Mathematics Extension 2
 Trial Higher School Certificate Examination 2010

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1 - 8
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

BLANK PAGE

Total Marks - 120

Attempt Questions 1-8
All Questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
Question 1 (15 marks) Begin a NEW writing booklet
a) Evaluate $\int_{\frac{\pi}{16}}^{\frac{\pi}{12}} \sec 4 x \tan 4 x d x$
b) Find $\int x \ln x d x$
C) Find $\int \frac{9 x^{3}+9 x^{2}+5 x+4}{3 x+1} d x$
d) i. Find constants a, b and c such that

2

$$
\frac{3 x^{2}-2 x-3}{x^{2}+9 x-3}=\frac{a x+b}{x^{2}+9}+\frac{c}{x-3}
$$

ii. Hence find $\int \frac{3 x^{2}-2 x-3}{x^{2}+9 x-3} d x$.
e) By making the substitution $t=\tan \frac{\theta}{2}$, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{1+\sin \theta+\cos \theta}$

4

End of Question 1

Question 2 (15 Marks)
Begin a NEW booklet
a) Given $A=3+4 i$ and $B=1-i$, express the following in the form $x+i y$ where x and y are real numbers.
i. $\quad A B$
ii. $\frac{A}{i B}$
iii. \sqrt{A}
b) If $w=\sqrt{3}-i$,
i. Find the exact value of $|w|$ and $\arg w$.
ii. Find the exact value of w^{5} in the form $a+i b$ where a and b are real.
c)

On the Argand diagram, OA represents the complex number $z_{1}=x+i y$, $\angle A O B=\frac{\pi}{2}$ and the length of OB is twice that of OA .
i. Show that OB represents the complex number $-2 y+2 i x$.
ii. Given that $A O B C$ is a rectangle, find the complex number represented by OC.
iii. Find the complex number represented by BA.
d) Sketch the region on an argand diagram where

$$
|z-1| \geq \sqrt{2} \text { and } 0 \leq \arg (z+i) \leq \frac{\pi}{4} \text { both hold. }
$$

End of Question 2

Question 3 (15 Marks)
Begin a NEW booklet
Marks
a)

The diagram shows the graph of the function $y=f(x)$ which has asymptotes, vertically at $\mathrm{x}=0$ and horizontally at $\mathrm{y}=1$ for $x \geq 0$ and at $y=0$ for $x \leq 0$.

Draw separate sketches of the following showing any critical features.
i. $y=\frac{1}{f(x)}$
ii. $\quad y=[f(x)]^{2}$
iii. $\quad y=f^{\prime}(x)$

Question 3 continued

b)

The point $\mathrm{A}\left(c a, \frac{c}{a}\right)$, where $a \neq \pm 1$ lies on the hyperbola $x y=c^{2}$. The normal through A meets the other branch of the curve at B.
i. Show that the equation of the normal through A is

$$
y=a^{2} x+\frac{c}{a}\left(1-a^{4}\right)
$$

ii. Hence if B has coordinates $\left(c b, \frac{c}{b}\right)$, show that $b=\frac{-1}{a^{3}}$.
iii. If this hyperbola is rotated clockwise through 45°, show that the equation becomes

$$
x^{2}-y^{2}=2 c^{2} .
$$

End of Question 3

Question 4 (15 Marks)
Begin a NEW booklet
a) A solid shape has as its base an ellipse in the $X Y$ plane as shown below. Sections taken perpendicular to the X -axis are equilateral triangles. The major and minor axes of the ellipse are 4 metres and 2 metres respectively.

i. Write down the equation of the ellipse. $\mathbf{1}$
ii. Show that the area of the cross-section at $x=k$ is given by

$$
A=\frac{\sqrt{3}}{4}\left(4-k^{2}\right)
$$

iii. By using the technique of slicing, find the volume of the solid.
b) The region enclosed by the curve $y=5 x-x^{2}$, the x axis and the lines $x=1$ and $x=3$ is rotated about the y axis. By using the method of cylindrical shells, find the volume of the solid so produced.

Question 4 continues

Question 4 continued

c) The roots of the equation $x^{3}-3 x^{2}+9=0$ are α, β and γ
i. Determine the polynomial equation with roots α^{2}, β^{2} and γ^{2}.
ii. Find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$ and hence evaluate $\alpha^{3}+\beta^{3}+\gamma^{3}$.
d) Given that the polynomial $P(x)$ has a double root at $x=\alpha$, show that the 2 polynomial $P^{\prime}(x)$ will have a single root at $x=\alpha$.

