JAMES RUSE AGRICULTURAL HIGH SCHOOL 4 Unit Mathematics 1999 Trial HSC Examination

QUESTION 1

(a) Find $\int x \sqrt{x^{2}+16} d x$
(b) Find $\int \frac{x}{x+1} d x$
(c) Find $\int \frac{d x}{x^{2}+4 x+13}$
(d) Using the substitution $u=\cos x$, or otherwise, find $\int \frac{\sin ^{3} x}{\cos ^{2} x} d x$
(e) Use the substitution $t=\tan \frac{x}{2}$ to evaluate $\int_{0}^{\frac{\pi}{3}} \frac{d x}{1+\cos x-\sin x}$.

QUESTION 2

(a) If $z=2+3 i$ and $w=1-i$ express in the form $a+i b$
(i) \bar{z}
(ii) $z w$
(iii) $\frac{z}{w}$
(b) (i) Express $1+i$ in mod/arg form.
(ii) Hence write $(1+i)^{5}$ in the form $x+i y$ where x and y are real.
(c) (i) Find both square roots of $-3+4 i$
(ii) Hence solve $z^{2}-5 z+(7-i)=0$ giving your answers in the form $z=p+i q$ where p and q are real.

QUESTION 3

(a) (i) Prove that $\sin (A+B)+\sin (A-B)=2 \sin A \sin B$.
(ii) Hence solve $\sin 3 \theta+\sin \theta=\sin 2 \theta$ for $0 \leq \theta \leq \pi$.
(b) Find the volume of the solid formed when the region bounded by $y=\cos x$ and $y=\sin x$ for $0 \leq x \leq \frac{\pi}{4}$ is rotated one revolution about the x-axis.
(c) The front face of a solid is an equilateral triangle with sides 4 cm and the end face is an isosceles triangle with base 4 cm and equal sides 14 cm . The solid is 12 cm long and cross-sections parallel to the front face are isosceles triangles with base 4 cm . (See diagram).
(i) Show that the height ($h \mathrm{~cm}$) of a triangular cross-section $x \mathrm{~cm}$ from the front face is given by $h=\frac{\sqrt{3}}{2}(x+4)$.
(ii) Hence find the volume of the solid.

QUESTION 4

(a) (i) Prove that $\int_{-a}^{a} f(x) d x=\int_{0}^{a}(f(x)+f(-x)) d x$.
(ii) Using the result of (i) and the definition of odd and even functions prove
$(\boldsymbol{\alpha})$ if $f(x)$ is even then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
$(\boldsymbol{\beta})$ if $f(x)$ is odd then $\int_{-a}^{a} f(x) d x=0$.
(iii) Hence evaluate $\int_{-\pi}^{\pi} x \cos x d x$.
(b) A sequence is defined by the formula $a_{n}=3+33+333+\cdots+\overbrace{333 \ldots 3}^{n \text { digits }}$ where the last term contains n 3's. Use the principle of mathematical induction to prove that $a_{n}=\frac{1}{27}\left(10^{n+1}-9 n-10\right)$ for integer $n \geq 1$.

QUESTION 5

(a) The point $T\left(c t, \frac{c}{t}\right)$ lies on the hypebola $x y=c^{2}$. The tangent at T meets the x-axis at P and the y-axis at Q. The normal at T meets the line $y=x$ at R.
(i) Prove that the tangent at T has equation $x+t^{2} y=2 c t$.
(ii) Find the co-ordinates of P and Q.
(iii) Write down the equation of the normal at T.
(iv) Show that the x co-ordinate of R is $x=\frac{c}{t}\left(t^{2}+1\right)$.
(v) Prove that $\triangle P Q R$ is isosceles.
(b) A circle is drawn to pass through the vertices of $\triangle A B C . A M$ bisects $\angle B A C$ and meets $B C$ at P. (see diagram)
(i) Prove that $\triangle A B M$ and $\triangle A C P$ are similar.
(ii) Prove that $A B \cdot A C=A P . A M$.
(iii) Explain why $B P . P C=A P . P M$.
(iv) Hence prove that $A B \cdot A C-B P \cdot P C=A P^{2}$.

