

Year 12 Mathematics Extension 2 HSC Trial Examination 2014

General Instructions

.

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen. Black pen is preferred.
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this paper
- In questions 11 16, show all relevant reasoning and/or calculations

Total marks - 100

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Section I

10 marks

Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Question 1 - 10.

1 An object moving in a circular path of radius 4 metres travels 48 metres in 3 seconds.

The angular speed of the object is:

- (A) 3 rad/s
- (B) 4 rad/s
- (C) 12 rad/s
- (D) 16 rad/s
- **2** What is the gradient of the tangent to the circle $x^2 2x + y^2 = 9$ at the point (0, -3)?

(A)
$$-\frac{1}{3}$$

(B) $-\frac{11}{6}$
(C) $\frac{1}{3}$
(D) $\frac{1}{6}$

- **3** The number of ways that 6 items can be divided between 3 people so that each person receives 2 items is:
 - (A) 6
 - (B) 27
 - (C) 90
 - (D) 360

4 Which of the following is the expression for $\int \sin^3 x dx$?

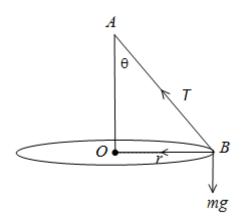
$$(A) \quad \frac{1}{3}\cos^3 x - \cos x + C$$

$$(B) \quad \frac{1}{3}\cos^3 x + \cos x + C$$

$$(\mathsf{C}) \quad \frac{1}{3}\sin^3 x - \sin x + C$$

(D)
$$\frac{1}{3}\sin^3 x + \sin x + C$$

5 A particle at *B* is attached to a string *AB* that is fixed at *A*. The particle rotates in a horizontal circle with a radius of *r*. Let *T* be the tension in the string and $\angle BOA = \theta$.



Which of the following statements is correct?

- (A) $T\cos\theta mg = ma$
- (B) $T\sin\theta = mr\omega^2$
- (C) T = -mg
- (D) T mg = ma

6 The polynomial equation $3x^3 - 2x^2 + x - 7 = 0$ has roots α, β and γ . Which polynomial equation has roots $\frac{2}{\alpha}, \frac{2}{\beta}$ and $\frac{2}{\gamma}$?

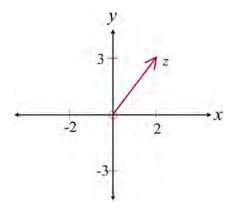
- (A) $3x^3 4x^2 + 4x 56 = 0$
- (B) $7x^3 2x^2 + 8x 24 = 0$
- (C) $x^3 2x^2 27x 49 = 0$
- (D) $24x^3 8x^2 + 2x 7 = 0$
- 7 The point $P(cp, \frac{c}{p})$ lies on the rectangular hyperbola $xy = c^2$. The equation of the normal to the hyperbola at P is:
 - (A) x + pqy = c(p+q)
 - (B) $x + p^2 y = 2cp$
 - (C) $px \frac{1}{p}y = cp^2\left(1 \frac{1}{p^2}\right)$

(D)
$$py-c = p^3(x-cp)$$

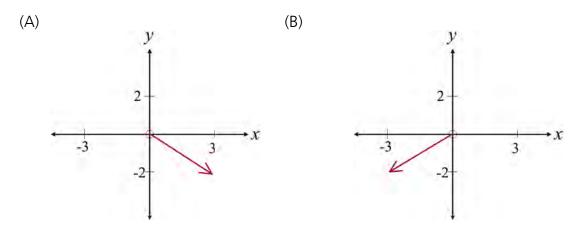
What is the eccentricity for the hyperbola $\frac{y^2}{225} - \frac{x^2}{64} = 1$?

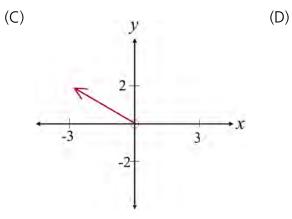
(A) $\frac{8}{17}$ (B) $\frac{15}{17}$ (C) $\frac{17}{15}$ (D) $\frac{17}{8}$

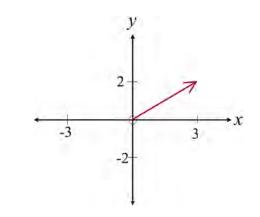
9 The Argand diagram below shows the complex number *z*.



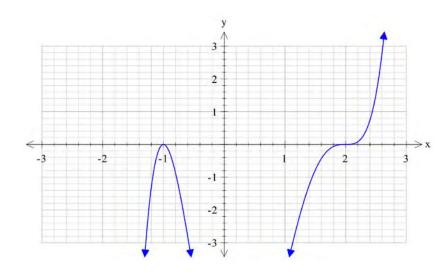
Which Argand diagram best represents $i\bar{z}$?



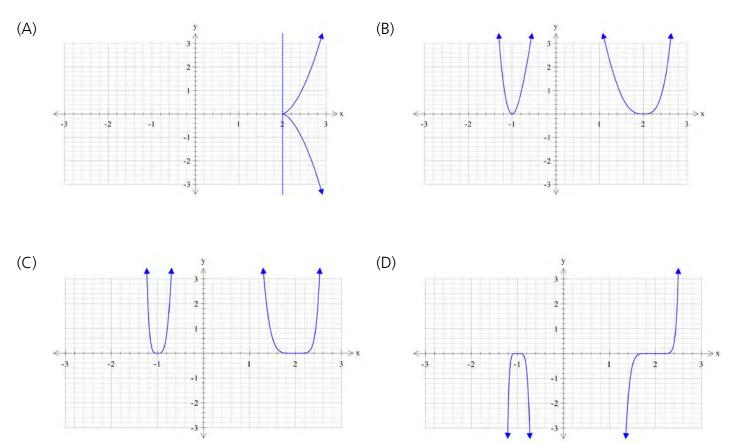




10 The graph of y = f(x) is drawn below.



Which of the following graphs represents the graph of $y = [f(x)]^2$?



Section II

90 Marks Attempt Questions 11 - 16. Allow about 2 hours and 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. In Questions 11 - 16, your responses should include relevant mathematics reasoning and/ calculations.