End of Question 4

Question 5 (15 Marks)

Begin a NEW booklet
a)

The gravitational force between two objects of masses m and M placed at a distance r metres apart is proportional to their masses and inversely proportional to the square of their distance apart, ie $F=k \frac{m M}{r^{2}}, k>0$.
A satellite is to be placed in orbit so that it will rotate about the earth once every 36 hours.
i. Show that $F=\frac{R^{2} m g}{r^{2}}$

Taking $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and the earth's radius $R=6400 \mathrm{~km}$, find:
ii. The height of the satellite from the earth's surface
iii. The linear velocity of the satellite.
b) By taking logarithms of both sides and then differentiating implicitly, verify the rule for differentiating the quotient $y=\frac{\mathrm{u}(\mathrm{x})}{\mathrm{v}(\mathrm{x})}$ is given by

$$
\frac{d y}{d x}=\frac{v x u^{\prime} x-u x v^{\prime} x}{v x^{2}}
$$

Question 5 continues

Question 5 continued

 Marksc) i. Show that the recurrence (reduction) formula for

$$
I_{n}=\int \tan ^{n} x d x \quad \text { is } \quad I_{n}=\frac{1}{n-1} \tan ^{n-1} x-I_{n-2} .
$$

ii. Hence evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{3} x d x$ 3

End of Question 5

Question 6 (15 Marks) Begin a NEW booklet

a) A solid of unit mass is dropped under gravity from rest at a height of H metres.

Air resistance is proportional to the speed (V) of the mass.
(acceleration under gravity $=\mathrm{g}$)
i. Write the equation for the acceleration of the mass. (Use k as the constant of proportionality)
ii. Show that the velocity (V) of the solid after t seconds is given by

3

$$
V=\frac{g}{k}\left(1-e^{-k t}\right)
$$

iii. By using the fact that $\frac{d}{d x}\left(\frac{1}{2} V^{2}\right)=\ddot{x}$, show that

$$
x=\frac{g}{k^{2}}\left[\ln \frac{g}{g-k V}-\frac{k V}{g}\right] .
$$

b) Given $z=\cos \theta+i \sin \theta$, and using De Moivres' Theorem
i. Find an expression for $\cos 4 \theta$ in terms of powers of $\cos \theta$.

Hint: you may use the expansion:

$$
(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} .
$$

ii. Determine the roots of the equation $z^{4}=-1$.
iii. Using the fact that $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$, find an expression for $\cos ^{4} \theta$ in terms of $\cos n \theta$.

End of Question 6

Question 7 (15 Marks) Begin a NEW booklet

a) i. Prove that $\cos (\mathrm{k}-1) \theta-2 \cos \theta \cos k \theta=-\cos (\mathrm{k}+1) \theta$
ii. Hence, using mathematical induction, prove that if n is a positive integer then
$1+\cos \theta+\cos 2 \theta+\ldots \ldots \ldots \ldots+\cos n-1 \quad \theta=\frac{1-\cos \theta-\cos n \theta+\cos (n-1) \theta}{2-2 \cos \theta}$
b) A mass of 20 kg hangs from the end of a rope and is hauled up vertically from rest by winding up the rope. The pulling force on the rope starts at 250 N and decreases uniformly at a rate of 10 N for every metre wound up.

Find the velocity of the mass when 10 metres have been wound up.
(Neglect the weight of the rope and take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
c) When a polynomial $P(x)$ is divided by $(x-1)$ the remainder is 3 and when divided by $(x-2)$ the remainder is 5 . Find the remainder when the polynomial is divided by $(x-1)(x-2)$.
d) How many different words can be formed from the letters A, A, B, C, D, E, E if the word must contain:
i. All seven letters (1 mark)
ii. Exactly four letters

End of Question 7

Question 8 (15 Marks)
 Begin a NEW booklet

Marks
a)

In the diagram PCQ is a straight line joining the centres of the circles P and Q . $A B$ and $D C$ are common tangents.
i. Explain why PADC and CDBQ are cyclic quadrilaterals.
ii. Show that $\triangle A D C||\mid B Q C$.
iii. Show that PD || CB.
b) Given $2 \cos A \sin B=\sin (A+B)-\sin (A-B)$

