \left[\left(\frac{8}{3} - \frac{1}{3} \right)^{-} \left(-\frac{8}{3} + \frac{1}{3} \right) \right]$ $= \frac{\sqrt{3}}{4} \cdot \frac{32}{3}$ $= \frac{8\sqrt{3}}{3} \text{ units}^{3}$	1		

•

٠

Questio	on 4 Trial HSC Examination - Mathematics I	xtension 2	2010
Part S	Solution	Marks	Comment
b)	At $x = k$		
	y = 5k - k Let thickness of she be δk \therefore Volume of she	2 11 11	
	$\delta V = \pi \left(k^2 - (k - \delta k)^2 \right) y$ $= \pi \left(2k\delta k - \delta k^2 \right) y$	1	Can use formula
	As $\partial k \to 0$ $V = \int_{1}^{3} 2\pi . k. y dk$	1	
	$=2\pi\int_{1}^{3}k\left(5k-k^{2}\right)dk$	1	
	$= 2\pi \left[\frac{5}{3} k^3 - \frac{k^4}{4} \right]_1^3$		
	$= 2\pi \left[\left(45 - \frac{81}{4} \right) - \left(\frac{5}{3} - \frac{1}{4} \right) \right]$		
	Volume = $\frac{140\pi}{3}$ units ³	1	

	Quest	ion 4 Trial HSC Examination - Mathematics Ext	ension 2	2010
[]	Part	Solution	Marks	Comment
ſ	c)	i. $X = x^2$		
		$\therefore x = \sqrt{X}$		Any method
		$\therefore X\sqrt{X} - 3X + 9 = 0$		
		$X\left(\sqrt{X}-3\right) = -9$		
		$\sqrt{X} - 3 = \frac{-9}{X}$		
		$\sqrt{X} = \frac{-9}{X} + 3$		
		$X = \frac{81}{X^2} - \frac{54}{X} + 9$		
		$X^3 = 81 - 54X + 9X^2$		
		Required equation is	1	
		$x^3 - 9x^2 + 54x - 81 = 0$	L	
		ii. from equation in (i) sum of roots is given by		
······		$\bar{\alpha}^2 + \beta^2 + \bar{\chi}^2 = \frac{-b}{} = 9^{-5}$		· · · · · · · · · · · ·
		Now, in original equation	1	Any-method
		$\alpha^3 - 3\alpha^2 + 9 = 0$		
		$\beta^3 - 3\beta^2 + 9 = 0$ as $x = \alpha, \beta, \gamma$ are roots		
		$\chi^{3} - 3\chi^{2} + 9 = 0$		
		Adding,		
		$\alpha^{3} + \beta^{3} + \chi^{3} - 3(\alpha^{2} + \beta^{2} + \chi^{2}) + 27 = 0$	1	
		$\alpha^{3} + \beta^{3} + \chi^{3} - 3(9) + 27 = 0$		
		$\therefore \alpha^3 + \beta^3 + \chi^3 = 0$	1	
-	d)	Let $P(x) = (x - \alpha)^2 Q(x)$		
		$\therefore P'(x) = 2(x-\alpha)Q(x) + (x-\alpha)^2Q'(x)$	1	
		$= (x - \alpha) \left[2 Q(x) + (x - \alpha) Q'(x) \right]$		
		$\therefore P'(x)$ has a single root at $x = \alpha$		
			/15	

٠

Question 5	Trial HSC Examination -	Mathematics Extension 2	2010
5(0)			
Rotate aro	und earth every 36 hou	، گد	
i)Period: 7	1 - 36 × 3600		
	* 12960		
	~ (·246 × 10 ° S.		
1	<u>= 2 त</u> ध्य	'	
4	w = 20 = 4,84814 × 10-4	5	
	T	•	
F= K <u>M</u>	<u>m.</u>	1 	
r			ch
at east	to surface, r= m, r= my		
mg = <u>k</u>	RI		
kMrL ≠	R ² mg		
े ∈ च ठूट	2 ² mg		
11) Now F	rs centripedal towards a	eutre	
of ear	f⊷		
u≟ F=	mru ²		
so mrw	$= \frac{R^2mq}{1}$		
۳ ۳	$\frac{R^2mq}{mur^2} = \frac{R^2q}{\omega^2}$		
	= 9.8×(6.4×10 ^{6)×}		
	(4.8×10-5)2		
	= 1.74 × 1023 OR	1,742×10	
20 F B	5582 7701.72m	55 851458 m	
÷	55829 km	= 55851 km	ast.
so hera	Habove earth's surface	e /	
<u>8</u> 558	551-6400 = 49451 kms	<u> </u>	nark
ska satell swfa	like needs to be 49451kg ce	ms above ownus	
(11) V = PLJ			
- 551	551 × 4.84 512 × 10 -5	ξ.,	nark
- 2'1	mls		