Que	Question 11 (15 MARKS) Use a SEPARATE writing booklet				
(a)	Let ı	$w = \sqrt{3} + i$ and $z = 3 - \sqrt{3}i$.			
	(i)	Find wz	1		
	(ii)	Express w in modulus-argument form.	2		
	(iii)	Write w^4 in simplest Cartesian form.	2		

(b) (i) Find the values of A, B, C and D such that:

$$\frac{5x^3 - 3x^2 + 2x - 1}{x^4 + x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1}$$

2

3

(ii) Hence find
$$\int \frac{5x^3 - 3x^2 + 2x - 1}{x^4 + x^2} dx.$$
 2

(c) Find all solutions to the equation $x^4 - 2x^3 + x^2 - 8x - 12 = 0$, given that x = 2i is a root of the equation.

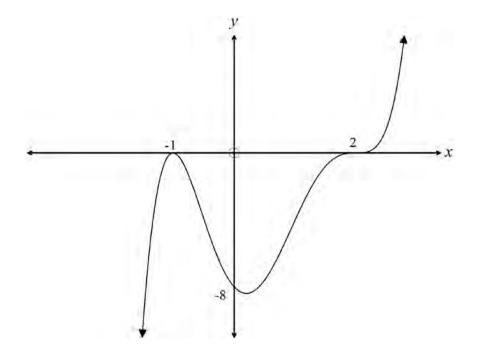
(d) Find
$$\int \frac{x \, dx}{x^2 - 3x + 4}$$
 3

Que	Question 12 (15 marks) Use a SEPARATE writing booklet					
(a)	b) Using calculus, show that $x \ge \ln(1+x)$ for $x \ge -1$.					
(b)	Cons	ider the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$				
	(i)	Show that the point $P(4 \cos \theta, 3 \sin \theta)$ lies on the ellipse.	1			
	(ii)	Calculate the eccentricity of the ellipse and hence find the foci and the directrices of the ellipse.	3			
	(iii)	Find the equation of the tangent at $P(4 \cos \theta, 3 \sin \theta)$.	2			
	(iv)	Find the equation of the normal at $P(4\cos\theta, 3\sin\theta)$.	2			
	(v)	Show that the tangent at <i>P</i> cuts the positive directrix at $M\left(\frac{16\sqrt{7}}{7}, \frac{21-12\sqrt{7}\cos\theta}{7\sin\theta}\right)$.	2			

(vi) Hence show that $\angle PSM = 90^{\circ}$, if S is the positive focus. **2**

Question 13 (15 marks) Use a SEPARATE writing booklet

- (a) Express $\frac{(1+i)^2}{(1-i\sqrt{3})^2}$ in the form $r \operatorname{cis} \theta$.
- (b) The graph of y = f(x) is shown below.



Sketch the following curves on separate half page diagrams.

(i) y = |f(x)| 1

(ii)
$$y = \frac{1}{f(x)}$$
 2

(iii)
$$y = \frac{d}{dx}[f(x)]$$
 2

$$(iv) \quad y^2 = f(x)$$

- (c) Prove that $cis (\alpha + \beta) = cis \alpha cis \beta$
- (d) Find the Cartesian equation of the following curve and sketch it on an Argand Diagram.

$$|z + 3 + 2i| = |z - 2 + i|$$

Marks

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) (i) Let
$$I_n = \int x(\ln x)^n dx$$
 for $n = 0, 1, 2, 3,...$
Show that $I_n = \frac{x^2}{2}(\ln x)^n - \frac{n}{2}I_{n-1}$ for $n \ge 1$

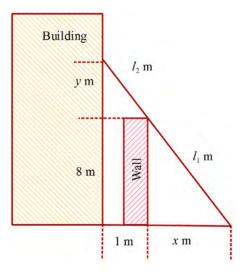
(II) Hence, or otherwise, find
$$\int x(\ln x)^2 dx$$
.

(b) If $T_1 = 8$, $T_2 = 20$ and $T_n = 4T_{n-1} - 4T_{n-2}$ for $n \ge 3$ prove by mathematical induction that:

$$T_n = (n+3)2^n \text{ for } n \ge 1$$

(c) Using the method of cylindrical shells, find the volume of the solid of revolution **3** formed when the area bounded by y = sin x, the *x*-axis, between x = 0 and $x = \pi$, is rotated about the *y*-axis.

...



A ladder reaches from the ground, over a wall 8 metres high, to the side of a building 1 metre behind the wall.

(i) By using similar triangles, show that $y = \frac{8}{x}$ and hence the length l of the ladder, where $l = l_1 + l_2$, is given by:

$$l = \sqrt{x^2 + 64} + \sqrt{1 + \frac{64}{x^2}}.$$

(ii) Hence find the length of the shortest ladder which will satisfy the conditions described above.

3

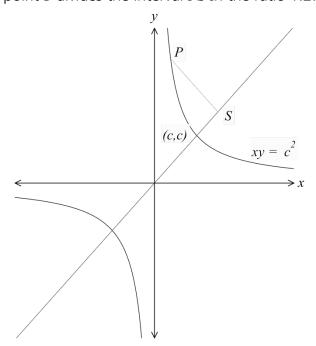
Marks

1

3

Question 15 (15 marks) Use a SEPARATE writing booklet

- (a) Use the substitution $u = e^x$ to find $\int \frac{e^x + e^{2x}}{1 + e^{2x}} dx$.
- (b) The point $P\left(cp, \frac{c}{p}\right)$ with p > 0 lies on the rectangular hyperbola $xy = c^2$ with focus *S*. The point *T* divides the interval *PS* in the ratio 1:2.

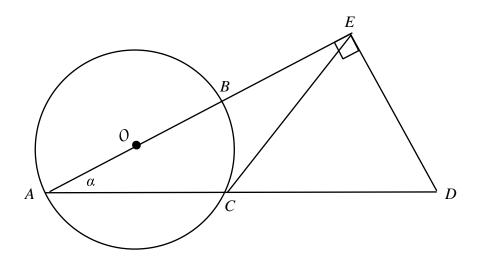


(i) Show that the coordinates of *T* are: $T\left(\frac{2cp+c\sqrt{2}}{3}, \frac{\frac{2c}{p}+c\sqrt{2}}{3}\right)$

(ii) Show that the Cartesian equation of the locus of *T* can be written as: $4c^2 = (3x - c\sqrt{2})(3y - c\sqrt{2}).$ HINT: find an expression for 2p in terms of *x*, and $\frac{2}{p}$ in terms of *y*.