If $\mathrm{P}=1+2 \cos \theta+2 \cos 2 \theta+2 \cos 3 \theta$
i. Prove that $P \sin \frac{\theta}{2}=\sin \frac{7 \theta}{2}$.
ii. Hence show that if $\theta=\frac{2 \pi}{7}$ then

$$
P=1+2 \cos \theta+2 \cos 2 \theta+2 \cos 3 \theta=0
$$

iii. By writing P in terms of $\cos \theta$, prove that $\cos \frac{2 \pi}{7}$ is a root of the Polynomial equation

$$
8 x^{3}+4 x^{2}-4 x-1=0
$$

End of Examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Mathematics Extension 2

Trial Higher School Certificate Examination 2010

SOLUTIONS

\begin{tabular}{|c|c|c|c|}
\hline Qucstion 1 \& \multicolumn{2}{|l|}{Trial HSC Examination - Mathematics Extension 2} \& 2010 \\
\hline Part \& Solution \& Marks \& Comment \\
\hline a) \& \[
\begin{aligned}
\int_{\frac{\pi}{16}}^{\frac{\pi}{12}} \sec 4 x \cdot \tan 4 x d x \& =\left[\frac{\sec 4 x}{4}\right]_{\frac{\pi}{16}}^{\frac{\pi}{12}} \\
\& =\frac{1}{4}\left[\sec \frac{\pi}{3}-\sec \frac{\pi}{4}\right] \\
\& =\frac{1}{4}[2-\sqrt{2}] \\
\& =\frac{2-\sqrt{2}}{4}
\end{aligned}
\] \& \begin{tabular}{l}
1 \\
1
\end{tabular} \& Use standard integral sheet \\
\hline b) \& \[
\begin{aligned}
\int x \ln x d x \& =\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x^{2} \cdot \frac{1}{x} d x \\
\& =\frac{1}{2} x^{2} \ln x-\frac{1}{2} \int x d x \\
\& =\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+c
\end{aligned}
\] \& \begin{tabular}{l}
\[
1
\] \\
1
\end{tabular} \& \\
\hline c) \& \(-\int-9 x^{3}+9 x^{2}+5 x+4\) \& 2 \& By division \\
\hline \& - \(-x^{3}+x^{2}+x+\ln (3 x+1)+c\) \& 1 \& \\
\hline d) \& \& 1

1
1
1

1 \& | Any fair method |
| :--- |
| Fully simplified not needed |

\hline
\end{tabular}

Question 1 \quad Trial HSC Examination - Mathematics Extension 2			2010
Part	Solution	Marks	Comment
e)	$\left.\begin{array}{rl} \int_{0}^{\frac{\pi}{2}} \frac{d \theta}{1+\sin \theta+\cos \theta} \text { if } t & =\tan \frac{\theta}{2} \\ \frac{d t}{d \theta} & =\frac{1}{2} \sec ^{2} \frac{\theta}{2} \\ & =\frac{1}{2}\left(1+\tan ^{2} \frac{\theta}{2}\right) \\ & =\frac{1}{2}\left(1+t^{2}\right) \\ \frac{d \theta}{d t} & =\frac{2}{1+t^{2}} \\ d \theta & =\frac{2 d t}{1+t^{2}} \\ \theta & =\frac{\pi}{2}, t=1 \\ \theta & =0, t=0 \end{array}\right\}$ $\begin{aligned} \int_{0}^{1} \frac{1+t^{2^{2}}}{1+\frac{2}{2 t}} 1+t^{2}+\frac{1-t^{2}}{1+t^{2}} & =\int_{0}^{1} \frac{2 d t}{1+t^{2}+2 t+1-t^{2}} \\ & =\int_{0}^{1} \frac{2 d t}{2+2 t} \\ & =[\ln (1+t)]_{0}^{1} \\ & =\ln 2-\ln 1 \\ & =\ln 2 \end{aligned}$	1 1 1 1	
		/15	