h)	$u(\mathbf{x})$			
-,	Let $y = \frac{u(x)}{v(x)}$			
	$\therefore \ln y = \ln [u(x)] - \ln [v(x)]$			
	$\frac{1}{v} \cdot \frac{dy}{dx} = \frac{u'(x)}{v(x)} - \frac{v'(x)}{v(x)}$	1		
	y dx u(x) v(x)			
	$\frac{v(x)}{u(x)} \cdot \frac{dy}{dx} = \frac{u(x)}{u(x)} - \frac{v(x)}{v(x)}$			
	$\frac{dx}{dx} = \frac{1}{v(x)} - \frac{1}{[v(x)]^2}$			
	$\therefore \frac{dy}{dx} = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{[u(x)]^2}$	1		
	$dx \qquad \left[v\left(x\right)\right]^{2}$			
c)	i. $I = \int \tan^n x dx$			
	$\int_{1}^{n} \int_{1}^{1} \tan^{2} x \cdot \tan^{n-2} x dx$	1		
	$= \int (\sec^{2} x - 1) \tan^{n-2} x dx$	1		
	$= \int \sec^{2} x \tan^{n-2} x dx - \int \tan^{n-2} x dx$	1		
 	1		· · · · · · · · · · · · · · · · · · ·	
	$= \frac{1}{n-1} \tan^n x - I_{n-2}$	1		
	π			
	ii. $\int_{a}^{\frac{\pi}{4}} \tan^{3} x dx = \left[\frac{1}{2} \tan^{2} x\right]^{\frac{\pi}{4}} - \int_{a}^{\frac{\pi}{4}} \tan x dx$	1		
	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}_0 = \begin{bmatrix} \pi \\ \pi \end{bmatrix}_0$	•		
	$= \frac{1}{2} [1 - 0] + [\ln (\cos x)]_{0}^{\frac{1}{4}}$	*1 *		
	$=\frac{1}{1} + \left[\ln \left(\frac{1}{1} \right) - \ln 1 \right]$			
	$2 \left\lfloor \frac{1}{\sqrt{2}} \right\rfloor = 1$			
	$=\frac{1}{2}+\ln\frac{1}{\sqrt{2}}$	1		
		/15		

.

Dant	Colution	Marka	Comment
Part	Solution	IVIALKS	Comment
a)	i. $\ddot{x} = g - kv$	1	
	ii. $\ddot{x} = \frac{dv}{dt} = g - kv$		
	$\frac{dt}{dt} = \frac{1}{1}$		
	dv g - kv	1	
	$t = -\frac{1}{k}\ln(g - kv) + c$		
	when $t = 0, v = 0$ $\therefore c = \frac{1}{2} \ln \sigma$		
	k^{mg}		
	$\therefore t = \frac{1}{k} \ln g - \frac{1}{k} \ln (g - kv)$		
	$kt = \ln\left(\frac{g}{g - kv}\right)$	1	
	$e^{kt} = \frac{g}{g - ky}$		
	$ge^{kt} - kve^{kt} = g$		
	$ge^{kt} - g = kve^{kt}$		
	$g\left(e^{\kappa t}-1\right)=kve^{\kappa t}$		
	$\therefore v = \frac{s}{k} \left(1 - e^{-kv} \right)$	1	