Marks

4



3

2

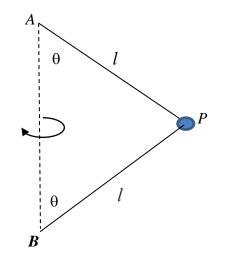
2

The diameter *AB* of a circle centre *O* is produced to *E*. *EC* is a tangent touching the circle at *C*, and the perpendicular to *AE* at *E* meets *AC* produced at *D*. $\angle BAC = \alpha$

Show that $\triangle CDE$ is isosceles.

(d) A particle *P* of mass 5kg is attached by two chains, each of length 3 m, to two fixed points *A* and *B*, which lie on a vertical plane.

P revolves with constant angular velocity ω about *AB*. *AP* makes an angle of θ with the vertical. The tension in *AP* is T_1 and the tension in *BP* is T_2 where $T_1 \ge 0$ and $T_2 \ge 0$.



- (i) Resolve the forces on *P* in the horizontal and vertical directions
- (ii) If the object is rotating in a circle of radius 1.5m at 12m/s, find the tension in both parts of the string. (Use $g = 10 m/s^2$)

Question 16 (15 marks) Use a SEPARATE writing booklet

(a)
Find the first derivative of
$$y = \ln\left(\frac{\sqrt{x^2+1}}{\sqrt[3]{x^3+1}}\right)$$
 2

(b) (i) The displacement (from a fixed point) of a body moving in a straight line is given by x, and its velocity is v. Show that $\frac{d}{dx}\left(\frac{1}{2}v^2\right) = v\frac{dv}{dx}$.

- (ii) A particle of mass one kg is moving in a straight line. It is initially at the origin and is travelling with velocity $\sqrt{3} ms^{-1}$. The particle is moving against a resisting force $v + v^3$, where v is the velocity.
 - A Briefly explain why the acceleration of the particle is given by $\frac{dv}{dt} = -(v + v^3).$
 - B Show that the displacement *x* of the particle from the origin is given by $x = \tan^{-1}\left(\frac{\sqrt{3}-v}{1+v\sqrt{3}}\right)$.
 - C Show that the time *t* which has elapsed when the particle is travelling with velocity *V* is given by $t = \frac{1}{2} \log_e \left[\frac{3(1+V^2)}{4V^2} \right]$
 - D Find V^2 as a function of *t*.
 - E Hence find the limiting position of the particle as $t \to \infty$.

End of Examination

Marks

Student Name:

2014 Year 12 Trial Examination Mathematics Extension 2

Section I Multiple-Choice Answer Sheet

1	A 🔿	B 🔿	С 🔿	D 🔿
2	A 🔿	B 🔿	C 🔿	D 🔿
3	A 🔿	B 🔿	С 🔿	D 🔿
4	A 🔿	B 🔿	C 🔿	D 🔿
5	A 🔿	B 🔿	C 🔿	D 🔿
6	A 🔿	B 🔿	С 🔿	D 🔿
7	A 🔿	B 🔿	C 🔿	D 🔿
8	A 🔿	B 🔿	C 🔿	D 🔿
9	A 🔿	B 🔿	C 🔿	D 🔿
10	A 🔿	B 🔿	С 🔿	D 🔿

2014 Mathematics Extension 2 HSC Trial Examination Solutions

	2014 Mathematics Extension 2 HSC Trial Examination Solutions MULTIPLE CHOICE						
1	$v = \frac{48}{3} = 16m/s$ v = rw 16 = 4w $w = \frac{16}{4} = 4 rads/s$			В			
2	$x^{2}-2x+y^{2} = 9$ Differentiate w.r.t x $2x-2+2y\frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{1-x}{y}$ At(0,-3), $\frac{dy}{dx} = -\frac{1}{3}$	А	1		-		
3	First person can select 2 out of Second person can select 2 out Final person can chose remainin	of 4 i.e. $\binom{4}{2}$ ways.		С	<u> </u>		
4	$\int \sin^3 x dx = \int \sin x (\sin^2 x) dx$ $= \int \sin x (1 - \cos^2 x) dx$ $= \int \sin x dx - \int \sin x dx$ $= -\cos x + \frac{1}{3}\cos^3 x + \frac{1}{3}$		1 Mark: A				
5	Resolving the forces vertically $T \cos \theta - mg = 0$ $T \sin \theta = mr\omega^2$ Statement (B) is correct.	and horizontally at P	1 Mark: B				
6	$x = \alpha, \beta, \gamma \text{so} y = \frac{2}{\alpha}, \frac{2}{\beta}, \frac{2}{\gamma}.$ $\therefore y = \frac{2}{x} \text{and hence } x = \frac{2}{y}.$ $3\left(\frac{2}{y}\right)^3 - 2\left(\frac{2}{y}\right)^2 + \left(\frac{2}{y}\right) - 7 = 0.$ $\left(\frac{24}{y^3}\right) - \left(\frac{8}{y^2}\right) + \frac{2}{y} - 7 = 0.$ $24 - 8y + 2y^2 - 7y^3 = 0.$ Required equation is: $7x^3 - 1$			B			

2014 Mathematics Extension 2 HSC Trial Examination Solutions

2014				
7	xy = c			
	$y + x \frac{dy}{dx} = 0$			
	$\frac{dx}{dx} = \frac{dx}{dx}$		D	
	$\frac{dy}{dx} = -\frac{y}{x}$ $\frac{dy}{dx} = -\frac{c}{p} \div cp$			
	$=$ $\frac{cp^2}{cp^2}$			
	$= -\frac{c}{cp^2}$ $= -\frac{1}{n^2}$			
	\therefore Gradient of Normal = p^2			
	$y - y_1 = m(x - x_1)$			
	$y - \frac{c}{r} = p^2(x - cp)$			
	P			
	$py - c = p^3(x - cp)$			
8	$\frac{y^2}{225} - \frac{x^2}{64} = 1$, $a^2 = 64$ and $b^2 = 225$			
	$\frac{1}{225} - \frac{1}{64} = 1$, $a = 64$ and $b = 225$			
	$a^2 = b^2(e^2 - 1)$			
	$64 = 225 \times (e^2 - 1)$	1 Mark: C		
	64 289 17			
	$e = \sqrt{\frac{64}{225} + 1} = \sqrt{\frac{289}{225}} = \frac{17}{15}$			
9	z = 2 + 3i			
	$i\bar{z} = i(2+3i)$			
	i = i(2 - 3i)		D	
	= 3 + 2i			
10	Graph (C)		С	1
10			U	<u> </u>