Question 2	Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution	Marks	Comment
a)	i. $\begin{aligned} A B & =(3+4 i)(1-i) \\ & =3-3 i+4 i+4 \\ & =7+i \end{aligned}$ ii. $\begin{aligned} \frac{A}{i B} & =\frac{3+4 i}{i(1-i)} \\ & =\frac{3+4 i}{1+i} \times \frac{1-i}{1-i} \\ & =\frac{3-3 i+4 i+4}{2} \\ & =\frac{7+i}{2}=\frac{7}{2}+\frac{1}{2} i \end{aligned}$ iii. Let $\sqrt{A}=a+i b \quad(a$ and b real $)$ $\begin{aligned} & \therefore A=a^{2}-b^{2}+2 a b i \\ & \therefore a^{2}-b^{2}=3, \quad 2 a b=4 \\ & a b=-2= \end{aligned}$	1 1 1 1	
	$\begin{gathered} \therefore b=\frac{2}{a} \\ \therefore a^{2}-\frac{4}{a^{2}}=3 \\ a^{4}-3 a^{2}-4=0 \\ \left(a^{2}-4\right)\left(a^{2}+1\right)=0 \\ \therefore a= \pm 2 \text { only real solution } \\ \therefore \mathrm{b}= \pm 1 \quad \therefore \sqrt{A}= \pm(2+i) \end{gathered}$	1 1	Any fair method

Question 2	Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution	Marks	Comment
b)	$\begin{aligned} & \text { i. }\|w\|=\sqrt{3+1}=2 \\ & w=2\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right) \\ & \text { If } \operatorname{Arg} w=\theta \quad \cos \theta=\frac{\sqrt{3}}{2}, \sin \theta=-\frac{1}{2} \\ & \quad \therefore \theta=-\frac{\pi}{6} \\ & \therefore \operatorname{Arg} w=-\frac{\pi}{6} \end{aligned}$ $\text { ii. } \begin{aligned} & w= \sqrt{3}-i=2\left[\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right] \\ & \begin{aligned} \therefore w^{5} & =32\left[\cos \left(-\frac{5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)\right] \\ & =32\left(-\frac{\sqrt{3}}{2}-\frac{1}{2} i\right) \end{aligned} \end{aligned}$	1 1 1	
	$=-16 \sqrt{3}-16 i$	1	
c)	$\text { i. } \begin{aligned} O B & =i O A \times 2 \\ & =i(x+i y) \times 2 \\ & =-2 y+2 i x \end{aligned}$ ii. $\begin{aligned} O C & =O B+O A \\ & =(-2 y+2 i x)+(x+i y) \\ & =(x-2 y)+(2 x+y) i \end{aligned}$ iii. $\begin{aligned} B A & =B O+O A \\ & =-O B+O A \\ & =-(-2 y+2 i x)+(x+i y) \\ & =(x+2 y)+(y-2 x) i \end{aligned}$	1 1 1	0 if signs incorrect

Question 3	Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution	Marks	Comment
b)	i. $y=\frac{c^{2}}{x}$ $\frac{d y}{d x}=-\frac{c^{2}}{x^{2}}, \text { at } x=c a \quad \frac{d y}{d x}=-\frac{1}{a^{2}}$ \therefore Gradient of normal $=a^{2}$ \therefore Equation of normal is $\quad y-\frac{c}{a}=a^{2}(x-c a)$ $\begin{array}{r} =a^{2} x-c a^{3} \\ y=a^{2} x+\frac{c}{a}-c a^{3} \\ y=a^{2} x+\frac{c}{a}\left(1-a^{4}\right) \end{array}$ ii. Solving $y=\frac{c^{2}}{x}$ with equation in (i) $\frac{c^{2}}{x}=a^{2} x+\frac{c}{a}\left(1-a^{4}\right)$	1 1 -1	
	$\text { Product of roots }=-\frac{c^{2}}{a^{2}}$ The roots are $x=c b$ and $x=c a$ $\begin{aligned} \therefore c^{2} a b & =-\frac{c^{2}}{a^{2}} \\ \therefore b & =-\frac{1}{a^{3}} \end{aligned}$ iii. Asymptotes become $y= \pm x$ Original Vertices $(\pm c, \pm c)$ Distance from O is $\sqrt{2} c$ \therefore New vertices $\begin{aligned} & =(\pm \sqrt{2}, 0) \\ & \therefore a=\sqrt{2} c \end{aligned}$ As it is rectangular $b=\sqrt{2} c$ $\begin{aligned} & \therefore \frac{x^{2}}{2 c^{2}}-\frac{y^{2}}{2 c^{2}}=1 \\ & \therefore x^{2}-y^{2}=2 c^{2} \end{aligned}$	1 1 1 1 1 1	Any logical reasoning