	Quest	tion 6	Trial HSC Examination - Mathematics Ext	ension 2	2010	
	Part	Solution		Marks	Comment	
	a)	iii.	$\frac{d}{dx}\left(\frac{1}{2}v^2\right)$ $\frac{d}{dx}\left(\frac{1}{2}v^2\right),\frac{dv}{dx}$			
		= $\therefore v \frac{dv}{dv} =$	$dv \left(2^{v} \right)^{T} dx$ $v \frac{dv}{dx}$ $g - kv$	1		
		$\frac{dx}{dv} = \frac{dv}{dx} = \frac{dx}{dv} = dx$	$\frac{g - kv}{v}$			
		$\frac{dx}{dv} =$	$=\frac{1}{k}\left[\frac{v}{\frac{g}{k}-v}\right] = \frac{1}{k}\left[\frac{v-\frac{g}{k}}{\frac{g}{k}-v} + \frac{\frac{g}{k}}{\frac{g}{k}-v}\right]$	1		
· · · · · · · · · · · · · · · · · · ·		$\frac{dx}{dv} =$	$\frac{1}{k} \begin{bmatrix} -1 + \frac{g}{k} \\ \frac{g}{k} - v \end{bmatrix}$			· · · · · · · · · · · · · · · · · · ·
		$\therefore x = When x$	$= \frac{1}{k} \left[-v - \frac{g}{k} \ln \left(\frac{g}{k} - v \right) \right] + c$ $= 0, v = 0$ $= \frac{1}{k} \cdot \frac{g}{k} \ln \frac{g}{k}$	1		
		∴ x =	$k k \stackrel{\text{def}}{=} \frac{k}{k} \left[\frac{g}{k} \ln \frac{g}{k} - v - \frac{g}{k} \ln \left(\frac{g}{k} - v \right) \right]$			
		-	$=\frac{1}{k}\left[\frac{g}{k}\ln\left(\frac{\frac{g}{k}}{\frac{g}{k}-v}\right)-v\right]$			
		x =	$=\frac{g}{k^2}\left[\ln\left(\frac{g}{g-kv}\right)-\frac{kv}{g}\right]$	1		

Part	Solution	Marks	Comment
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
b)	i. $z^{*} = \cos 4\theta + i\sin 4\theta$		
	also by expansion	1	
	$= c^4 + 4ic^3s - 6c^2s^2 - 4ics^3 + s^4$	1	
	Where $c = \cos \theta$ and $s = \sin \theta$		
	$= c^{4} + s^{4} - 6c^{2}s^{2} + 4i(c^{3}s - cs^{3})$		
	Equating real parts		
	$\cos 4\theta = \cos^4 \theta + \sin^4 \theta - 6\cos^2 \theta \sin^2$	9 1	
	$= \cos^4 \theta + (1 - \cos^2 \theta)^2$		
	$-6\cos^2\theta(1-\cos^2\theta)$		
	$= \cos^4 \theta + 1 - 2 \cos^2 \theta + \cos^4 \theta$		
	$- 6 \cos^2 \theta + 6 \cos^4$	9	
	$= 8\cos^4\theta - 8\cos^2\theta + 1$	1	
	$ii \cos 40 = 1$ (Equating real parts)		
	1. $\cos 4\theta = -1$ (Equating real parts)	1	
	+ 0 - n, - n, 5n, - 5n	_	
	$\theta = \frac{\pi}{4}, -\frac{\pi}{4}, \frac{3\pi}{4}, -\frac{3\pi}{4}$		
	$\frac{\pi}{1-\pi}$ Roots-are-cis-cis-cis-cis- $\frac{\pi}{1-\pi}$	$\left -\frac{3\pi}{2} \right = 1$	
	4-5-4-5-	(
	1		
	iii. $z + \frac{1}{z} = 2\cos\theta$		
	$\left(z+\frac{1}{2}\right) = 16\cos^4\theta$		
	LHS = $z^4 + 4z^3$. $\frac{1}{z^4} + 6z^2$. $\frac{1}{z^4} + 4z$. $\frac{1}{z^4} + 4z$.	$\frac{1}{4}$	
	z z^{2} z^{3}	z ⁴	
	$= z^4 + \frac{1}{z^2} + 4(z^2 + \frac{1}{z^2}) + 6$	1	
	$ \qquad \qquad$		
	$\therefore 16\cos^4 \theta = 2\cos 4\theta + 8\cos 2\theta + 6$		
	$1 : \cos^4 \theta = \frac{1}{2} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{2}$	1	
	$\left \begin{array}{c}$		
		/15	