QUESTION 11		
a) $w = \sqrt{3} + i$ and $z = 3 - \sqrt{3}i$.		
(i) $wz = (\sqrt{3} + i)(3 - \sqrt{3}i)$ = $3\sqrt{3} - 3i + 3i + \sqrt{3}$ = $3\sqrt{3} + \sqrt{3}$ = $4\sqrt{3}$	1	Correct Answer
(ii) $r = \sqrt{\left(\sqrt{3}\right)^2 + 1^2} = 2$ $tan \theta = \frac{1}{\sqrt{3}}, \theta = \frac{\pi}{6}$ $\therefore w = 2 cis \frac{\pi}{6}$	2	1 for correct <i>r</i> 1 for correct θ
(iii) $w^4 = \left(2 \operatorname{cis} \frac{\pi}{6}\right)^4$ = $2^4 \operatorname{cis} \frac{4\pi}{6}$ = $16 \operatorname{cis} \frac{2\pi}{3}$ = $16 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right)$ = $16 \left(-\frac{1}{2} + \frac{\sqrt{3}i}{2}\right)$ = $-8 + 8\sqrt{3}i$	2	1 – Evaluating Power 1 Answer in Cartesian form
b) (i) $\frac{5x^3 - 3x^2 + 2x - 1}{x^4 + x^2} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1}$ $5x^3 - 3x^2 + 2x - 1 \equiv Ax(x^2 + 1) + B(x^2 + 1) + (Cx + D)x^2$ $\equiv Ax^3 + Ax + Bx^2 + B + Cx^3 + Dx^2$ $(A + C)x^3 = 5x^3 \qquad \therefore A + C = 5$ $(B + D)x^2 = -3x^2 \qquad \therefore B + D = -3$ $Ax = 2 \qquad \therefore A = 2 \qquad \therefore C = 3$ $B = -1 \qquad \therefore D = -2$ Hence, $A = 2, B = -1, C = 3, D = -2$. (ii) $\int \frac{5x^3 - 3x^2 + 2x - 1}{x^4 + x^2} dx = \int \left(\frac{2}{x} - \frac{1}{x^2} + \frac{3x - 2}{x^2 + 1}\right) dx$ $= \int \left(\frac{2}{x} - \frac{1}{x^2} + \frac{3x}{x^2 + 1} - \frac{2}{x^2 + 1}\right) dx$ $= 2\ln x + \frac{1}{x} + \frac{3}{2}\ln(x^2 + 1) - 2\tan^{-1}x + c$	2	2 – Correct A, B, C and D 1 – 3 correct 1 – Breakup of Integral 1 – Correct Answer
c) $\begin{vmatrix} x^{4} - 2x^{3} + x^{2} - 8x - 12 \\ \text{Since } x = 2i \text{ is one root, } (x - 2i)(x + 2i) \text{ are factors as coeffs are real, so} \\ (x^{2} + 4) \text{ is a factor} \\ \text{By division,} \\ x^{4} - 2x^{3} + x^{2} - 8x - 12 = (x^{2} + 4)(x^{2} - 2x - 3) \end{aligned}$	3	1 obtaining factor 1 – Correct division
= (x+2i)(x-2i)(x-3)(x+1) $\therefore \text{ Solution is } x = \pm 2i, -1 \text{ and } 3$		1 all 4 roots

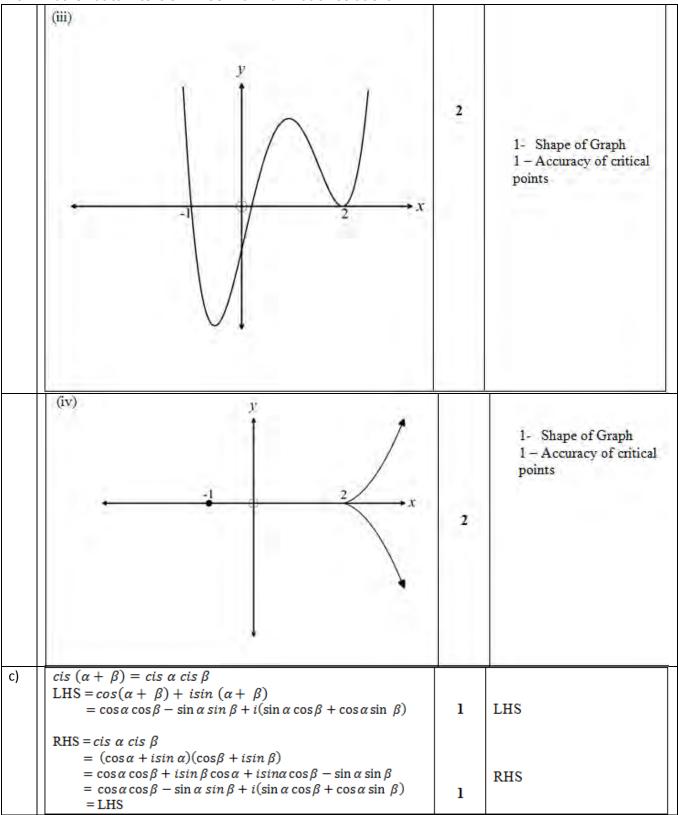
d)	$\int \frac{x}{x^2 - 3x + 4} dx$	1	Total marks - 3
ω,	$= \frac{1}{2} \int \frac{2x-3}{x^2-3x+4} + \frac{3}{2} \int \frac{1}{x^2-3x+4}$	1	
	$=\frac{1}{2}\ln(x^2 - 3x + 4) + \frac{3}{2}\int \frac{1}{(x - \frac{3}{2})^2 + \frac{7}{2}}$	1	
	$(x - \frac{1}{2}) + \frac{1}{4}$		
	$= \frac{1}{2}\ln(x^2 - 3x + 4) + \frac{\frac{s}{2}}{\sqrt{\frac{7}{4}}} \tan^{-1}\left(\frac{x - \frac{s}{2}}{\sqrt{\frac{7}{4}}}\right) + c$		
	$= = \frac{1}{2}\ln(x^2 - 3x + 4) + \frac{3}{\sqrt{7}}\tan^{-1}\left(\frac{2x - 3}{\sqrt{7}}\right) + c$	1	