Ques	ion 4 Trial HSC Examination - Mathematics Ext	nsion 2	2010
Part	Solution	Marks	Comment
a)	i. $a=2, b=1$ \therefore Equation is $\frac{x^{2}}{4}+y^{2}=1$ ii. At $x=k, \quad y^{2}=1-\frac{k^{2}}{4}$ $\therefore y= \pm \sqrt{\frac{4-k^{2}}{4}}$ \therefore Length of side of triangle $=\sqrt{4-k^{2}}$ $\begin{aligned} \therefore \text { Area } & =\frac{1}{2} \sqrt{4-k^{2}} \cdot \sqrt{4-k^{2}} \sin 60^{\circ} \\ & =\frac{1}{2}\left(4-k^{2}\right) \cdot \frac{\sqrt{3}}{2} \\ & =\frac{\sqrt{3}}{4}\left(4-k^{2}\right) \end{aligned}$	1 1	
	iii. Let slice thickness $=\delta k$ \therefore Volume of slice $\delta V=\frac{\sqrt{3}}{4}\left(4-k^{2}\right) . \delta k$ $\begin{aligned} \therefore V & =\int_{-2}^{2} \frac{\sqrt{3}}{4}\left(4-k^{2}\right) d k \\ & =\frac{\sqrt{3}}{4}\left[4 k-\frac{k^{3}}{3}\right]_{-2}^{2} \\ & =\frac{\sqrt{3}}{4}\left[\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)\right] \\ & =\frac{\sqrt{3}}{4} \cdot \frac{32}{3} \\ \text { Volume } & =\frac{8 \sqrt{3}}{3} \text { units }^{3} \end{aligned}$	1	

Question 4	Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution	Marks	Comment
b)	$y=5 k-k^{2}$ Let thickness of shell be δk \therefore Volume of shell $\begin{aligned} \delta V & =\pi\left(k^{2}-(k-\delta k)^{2}\right) y \\ & =\pi\left(2 k \delta k-\delta k^{2}\right) y \end{aligned}$ As $\delta k \rightarrow 0$ $\begin{aligned} V & =\int_{1}^{3} 2 \pi \cdot k \cdot y d k \\ & =2 \pi \int_{1}^{3} k\left(5 k-k^{2}\right) d k \end{aligned}$	1 1 1	Can use formula
	$\begin{aligned} & =2 \pi\left[\frac{5}{3} k^{-3}-\frac{k^{-4}}{4}\right]_{1}^{-3} \\ & =2 \pi\left[\left(45-\frac{81}{4}\right)-\left(\frac{5}{3}-\frac{1}{4}\right)\right] \\ & \text { Volume }=\frac{140 \pi}{3} \text { units }^{3} \end{aligned}$	1	

Question 4	Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution	Marks	Comment
c)	$\begin{aligned} & \text { i. } X=x^{2} \\ & \therefore x=\sqrt{X} \\ & \therefore X \sqrt{X}-3 X+9=0 \\ & X(\sqrt{X}-3)=-9 \\ & \sqrt{X}-3=\frac{-9}{X} \\ & \sqrt{X}=\frac{-9}{X}+3 \\ & X=\frac{81}{X^{2}}-\frac{54}{X}+9 \\ & X^{3}=81-54 X+9 X^{2} \end{aligned}$ Required equation is $x^{3}-9 x^{2}+54 x-81=0$ ii. from equation in (i) sum of roots is given by $\alpha^{2}+\beta^{2}+\chi^{2}=\frac{-b}{-a}=9$	$\begin{array}{\|c} 1 \\ 1 \end{array}$	Any method -Any-method
	Now, in original equation $\left.\begin{array}{l} \alpha^{3}-3 \alpha^{2}+9=0 \\ \beta^{3}-3 \beta^{2}+9=0 \\ \chi^{3}-3 \chi^{2}+9=0 \end{array}\right\} \text { as } x=\alpha, \beta, \chi \text { are roots }$ Adding, $\begin{aligned} & \alpha^{3}+\beta^{3}+\chi^{3}-3\left(\alpha^{2}+\beta^{2}+\chi^{2}\right)+27=0 \\ & \alpha^{3}+\beta^{3}+\chi^{3}-3(9)+27=0 \\ & \therefore \alpha^{3}+\beta^{3}+\chi^{3}=0 \end{aligned}$	1	
d)	$\begin{aligned} \text { Let } P(x) & =(x-\alpha)^{2} Q(x) \\ \therefore P^{\prime}(x) & =2(x-\alpha) Q(x)+(x-\alpha)^{2} Q^{\prime}(x) \\ & =(x-\alpha)\left[2 Q(x)+(x-\alpha) Q^{\prime}(x)\right] \end{aligned}$ $\therefore P^{\prime}(x)$ has a single root at $x=\alpha$	$\begin{aligned} & \mathbf{1} \\ & \mathbf{1} \end{aligned}$	
		/15	