QUESTION 6

(a) (i) Sketch $y=\sin \left(x^{2}\right)$ for $-\sqrt{2 \pi} \leq x \leq \sqrt{2 \pi}$ showing all intercepts with the co-ordinate axes and turning points.
(ii) The region bounded by $y=\sin \left(x^{2}\right)$ and the x-axis for $0 \leq x \leq \sqrt{\pi}$ is rotated one revolution about the y-axis. Find the volume of the solid.
(b) A conical pendulum is constructed using a 200 gram mass attached to a light string. When the mass moves in a horizontal circle with speed $1.5 \mathrm{~m} . \mathrm{s}^{-1}$ the string makes an angle of magnitude $\tan ^{-1} \frac{3}{4}$ with the vertical. Taking $g=10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, find
(i) the tension in the string
(ii) the length of the string.
(c) The locus of a point is defined by the equation $|z-2|=2 \Re\left(z-\frac{1}{2}\right)$.
(i) If $z=x+i y$ explain why $x \geq \frac{1}{2}$.
(ii) Show that the locus is a branch of the hyperbola $3 x^{2}-y^{2}=3$.
(iii) Sketch the locus showing its asymptotes and vertex.
(iv) Find the largest set of possible values for each of $|z|$ and $\arg z$.

QUESTION 7

(a) A plane of mass $M \mathrm{~kg}$ on landing experiences a variable resistive force (due to air resistance) of magnitude $B v^{2}$ Newtons, where v is the speed of the plane, i.e., $M \ddot{x}=-B v^{2}$. After the brakes are applied the plane experiences a constant resistive force A Newtons (due to the brakes) as well as the variable resistive force $B v^{2}$, i.e., $M \ddot{x}=-\left(A+B v^{2}\right)$.
(i) Show that the distance $\left(D_{1}\right)$ travelled in slowing from speed V to speed U under the effect of air resistance only is given by: $D_{1}=\frac{M}{B} \ln \left(\frac{V}{U}\right)$.
(ii) After the breaks are applied with the plane travelling at speed U, show that the distance $\left(D_{2}\right)$ required to come to rest is given by: $D_{2}=\frac{M}{2 B} \ln \left(1+\frac{B}{A} U^{2}\right)$.
(iii) Use the above information to estimate the stopping distance for a 100 tonne plane if it slows from $90 \mathrm{~m} . \mathrm{s}^{-1}$ to $60 \mathrm{~m} . \mathrm{s}^{-1}$ under a resistive force of magnitude $125 v^{2}$ Newtons and is finally brought to rest with the assistance of constant braking force of magnitude 75000 Newtons.
(b) (i) Prove that $\frac{x^{2}}{\left(x^{2}+1\right)^{n+1}}=\frac{1}{\left(x^{2}+1\right)^{n}}-\frac{1}{\left(x^{2}+1\right)^{n+1}}$
(ii) Given $I_{n}=\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{n}} d x$, prove that $2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}$.
(iii) Hence evaluate $\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{3}} d x$.

QUESTION 8

(a) (i) Use the substitution $u=1+x$ to evaluate $\int_{0}^{1} x(1+x)^{n} d x$.
(ii) Use the binomial theorem to write an expansion of $x(1+x)^{n}$.
(iii) Prove that $\sum_{r=0}^{r=n} \frac{1}{r+2} \cdot{ }^{n} C_{r}=\frac{n \cdot 2^{n+1}+1}{(n+1)(n+2)}$.
(iv) Find the largest integer value of n such that $\sum_{r=0}^{r=n} \frac{1}{r+2} \cdot{ }^{n} C_{r}<50$.
(b) $A B C$ is any triangle. Equilateral triangles $A B X, B C Y$ and $A C Z$ are constructed on the sides of $\triangle A B C$. Circles with centres P and Q are drawn to pass through the vertices of $\triangle A B X$ and $\triangle B C Y$. The circles meet at B and O. (see diagram)

Z
(i) Find the size of $\angle A O B, \angle B O C$ and $\angle A O C$, giving reasons.
(ii) Prove that $A O C Z$ is a cyclic quadrilateral.
(iii) If R is the centre of the circle $A O C Z$, prove that $\triangle P R Q$ is equilateral.