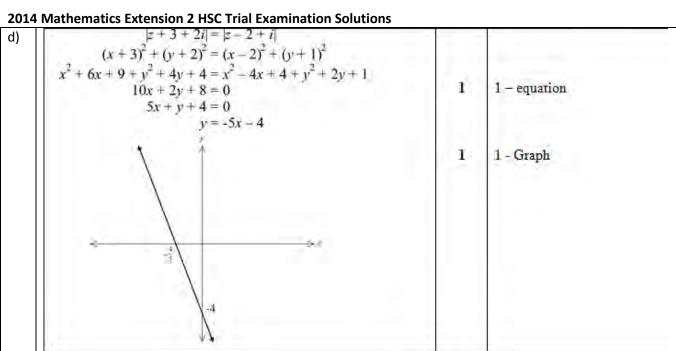
QUE	STION 12		
a)	Let $f(x) = x - \ln(1+x)$ and $f'(x) = 1 - \frac{1}{1+x}$	3 Mar answ	rks: Correct er.
	Minimum occurs if $f'(x) = 0$ $1 - \frac{1}{1+x} = 0$ $\frac{1+x}{1+x} - \frac{1}{1+x} = 0$ $\therefore 1+x-1=0$ or $x=0$ $(x \neq -1)$ Test $f''(x) = \frac{1}{(1+x)^2}$, $f''(0) = 1 > 0$ Minima Therefore the least value of $f(x)$ is at $x = 0$ $f(0) = 0 - \ln(1+0) = 0$ hence $f(x) \ge 0$ $f(x) = x - \ln(1+x) \ge 0$ $\therefore x \ge \ln(1+x)$	signif progr the so 2 Mai 1 Mai the fu	ess towards olution. rks: rk: Sets up unction and ctly uses
b)	(i) $\frac{x^2}{16} + \frac{y^2}{9} = 1$ P(4cos θ , 3 sin θ) $\frac{(4cos \theta)^2}{16} + \frac{(3 sin \theta)^2}{9} = 1$ $\frac{16 cos^2 \theta}{16} + \frac{9 sin^2 \theta}{9} = 1$ $cos^2 \theta + sin^2 \theta = 1$ 1 = 1 ∴ P lies on the ellipse. (ii) $b^2 = a^2 (1 - e^2)$ $3^2 = 4^2 (1 - e^2)$ $\frac{9}{16} = 1 - e^2$ $e^2 = 1 - \frac{9}{16}$	1	Working 1 – eccentricity
	$e^{2} = \frac{7}{16}$ $e = \frac{\sqrt{7}}{4}$ Foci = $(\pm ae, 0) = (\pm 4 \times \frac{\sqrt{7}}{4}, 0) = (\pm \sqrt{7}, 0)$ Directrices : $x = \pm \frac{a}{e}$ $x = \pm 4 \div \frac{\sqrt{7}}{4}$ $x = \pm \frac{16}{\sqrt{7}} = \pm \frac{16\sqrt{7}}{7}$		1 – foci 1 – <u>directrices</u>
	(iii) If $\frac{x^2}{16} + \frac{y^2}{9} = 1$ $\frac{2x}{16} + \frac{2y}{9} \frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{2x}{16} \div \frac{2y}{9}$ $\frac{dy}{dx} = -\frac{2x}{16} \times \frac{9}{2y}$ $\frac{dy}{dx} = -\frac{9x}{16y}$ At P(4cos θ , 3 sin θ) $\frac{dy}{dx} = -\frac{36\cos\theta}{48\sin\theta} = -\frac{3\cos\theta}{4\sin\theta}$ $y - y_1 = m(x - x_1)$ $y - 3\sin\theta = -\frac{3\cos\theta}{4\sin\theta}(x - 4\cos\theta)$	2	1 – gradient
	$y - 3\sin\theta = -\frac{1}{4\sin\theta} (x - 4\cos\theta)$ $4y\sin\theta - 12\sin^2\theta = -3x\cos\theta + 12\cos^2\theta$ $3x\cos\theta + 4y\sin\theta = 12$		1 – Equation

2014 Wathematics Extension 2 HSC Trial Examination Solutions		
(iv) Normal $dy = 4\sin\theta$		
(iv) Normal $\frac{dy}{dx} = \frac{4\sin\theta}{3\cos\theta}$		
$y - y_1 = m(x - x_1)$		
$y - 3\sin\theta = \frac{4\sin\theta}{3\cos\theta} \left(x - 4\cos\theta\right)$		
$y - 3\sin\theta = \frac{1}{2\pi\pi^2 \theta} \left(x - 4\cos\theta\right)$	2	1 – substitution
5 605 0		
$3y\cos\theta - 9\sin\theta\cos\theta = 4x\sin\theta - 16\sin\theta\cos\theta$		
$4x\sin\theta - 3y\cos\theta - 7\sin\theta\cos\theta = 0$		
		1 - answer
(x) $2x = x = 0 + 4x = ix 0 = 10$		
(v) $3x\cos\theta + 4y\sin\theta = 12$		
$x = \frac{16\sqrt{7}}{7}$		
$x = \frac{1}{7}$		
48/7		
$\frac{48\sqrt{7}}{7}\cos\theta + 4y\sin\theta = 12$		
, 10./7		
$4y\sin\theta = 12 - \frac{48\sqrt{7}}{7}\cos\theta$		
$-\frac{1}{7}$		
$y = \frac{12 - \frac{48\sqrt{7}}{7}\cos\theta}{4\sin\theta}$	2	1 – substitution
$y = \frac{12}{7} \frac{7}{6000}$		
$y = \frac{1}{4\sin\theta}$		
		1 – working
		_
$y = \frac{84 - 48\sqrt{7}\cos\theta}{28\sin\theta} = \frac{21 - 12\sqrt{7}\cos\theta}{7\sin\theta}$		
y =		
288110 75110		
$(16\sqrt{7} \ 21 - 12\sqrt{7} \cos\theta)$		
Therefore $M = \left(\frac{16\sqrt{7}}{7}, \frac{21 - 12\sqrt{7}\cos\theta}{7\sin\theta}\right)$		
$(7 7 7 sin \theta)$		
· · · · · · · · · · · · · · · · · · ·	1	
(vi)		
Gradient PS = $\frac{3\sin\theta - 0}{4\cos\theta - \sqrt{7}} = \frac{3\sin\theta}{4\cos\theta - \sqrt{7}}$		
$4\cos\theta - \sqrt{7}$ $4\cos\theta - \sqrt{7}$		
$21 - 12\sqrt{7}\cos\theta$ $21 - 12\sqrt{7}\cos\theta$ $21 - 12\sqrt{7}\cos\theta$		
Gradient MS = $\frac{7\sin\theta}{7\sin\theta} = \frac{7\sin\theta}{7\sin\theta} = \frac{7\sin\theta}{7\sin\theta}$		
Gradient MS = $\frac{\frac{21-12\sqrt{7}\cos\theta}{7\sin\theta}-0}{\frac{16\sqrt{7}}{7}-\sqrt{7}} = \frac{\frac{21-12\sqrt{7}\cos\theta}{7\sin\theta}}{\frac{16\sqrt{7}-7\sqrt{7}}{7}} = \frac{\frac{21-12\sqrt{7}\cos\theta}{7\sin\theta}}{\frac{9\sqrt{7}}{7}}$		
	•	
$=\frac{21-12\sqrt{7}\cos\theta}{1-12\sqrt{7}\cos\theta}$	2	
$-\frac{1}{9\sqrt{7}\sin\theta}$		1 – Both Gradients
$3 \sin \theta$ $21 - 12 \sqrt{7} \cos \theta$		
$\underbrace{m}(\text{PS}). \ m(\text{MS}) = \frac{3 \sin \theta}{4 \cos \theta - \sqrt{7}} \cdot \frac{21 - 12\sqrt{7} \cos \theta}{9\sqrt{7} \sin \theta}$		
$4\cos\theta - \sqrt{7}$ $9\sqrt{7}\sin\theta$		
$=\frac{7-4\sqrt{7}\cos\theta}{(4\cos\theta-\sqrt{7})\sqrt{7}}$		
$(4\cos\theta - \sqrt{7})\sqrt{7}$		
$7-4\sqrt{7}\cos\theta$		
$=\frac{7-4\sqrt{7}\cos\theta}{4\sqrt{7}\cos\theta-7}$		1 – proving perpendicular
$4\sqrt{7}\cos\theta$		
$=\frac{\frac{7-4\sqrt{7}\cos\theta}{-(7-4\sqrt{7}\cos\theta)}}$		
$-(7-4\sqrt{7}\cos\theta)$		
= -1		
		1
$\therefore MS \perp PS and \ \angle PSM = 90^{\circ}$		