Question 5	Trial HSC Examination - Mathematics Extension 2	2010

5 (a)
Rotate around acth every 36 hows.
i) Period: $T=36 \times 3600$
$=129600$
$.1 .246 \times 10^{5} \mathrm{~s}$.
$T=\frac{2 \pi}{\omega T}$
$\omega=\frac{2 \pi}{T} \cdot 4,848.14 \times 10^{-5}$
$F=k \frac{M m}{r^{2}}$
at earth's surface, $r=R, F=m g$. 1 mark.
$m g=\frac{k M_{m}}{R^{f}}$
$k M_{r L}=R^{2} M g$
$\therefore \frac{s E=R^{2} m g}{-\quad-\quad-\quad 1 \text { mare. }}$
11) Now F is centripetal townes centre
of econth
ie $F=$ MiNer ${ }^{2}$
so $m W^{2}=\frac{R^{2} r n g}{r^{2}}$

$$
r^{3}=\frac{R^{2} m g}{m-U^{2}}=\frac{R^{2} g}{W^{2}}
$$

$=\frac{9.8 \times\left(6.4 \times 10^{6}\right)^{2}}{\left(4.8 \times 10^{-5}\right)^{2}}$
$=1.74 \times 10^{23}$ or $1.74 \dot{2} \times 10^{23}$

\begin{tabular}{|c|c|c|c|}
\hline b) \& $$
\begin{aligned}
& \text { Let } y=\frac{u(x)}{v(x)} \\
& \therefore \ln y=\ln [u(x)]-\ln [v(x)] \\
& \frac{1}{y} \cdot \frac{d y}{d x}=\frac{u^{\prime}(x)}{u(x)}-\frac{v^{\prime}(x)}{v(x)} \\
& \frac{v(x)}{u(x)} \cdot \frac{d y}{d x}=\frac{u^{\prime}(x)}{u(x)}-\frac{v^{\prime}(x)}{v(x)} \\
& \frac{d y}{d x}=\frac{u^{\prime}(x)}{v(x)}-\frac{v^{\prime}(x) \cdot u(x)}{[v(x)]^{2}} \\
& \therefore \frac{d y}{d x}=\frac{v(x) \cdot u^{\prime}(x)-u(x) \cdot v^{\prime}(x)}{[v(x)]^{2}}
\end{aligned}
$$ \& 1 \&

\hline c) \& $$
\text { i. } \begin{aligned}
I_{n} & =\int \tan ^{n} x d x \\
& =\int \tan ^{2} x \cdot \tan ^{n-2} x d x \\
& =\int\left(\sec ^{2} x-1\right) \tan ^{n-2} x d x \\
& =\int \sec ^{2} x \tan ^{n-2} x d x-\int \tan ^{n-2} x d x
\end{aligned}
$$ \& 1
1
1 \&

\hline \& $$
=\frac{1}{n-1} \tan ^{n-1} x-I_{n-2}
$$
$$
\text { ii. } \begin{aligned}
\int_{0}^{\frac{\pi}{4}} \tan ^{3} x d x & =\left[\frac{1}{2} \tan ^{2} x\right]_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \tan x d x \\
& =\frac{1}{2}[1-0]+[\ln (\cos x)]_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{2}+\left[\ln \left(\frac{1}{\sqrt{2}}\right)-\ln 1\right] \\
& =\frac{1}{2}+\ln \frac{1}{\sqrt{2}}
\end{aligned}
$$ \& 1