Ques	tion 7	Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution		Marks	Comment
a)	i. $\cos[(k-1)]$	θ] – 2 cos θ cos $k\theta$		
	$=\cos k\theta \cos \theta$	$\cos\theta + \sin k\theta \sin \theta - 2\cos\theta \cos k\theta$		
	$= -(\cos k\theta)$	$\theta \cos \theta - \sin k\theta \sin \theta$		
	$= -\cos(k\theta)$	$(\theta + \theta)$		
	$= -\cos\left[\left(k\right)\right]$	$(+1)\theta$	1	
	ii. When $n =$	1		
	LHS = 1	$RHS = \frac{1 - \cos \theta - \cos \theta + \cos \theta}{2 - 2 \cos \theta}$		
		$=\frac{2-2\cos\theta}{2-2\cos\theta}=1=LHS$	1	
	\therefore True for $n =$	- 1		
	Assume true f	for $n = k$.		
	$1 + \cos \theta + \dots$	$+\cos \left[\left(k-1 \right) \theta \right] = \frac{1-\cos \theta - \cos k\theta + \cos \left[\left(k-1 \right) \theta \right]}{2-2\cos \theta}$		
	When $n = k +$. <u>1</u>	· · · ·	
	$1 + \cos \theta + \dots$	$\dots \cos\left[\left(k-1\right)\theta\right] + \cos k\theta$		
	$= 1 - \cos \theta$	$-\cos k\theta + \cos \left[(k-1)\theta \right] + \cos k\theta$	1	
		$2-2\cos\theta$		
	$=\frac{1-\cos\theta}{2}$	$\theta - \cos k\theta + \cos \left[(k-1)\theta \right] + 2\cos k\theta - 2\cos \theta \cos k\theta$		
		$2 - 2\cos\theta$		
	$=\frac{1-\cos\theta}{1-\cos\theta}$	$\frac{1+\cos k\theta - \cos \left[(k+1)\theta\right]}{2}$		
		$2 - 2\cos\theta$	1	
	$=\frac{1-\cos\theta}{1-\cos\theta}$	$-\cos\left[\left(k+1\right)\theta\right] + \cos\left[\left(\left(k+1\right)+1\right)\theta\right]$		
		$2-2\cos\theta$		
	If true for $n =$	1 then true for $n = 1 + 1 = 2$ etc	1	
1	By inductio	in true for all <i>n</i> positive integers.		

•

Ques	tion 7	Trial HSC Examination	- Mathematics Extension 2		2010
Part	Solution			Marks	Comment
h)	Let Pulling for	ce = F and distance pulle	d up be x metres.		
-	dF				
	$\frac{dr}{dr} = -10$				
	F = -10x + c)			
	When $x = 0, F$	=250			
	$\therefore F = 250 -$	10x		1	
	At the mass				
	$20 \ddot{x} = F - 2$	0 <i>g</i>			
	= 250 -	10x-200			
	= 50 - 10	lOx			
	$\therefore \ddot{x} = \frac{5}{2} - \frac{x}{2}$			1	
		_			
	$\left \frac{d}{d} \left(\frac{1}{2} v^2 \right) \right =$	$\frac{5}{x} - \frac{x}{x}$			
	dx(2)	2 2			
	$\frac{1}{1}v^2 - 5$	$\frac{x}{x} - \frac{x^2}{x} + c$			
	2^{-2}	2 4			
	When x = 0, v	$=0, \therefore c=0$			
	1_{2}	xx ²			-
	$-2^{-\nu-=-2}$	2		_	
	2 5	x^2			
	v = 5x -	$-\frac{1}{2}$			
	When $x = 10$,	$v^2 = 0$		1	
	∴ The mass is	stationary.			
c)	When dividing	g by $(x-1)(x-2)$ the rem	nainder is in the form $ax + b$.		
- /	P(x) = (x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1)	(x-2)Q(x) + ax + b		1	
	P(1) = a + b =	= 3		1	
	P(2) = 2a + b =	= 5			
		$\therefore a = 2, b = 1$		1	
	∴ Remainder i	s 2x + 1			
ه) د)			_)	
	AABCDEE	Loy 2xA dx C			
r 1+	using all 7	letters.	, , , , ,		
	number-= 7	1 = 1260	CINAME COLLECT		
	<u>م</u> در ا	i xou . Laro '			
₩)	using + let	. 50 v4 = 120			
) all differences	$\frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$			
	a) or H S, ho z = 1	~ 21 = 3 P	4		
	3) 2A'S, I E	$^{3}C_{1} \times \frac{4!}{2!} = 3L$			
1	u) 2A's, 2E's	<u>4!</u> = 6.			
	5) 25's, no A	3C2 × 11 = 36			
	6)2E's, 1A	3C, x 41 = 36			
	• /				