QUES	TION 13		
a)	$\frac{(1+i)^2}{\left(1-i\sqrt{3}\right)^2}$		
	$(1+i): r = \sqrt{2}, \theta = \frac{\pi}{4} 1+i = \sqrt{2} \operatorname{cis} \frac{\pi}{4}$	1	2 marks for converting to mod-arg form
	$(1 - i\sqrt{3}): r = 2, \theta = -\frac{\pi}{3} \text{ so } 1 - i\sqrt{3} = 2 \operatorname{cis} \left(-\frac{\pi}{3}\right)$	1	
	$\frac{(1+i)^2}{(1-i\sqrt{3})^2} = \frac{\left(\sqrt{2} \operatorname{cis} \frac{\pi}{4}\right)^2}{\left(2 \operatorname{cis} \left(-\frac{\pi}{3}\right)\right)^2}$	1	
	$= \frac{2 \operatorname{cis} \frac{\pi}{2}}{4 \operatorname{cis} \left(-\frac{2\pi}{8}\right)}$ $= \frac{1}{2} \operatorname{cis} \left(\frac{7\pi}{6}\right)$ $= \frac{1}{2} \operatorname{cis} \left(\frac{-5\pi}{6}\right)$	1	2 marks for any valid method of simplifying.
b)	(i) $\frac{1}{1-1}$ $\frac{1}{2}$	1	Correct Graph
	(ii) y	2	1- Shape of Graph 1 – Accuracy of critical points