1

1
1

1 \&

\hline \& \& /15 \&

\hline
\end{tabular}

Question 6	Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution	Marks	Comment
a)	i. $\ddot{x}=g-k v$ $\text { ii. } \begin{aligned} & \ddot{x}=\frac{d v}{d t}=g-k v \\ & \frac{d t}{d v}=\frac{1}{g-k v} \\ & t=-\frac{1}{k} \ln (g-k v)+c \end{aligned}$ When $t=0, v=0$ $\begin{aligned} & \therefore c=\frac{1}{k} \ln g \\ & \therefore t=\frac{1}{k} \ln g-\frac{1}{k} \ln (g-k v) \\ & k t=\ln \left(\frac{g}{g-k v}\right) \end{aligned}$	1	
	$\underline{g-k v}$		
	$\begin{aligned} & g e^{k t}-k v e^{k t}=g \\ & g e^{k t}-g=k v e^{k t} \\ & g\left(e^{k t}-1\right)=k v e^{k t} \\ & \therefore v=\frac{g}{k}\left(1-e^{-k v}\right) \end{aligned}$	1	

Question 6	Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution	Marks	Comment
b)	i. $z^{4}=\cos 4 \theta+i \sin 4 \theta$ also by expansion $=c^{4}+4 i c^{3} s-6 c^{2} s^{2}-4 i c s^{3}+s^{4}$ Where $c=\cos \theta$ and $s=\sin \theta$ $=c^{4}+s^{4}-6 c^{2} s^{2}+4 i\left(c^{3} s-c s^{3}\right)$ Equating real parts $\begin{aligned} \cos 4 \theta= & \cos ^{4} \theta+\sin ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta \\ = & \cos ^{4} \theta+\left(1-\cos ^{2} \theta\right)^{2} \\ & =\cos ^{4} \theta+1-2 \cos ^{2} \theta\left(1-\cos ^{2} \theta\right) \\ & \quad-6 \cos ^{2} \theta+6 \cos ^{4} \theta \\ = & 8 \cos ^{4} \theta-8 \cos ^{2} \theta+1 \end{aligned}$ ii. $\cos 4 \theta=-1$ (Equating real parts) $\begin{aligned} \therefore 4 \theta & =\pi,-\pi, 3 \pi,-3 \pi \\ \theta & =\frac{\pi}{4},-\frac{\pi}{4}, \frac{3 \pi}{4},-\frac{3 \pi}{4} \end{aligned}$ \therefore Roots-are-cis- $\frac{\pi}{4}, \operatorname{cis}\left(-\frac{\pi}{4}\right)=\bar{c} i s-\frac{3 \pi}{4}, c i s\left(-\frac{3 \pi}{4}\right)=$	1 1 1 1 -1	
	$\begin{aligned} & \text { iii. } \quad z+\frac{1}{z}=2 \cos \theta \\ & \quad\left(z+\frac{1}{z}\right)^{4}=16 \cos ^{4} \theta \\ & \text { LHS }=z^{4}+4 z^{3} \cdot \frac{1}{z}+6 z^{2} \cdot \frac{1}{z^{2}}+4 z \cdot \frac{1}{z^{3}}+\frac{1}{z^{4}} \\ & \quad=z^{4}+\frac{1}{z^{4}}+4\left(z^{2}+\frac{1}{z^{2}}\right)+6 \\ & \therefore 16 \cos ^{4} \theta=2 \cos 4 \theta+8 \cos 2 \theta+6 \\ & \therefore \cos ^{4} \theta=\frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8} \end{aligned}$	1 1	
		/15	

Question 7	ion 7 Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution	Marks	Comment
a)	$\text { i. } \begin{aligned} & \cos [(k-1) \theta]-2 \cos \theta \cos k \theta \\ &= \cos k \theta \cos \theta+\sin k \theta \sin \theta-2 \cos \theta \cos k \theta \\ &=-(\cos k \theta \cos \theta-\sin k \theta \sin \theta) \\ &=-\cos (k \theta+\theta) \\ &=-\cos [(k+1) \theta] \end{aligned}$ ii. When $n=1$ $\begin{aligned} \mathrm{LHS}=1 \quad \text { RHS } & =\frac{1-\cos \theta-\cos \theta+\cos 0}{2-2 \cos \theta} \\ & =\frac{2-2 \cos \theta}{2-2 \cos \theta}=1=L H S \end{aligned}$ \therefore True for $n=1$ Assume true for $n=k$. i.e. $1+\cos \theta+\ldots . .+\cos [(k-1) \theta]=\frac{1-\cos \theta-\cos k \theta+\cos [(k-1) \theta]}{2-2 \cos \theta}$ When $n=k+1$	1	
	$\begin{aligned} 1 & +\cos \theta+\ldots \ldots . \cos [(k-1) \theta]+\cos k \theta \\ & =\frac{1-\cos \theta-\cos k \theta+\cos [(k-1) \theta]}{2-2 \cos \theta}+\cos k \theta \\ & =\frac{1-\cos \theta-\cos k \theta+\cos [(k-1) \theta]+2 \cos k \theta-2 \cos \theta \cos k \theta}{2-2 \cos \theta} \\ & =\frac{1-\cos \theta+\cos k \theta-\cos [(k+1) \theta]}{2-2 \cos \theta} \\ & =\frac{1-\cos \theta-\cos [(k+1) \theta]+\cos [((k+1)-1) \theta]}{2-2 \cos \theta} \end{aligned}$ If true for $n=1$ then true for $n=1+1=2$ etc \therefore By induction true for all n positive integers.	1 1 1 1	