Quest	tion 8	Trial HSC Examination - Mathematics Ex	tension 2	2010]
Part	Solution		Marks	Comment	1
a)					
	i. ∠PAI ∴ <i>PADC</i> Similar f	$D = \angle DCP = 90^{\circ}$ (Radius is perpendicular to tangent at point of contact) is cyclic (Opposite angles supplementary) for $CDBQ$	2	1	
	ii. Let $\angle BQ$ $\therefore \angle BQ$ DA = D $\therefore \triangle ADC$ $\therefore \angle DAC$ BQ = C $\therefore \triangle BQC$ $\therefore \angle BCQ$ $\therefore \triangle ADC$	$ADC = \theta$ $C = \theta \text{ (Ext. angle of cyclic quadrilateral)}$ $DC \text{ (Equal Tangents)}$ $C \text{ is isosceles}$ $C = \angle DCA = \left(90 - \frac{\theta}{2}\right)^{\circ}$ $CQ \text{ (Equal radii)}$ $C \text{ is isosceles}$ $Q = \angle CBQ = \left(90 - \frac{\theta}{2}\right)^{\circ}$ $C \parallel \Delta BQC \text{ (AAA)}$	2	Any correct proof	
	iii. From $\angle APC =$ $\angle PDC =$ = $\therefore PD \parallel$	h above = $180 - \theta$ (opposite \angle of <i>PADC</i>) = $\left(90 - \frac{\theta}{2}\right)^{\circ}$ (<i>PD</i> bisects $\angle APC$) = $\angle BCQ$ (from (ii)) <i>CB</i> (corresponding \angle equal)	2		

Question 8 Trial HSC Examination - Mathematics	Extension 2	2010	
Part Solution	Marks	Comment	
b) i. $P \sin \frac{\theta}{2}$			
$= (1 + 2\cos\theta + 2\cos 2\theta + 2\cos 3\theta)\sin\frac{\theta}{2}$			
$= \sin \frac{\theta}{2} + 2\cos \theta \sin \frac{\theta}{2} + 2\cos 2\theta \sin \frac{\theta}{2} + 2\cos 3\theta \sin \frac{\theta}{2} + 2\cos 3\theta \sin \frac{\theta}{2}$	1		
$\therefore = \sin\frac{\theta}{2} + \sin\frac{3\theta}{2} - \sin\frac{\theta}{2} + \sin\frac{5\theta}{2} - \sin\frac{3\theta}{2}$ $7\theta = 5\theta$	1		
$= \sin \frac{7\theta}{2}$	1		
ii. From (i) $P \sin \frac{\theta}{2} = \sin \frac{7\theta}{2}$			
2π		-	
When $\theta = \frac{7}{7}$ $P \sin \frac{\pi}{7} = \sin \pi$ = 0	1		
As $\sin \frac{\pi}{7} \neq 0$ then $P = 0$			
1.e. $1 + 2\cos\theta + 2\cos2\theta + 2\cos3\theta = 0$ iii. $P = 1 + 2\cos\theta + 2(2\cos^2\theta - 1)$	1		
$+2(4\cos^{3}\theta - 3\cos\theta)$ $= 8\cos^{3}\theta + 4\cos^{2}\theta - 4\cos\theta - 1$ $P = 8x^{3} + 4x^{2} - 4x - 1 \text{ when } x = \cos\theta$	 1 1		
From (ii) $P = 0$ when $\theta = \frac{2\pi}{7}$			
$\therefore x = \cos \frac{2\pi}{7}$ is a solution.	1		