2014 Mathematics Extension 2 HSC Trial Examination Solutions

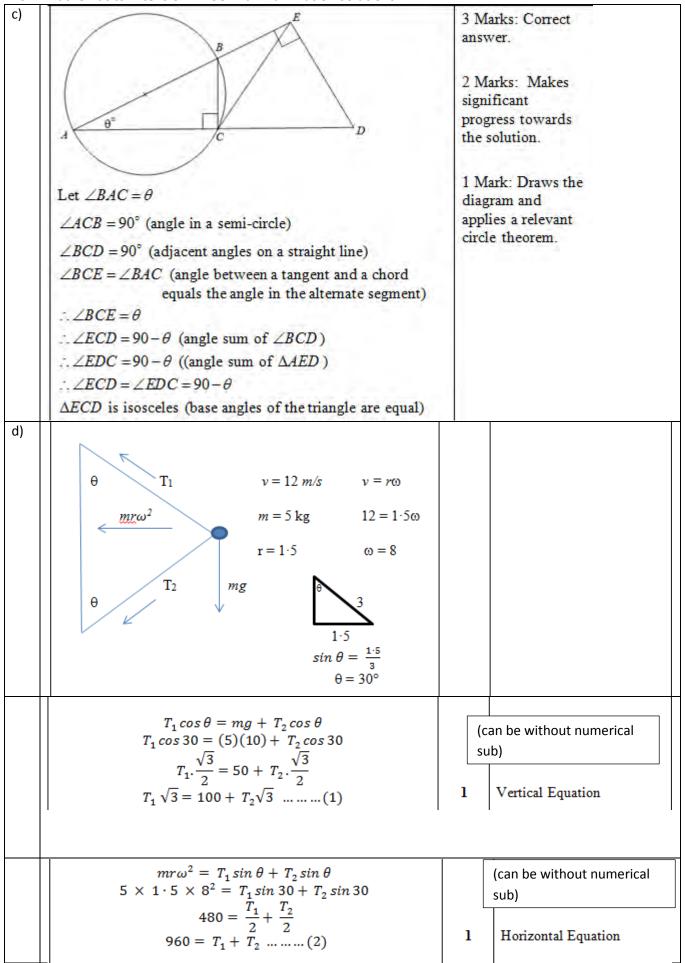




QUE	STION 14			
a)	$I_n = \int x(\ln x)^n dx$	3 Marks: Correct		
		answer.		
	$= (\ln x)^{n} \frac{x^{2}}{2} - \int \frac{x^{2}}{2} \times \frac{n}{x} (\ln x)^{n-1} dx$	2 Marks: Makes		
		significant		
	$= (\ln x)^n \frac{x^2}{2} - \frac{n}{2} \int x(\ln x)^{n-1} dx$	progress towards		
	$-(mx)\frac{1}{2}\frac{1}{2}\int x(mx)^{2} dx$	the solution.		
	$x^{n} x^{2} n$	1 Mark: Sets up by parts		
	$= (\ln x)^n \frac{x^2}{2} - \frac{n}{2} I_{n-1} \text{ for } n \ge 1$	the integration and		
	1 – –	shows some		
		understanding.		
	1			
	$I_2 = \int x(\ln x)^2 dx = \frac{x^2(\ln x)^2}{2} - \frac{x^2 \ln x}{2} - \frac{x^2}{4} + C$	1 months on month		
	$I_2 - \int x(mx) dx - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{4} + C$	1 mark correct		
b)	Step 1: To prove the statement true for $n = 1$ and $n = 2$	3 Marks: Correct		
	$T_1 = (1+3)2^1 = 8$ $T_2 = (2+3)2^2 = 20$	answer.		
	Result is true for $n = 1$ Result is true for $n = 2$	2 Marks: Proves		
		2 Marks: Proves the result true for		
	Step 2: Assume the result true for $n = k$, $n = k - 1$	n = 1 and attempts		
	$T_{k} = (k+3)2^{k} , T_{k-1} = (k+2)2^{k-1}$	to use the result of		
	To prove the result is true for,	n = k to prove the		
	•	result for $n = k+1$.		
	$T_{k+1} = (n+4)2^{k+1}$			
	$T_{k+1} = 4T_k - 4T_{k-1}$	1 Mark: Proves the		
	$=4(k+3)2^{k}-4(k+2)2^{k-1}$ Using assumption in 2	result true for $n = 1$ and $n = 2$.		
	$=4k2^{k}+12\times 2^{k}-4k2^{k-1}-8\times 2^{k-1}$			
	$=4k2^{k}+12\times2^{k}-2k2^{k}-4\times2^{k}$			
	$=2^{k+1}(2k+6-k-2)$			
	$= 2^{k} (2k+0) (k-2)^{k}$ = $(k+4)2^{k+1}$			
	Result is true for $n = k+1$ if true for $n = k$			
	Step 3: Result true by principle of mathematical induction.			
c)	By shell Method $\lim \partial x \to 0$ $2\pi x \sin x \partial x$			
	$V = 2\pi \int_{-\pi}^{\pi} x \sin x dx$			
	^J 0	1		
	$let \ u = x \qquad \qquad v' = \sin x$	Shell Method		
	$u' = 1$ $v = -\cos x$			
	$I = uv - \int vu'$			
	-	1 Integration by parts		
	$= 2\pi [-x\cos x]_0^{\pi} - \int_0^{\pi} -\cos x dx$			
	$= 2\pi \left[\pi + (\sin x)_0^{\pi}\right]$	1 Answer		
	$= 2\pi^{2}$	I		

d) (i)	$\frac{y}{8} = \frac{1}{x} \Rightarrow y = \frac{8}{x} l_1^2 = x^2 + 64 \Rightarrow l_1 = \sqrt{x^2 + 64} \\ l_2^2 = y^2 + 1 \Rightarrow l_2 = \sqrt{y^2 + 1} \\ l = \sqrt{x^2 + 64} + \sqrt{y^2 + 1} \\ l = (x^2 + 64)^{\frac{1}{2}} + (\frac{64}{x^2} + 1)^{\frac{1}{2}} \\ l = (x^2 + 64)^{\frac{1}{2}} + (1 + 64x^{-2})^{\frac{1}{2}} \end{bmatrix}$	1	Equations for l_1 and l_2 Equation for l
(")	$l' = \frac{1}{2} (2x) (x^2 + 64)^{-\frac{1}{2}} + \frac{1}{2} (-128x^{-3}) (1 + 64x^{-2})^{-\frac{1}{2}}$ $l' = \frac{2x}{2\sqrt{x^2 + 64}} - \frac{128}{2x^3 \sqrt{1 + \frac{64}{x^2}}}$ $l' = \frac{x}{2x^3 \sqrt{1 + \frac{64}{x^2}}} - \frac{64}{2x^3 \sqrt{1 + \frac{64}{x^2}}}$		
	$l' = \frac{x}{\sqrt{x^2 + 64}} - \frac{\frac{64}{64}}{x^3 \sqrt{\frac{x^2 + 64}{x^2}}}$ $l' = \frac{x}{\sqrt{x^2 + 64}} - \frac{\frac{64}{x^2 \sqrt{x^2 + 64}}}{x^2 \sqrt{x^2 + 64}}$	1	Correct derivative
	Stat pt: $l' = \frac{x}{\sqrt{x^2 + 64}} - \frac{64}{x^2 \sqrt{x^2 + 64}} = 0$ $\frac{x}{\sqrt{x^2 + 64}} = \frac{64}{x^2 \sqrt{x^2 + 64}}$		
	$x^{3} = \frac{64\sqrt{x^{2}+64}}{\sqrt{x^{2}+64}}$ $x^{3} = 64$ $x = 4$ When $x = 1, l' < 0$ When $x = 5, l' > 0$ $\therefore \text{ minimum when } x = 4 \text{ hence } y = 2$ $l_{1} = \sqrt{80} = 4\sqrt{5}, l_{2} = \sqrt{5}$ $\therefore L = 4\sqrt{5} + \sqrt{5} = 5\sqrt{5} \approx 11.2 \text{ metres}$	1	Value of <i>x</i> and test
		1	Minimum length