Question 8	Trial HSC Examination - Mathematics Extension 2		2010		
Part	Solution	Marks	Comment		
a)	i. $\angle \mathrm{PAD}=\angle \mathrm{DCP}=90^{\circ} \quad$ (Radius is perpendicular to tangent at point of contact) $\therefore P A D C$ is cyclic (Opposite angles supplementary) Similar for $C D B Q$	2	I		
	iii. Let $\angle A D C=\theta$ $\therefore \angle B Q C=\theta$ (Ext. angle of cyclic quadrilateral) $D A=D C$ (Equal Tangents) $\therefore \triangle A D C$ is isosceles $\therefore \angle D A C=\angle D C A=\left(90-\frac{\theta}{2}\right)^{\circ}$ $B Q=C Q \quad$ (Equal radii) $\therefore \triangle B Q C$ is isosceles $\begin{aligned} & \therefore \angle B C Q=\angle C B Q=\left(90-\frac{\theta}{2}\right)^{\circ} \\ & \therefore \triangle A D C \\| \triangle B Q C \quad \text { (AAA) } \end{aligned}$ iii. From above $\begin{aligned} \angle A P C & =180-\theta \text { (opposite } \angle \text { of } P A D C) \\ \angle P D C & =\left(90-\frac{\theta}{2}\right)^{\circ}(P D \text { bisects } \angle A P C) \\ & =\angle B C Q(\text { from (ii) }) \end{aligned}$ $\therefore P D \\| C B$ (corresponding \angle equal)	2	Any correct proof		

Question 8	Trial HSC Examination - Mathematics Extension 2		2010
Part	Solution	Marks	Comment
b)	$\begin{aligned} & \text { i. } \begin{aligned} & P \sin \frac{\theta}{2} \\ = & (1+2 \cos \theta+2 \cos 2 \theta+2 \cos 3 \theta) \sin \frac{\theta}{2} \\ = & \sin \frac{\theta}{2}+2 \cos \theta \sin \frac{\theta}{2}+2 \cos 2 \theta \sin \frac{\theta}{2} \\ & +2 \cos 3 \theta \sin \frac{\theta}{2} \\ \therefore= & \sin \frac{\theta}{2}+\sin \frac{3 \theta}{2}-\sin \frac{\theta}{2}+\sin \frac{\beta \theta}{2}-\sin \frac{3 \theta}{2} \\ & +\sin \frac{7 \theta}{2}-\sin \frac{8 \theta}{2} \end{aligned} \\ & =\sin \frac{7 \theta}{2} \end{aligned}$ ii. From (i) $P \sin \frac{\theta}{2}=\sin \frac{7 \theta}{2}$	1 1	
	When $\theta=\frac{2 \pi}{7}$ $\begin{aligned} P \sin \frac{\pi}{7} & =\sin \pi \\ & =0 \end{aligned}$ As $\sin \frac{\pi}{7} \neq 0$ then $P=0$ i.e. $1+2 \cos \theta+2 \cos 2 \theta+2 \cos 3 \theta=0$ iii. $\begin{aligned} P= & 1+2 \cos \theta+ \\ & 2\left(2 \cos ^{2} \theta-1\right) \\ & +2\left(4 \cos ^{3} \theta-3 \cos \theta\right) \\ = & 8 \cos ^{3} \theta+4 \cos ^{2} \theta-4 \cos \theta-1 \\ P= & 8 x^{3}+4 x^{2}-4 x-1 \text { when } x=\cos \theta \end{aligned}$ From (ii) $P=0 \text { when } \theta=\frac{2 \pi}{7}$ $\therefore x=\cos \frac{2 \pi}{7}$ is a solution.	1 1 1 1 1	
		/15	