QUES	TION 15	
a)	$u = e^{x} \text{ or } du = e^{x} dx \text{ or } dx = \frac{1}{u} du$ $\int \frac{e^{x} + e^{2x}}{1 + e^{2x}} dx = \int \frac{u + u^{2}}{1 + u^{2}} \times \frac{1}{u} du$ $= \int \frac{1 + u}{1 + u^{2}} du$ $= \int \frac{1 + u}{1 + u^{2}} du + \int \frac{u}{1 + u^{2}} du$ $= \int \frac{1}{1 + u^{2}} du + \int \frac{u}{1 + u^{2}} du$ $= \tan^{-1} u + \frac{1}{2} \ln(u^{2} + 1) + C$ $= \tan^{-1} e^{x} + \frac{1}{2} \ln(e^{2x} + 1) + C$	4 Marks: Correct answer. 3 Marks: Separates and integrates one part correctly. 2 Marks: Correctly expresses the integral in terms of <i>u</i> 1 Mark: Correctly finds <i>dx</i> in terms of <i>du</i>
b) (i)	$P\left(cp, \frac{c}{p}\right), S(c\sqrt{2}, c\sqrt{2}) \text{ and } PT: TS = 1:2$ Coordinates of T $x = \frac{mx_2 + nx_1}{m+n} \qquad y = \frac{my_2 + ny_1}{m+n}$ $= \frac{1 \times c\sqrt{2} + 2 \times cp}{1+2} \qquad = \frac{1 \times c\sqrt{2} + 2 \times \frac{c}{p}}{1+2}$ $= \frac{c(\sqrt{2} + 2p)}{3} \qquad = \frac{c\left(\sqrt{2} + \frac{2}{p}\right)}{3}$	2 Marks: Correct answer. 1 Mark: Finds one of the coordinates or makes some progress towards the solution.
(ii)	To find the locus of <i>T</i> eliminate <i>p</i> from the above equations. $x = \frac{c(\sqrt{2} + 2p)}{3} \qquad \qquad$	2 Marks: Correct answer. 1 Mark: Uses the coordinates of <i>T</i> and attempts to eliminate <i>p</i> .



From (2), $T = 0.60 - T$ (2)		
(3) in (1) $T_1 = 960 - T_2 \dots \dots (3)$		
$(960 - T_2)\sqrt{3} = 100 + T_2\sqrt{3}$ 960\sqrt{3} - T_2\sqrt{3} = 100 + T_2\sqrt{3}		
$T_2 2\sqrt{3} = 960\sqrt{3} - 100$		
$T_2 = \frac{960\sqrt{3} - 100}{2\sqrt{3}} = 451 N$	1	Value for T_2
$T_1 = 960 - T_2$		
$T_1 = 960 - 451$ $T_1 = 509$	1	Value for T ₁

QUE	ESTION 16	
a)	$y = \ln\left(\frac{\sqrt{x^2+1}}{\sqrt[3]{x^3+1}}\right)$ $y = \ln\sqrt{x^2+1} - \ln\sqrt[5]{x^3+1}$ $y = \ln(x^2+1)^{\frac{1}{2}} - \ln(x^3+1)^{\frac{1}{5}}$ $y = \frac{1}{2}\ln(x^2+1) - \frac{1}{3}\ln(x^3+1)$ $\frac{dy}{dx} = \frac{1}{2}\frac{2x}{x^2+1} - \frac{1}{3}\frac{3x^2}{x^5+1}$ $= \frac{x}{x^2+1} - \frac{x^2}{x^3+1}$	1 Use of logarithmic rules 1 Answer
b) (i)	$\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \frac{dv}{dx} \times \frac{d}{dv}\left(\frac{1}{2}v^{2}\right)$ $= v\frac{dv}{dx}$	1 mark correctly establishes result
(ii) A	Resistance force acts against the direction of motion, $\therefore F = m \times a = 1 \times a = -(v + v^3)$ $a = -(v + v^3)$ $\frac{dv}{dt} = -(v + v^3)$	1 mark correct explanation
В	$v \frac{dv}{dx} = -(v + v^3)$ $\frac{dv}{dx} = -(1 + v^2)$ $\frac{dx}{dv} = \frac{-1}{1 + v^2}$ $x = -\tan^{-1}v + c$ when $x = 0, v = \sqrt{3} \Rightarrow c = \tan^{-1}\sqrt{3}$ $\therefore x = \tan^{-1}\sqrt{3} - \tan^{-1}v$ $\tan x = \tan\left(\tan^{-1}\sqrt{3} - \tan^{-1}v\right)$ $= \frac{\tan\left(\tan^{-1}\sqrt{3}\right) - \tan\left(\tan^{-1}v\right)}{1 + \tan\left(\tan^{-1}\sqrt{3}\right) \times \tan\left(\tan^{-1}v\right)}$ $= \frac{\sqrt{3} - v}{1 + v\sqrt{3}}$ $\therefore x = \tan^{-1}\left(\frac{\sqrt{3} - v}{1 + v\sqrt{3}}\right)$	1 mark some correct progress towards result 1 mark $\frac{dx}{dv} = -\frac{1}{1+v^2}$ 1 mark $x = \tan^{-1}\sqrt{3} - \tan^{-1}v$ 1 mark correctly establishes result

2014 Mathematics Extension 2 ASC mar Examination Solutions	
$\begin{bmatrix} C & \frac{dv}{dt} = -\left(v + v^3\right) \end{bmatrix}$	
dt = 1	
$dv = v + v^3$	
$=\frac{-1}{v(1+v^2)}$	
$=\frac{v}{1+v^2}-\frac{1}{v}$ 1 mark correct partial fraction	ns
$t = \int_{\sqrt{3}}^{V} \frac{v}{1+v^2} - \frac{1}{v} dv$	
$= \left[\frac{1}{2}\log_e\left(1+v^2\right) - \log_e v\right]_{\sqrt{3}}^V$ 1 mark correct integration	
$=\frac{1}{2}\left[\log_{e}\left(1+v^{2}\right)-2\log_{e}v\right]_{\sqrt{3}}^{V}$	
$=\frac{1}{2}\left[\log_{e}\frac{1+v^{2}}{v^{2}}\right]_{\sqrt{3}}^{V}$	
$=\frac{1}{2}\left[\log_{e}\left(\frac{1+V^{2}}{V^{2}}\right)-\log_{e}\left(\frac{4}{3}\right)\right]$	
$=\frac{1}{2}\log_{e}\left[\frac{3(1+V^{2})}{4V^{2}}\right]$ 1 mark correct result	
$D \qquad t = \frac{1}{2} \log_e \left[\frac{3\left(1+V^2\right)}{4V^2} \right]$	
$e^{2t} = \frac{3(1+V^2)}{4V^2}$ 1 mark $e^{2t} = \frac{3(1+V^2)}{4V^2}$	
$4V^2 e^{2t} = 3 + 3V^2$	
$4V^{2}e^{2t} = 3 + 3V^{2}$ $V^{2}(4e^{2t} - 3) = 3$	
$V^2 = \frac{3}{4e^{2t} - 3}$ 1 mark correct result	
EAs $t \to \infty, v \to 0$ 1 mark correct both parts	
hence $x \to \tan^{-1} \sqrt{3}$	