QUESTION 1 (15 MARKS) Start a new page

a) (i) Given $\mathrm{f}(\mathrm{x})$ is an odd function, show that $\int_{-a}^{a} f(x) d x=0$ using $x=-t$.
(ii) Hence, evaluate $\int_{-2}^{2} x^{4}\left(1+\sin ^{3} x\right) d x$.
b) (i) Let $I_{n}=\int_{1}^{e} x(\ln x)^{n} d x, n=0,1,2,3, \ldots \ldots$

Using integration by parts, show that $I_{n}=\frac{e^{2}}{2}-\frac{n}{2} I_{n-1}, n=1,2,3, \ldots \ldots$
(ii) The area bounded by the curve $y=\sqrt{x}(\ln x)^{2}, x \geq 1$, the x-axis and the line $x=\mathrm{e}$ is rotated about the x-axis through 2π radians.
Find the exact volume of the solid of revolution so formed.
c) (i) Sketch the curve $f(x)=\frac{x^{2}-x-6}{x-1}$.
(ii) Hence, sketch the graph of $y^{2}=f(x)$.

QUESTION 2 (15 MARKS) Start a new page

a) Find the following:
(i) $\int \frac{e^{-x}}{1+e^{x}} d x$.
(ii) $\int \frac{x}{\sqrt{1-2 x-x^{2}}} d x$.
b) Evaluate in exact form:
(i) $\int_{0}^{\frac{\pi}{6}} \frac{d \theta}{9-8 \cos ^{2} \theta}$ using the substitution $t=\tan \theta$.
(ii) $\int_{0}^{\frac{\pi}{6}} \sec ^{3} 2 \theta d \theta$.
c) Using the method of cylindrical shells, find the volume generated by revolving the area bounded by the lines $x= \pm 2$ and the hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{4}=1$ about the y-axis.

QUESTION 3 (15 MARKS) Start a new page

a) Let α, β, γ be the roots of the cubic equation $x^{3}+p x^{2}+q=0$, where p and q are real. The equation $x^{3}+a x^{2}+b x+c=0$ has roots α^{2}, β^{2} and γ^{2}. Find a, b, c as functions of p and q.
b) (i) Find the complex square roots of 5-12i, expressing your answer in the form $a+b i$, where a and b are real.
(ii) Hence, solve the equation: $z^{2}+4 z-1+12 i=0$
c) Given that $z=\cos \theta+i \sin \theta$,
(i) Show that $z^{n}+z^{-n}=2 \cos n \theta$ using De Moivre's Theorem.
(ii) Hence, solve the equation: $2 z^{4}-z^{3}+3 z^{2}-z+2=0$.

QUESTION 4 (15 MARKS) Start a new page

a) The sequence U_{n}, is defined such that
$U_{n+2}=4 U_{n+1}-U_{n}, n \geq 1$ and $U_{1}=2, U_{2}=4$.
Prove by mathematical induction that:
$U_{n}=(2+\sqrt{3})^{n-1}+(2-\sqrt{3})^{n-1}$.
b) $P(a \cos \theta, b \sin \theta)$ and $Q(a \sec \theta, b \tan \theta)$ lie on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, respectively as shown.
M and N are the feet of the perpendicular from P and Q respectively to the x-axis. $0<\theta<\frac{\pi}{2}$, and $Q P$ meets the x-axis at K. A is the point $(a, 0)$.

Given $\triangle K P M\left|\left|\mid \Delta K Q N\right.\right.$, show that $\frac{K M}{K N}=\cos \theta$.
(ii) Hence, show that K has coordinates ($-a, 0$).
(iii) Show that the tangent to the ellipse at P has equation $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$, and deduce it passes through N.
(iv) Given that the tangent to the hyperbola at Q has equation $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$, show that the tangent passes through M.
(v) Show that the tangents $P N, Q M$ and the common tangent at A are concurrent. Find the point of concurrence.

QUESTION 5 (15 MARKS) Start a new page

a) (i) If $\omega=i-1$, evaluate the following points $\bar{\omega}$, i $\omega, \frac{1}{\omega}$
(ii) Hence, indicate $\omega, \bar{\omega}, \mathrm{i} \omega, \frac{1}{\omega}$ on the Argand diagram.
b) Sketch the region R in the Argand diagram consisting of the points z for which:

$$
|\arg z|<\frac{\pi}{3}, \quad z+\bar{z}<4, \quad|z|>2
$$

c) On the Argand diagram, P represents the complex number z, and R the number $\frac{1}{z}$. A square $P Q R S$ is drawn in the plane with $P R$ as a diagonal. If P lies on the circle $|z|=2$,
(i) Prove that Q will lie on the ellipse whose equation has the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$;
(ii) Hence, specify the numerical values for a and b.

QUESTION 6 (15 MARKS) Start a new page

a) The base of a solid is the region bounded by the line $y=2 x$ and the parabola $y=4 x-x^{2}$ and the x-axis. Cross-sections parallel to the x-axis are right-angled isosceles triangles with the hypotenuse in the base of the solid.
(i) Show that the volume of the solid is given by:

$$
V=\frac{1}{16} \int_{0}^{4}(4+2 \sqrt{4-y}-y)^{2} d y
$$

(ii) Hence, find the exact volume of the solid.
b) A particle of mass, $m \mathrm{~kg}$, moves in a straight line with velocity v metres/second, under a constant force, P Newtons, and a resistance, R Newtons. Initially, the particle has a speed v_{0} metres/second. If $R=5+3 v$ and $P=10$.
(i) Show that velocity, $v=\frac{5}{3}\left(1-e^{-\frac{3 t}{m}}\right)+v_{0} e^{-\frac{3 t}{m}}$.
(ii) Find the terminal velocity of the particle.
(iii) When the particle accelerates from v_{0} to v_{1}, show that the distance travelled, x metres, is given by :

$$
x=\frac{m}{9}\left[3\left(v_{0}-v_{1}\right)+5 \ln \left(\frac{5-3 v_{0}}{5-3 v_{1}}\right)\right] .
$$

QUESTION 7 (15 MARKS) Start a new page

a) With respect to the x and y axis, the line $x=1$ is a directrix, and the point $(2,0)$ is a focus of a conic of eccentricity $\sqrt{2}$.

Find the equation of the conic, and sketch the curve indicating its asymptotes, foci, and directrices.
b) A circular cone of semi vertical angle θ is fixed with its vertex upwards as shown. A particle P, of mass $2 m \mathrm{~kg}$, is attached to the vertex V by a light inextensible string of length $2 a$ metres.

The particle P rotates with uniform angular velocity ω radians/second in a horizontal circle on the outside surface of the cone and in contact with it.
(i) Find the tension (T) in the string, in Newtons.
(ii) Find the normal force (N) on P, in Newtons.
(iii) Show that, for the particle to remain in uniform circular motion on the surface of the cone, then $\omega<\left[\frac{g}{2 a \cos \theta}\right]^{\frac{1}{2}}$ where g is acceleration due to gravity.
c) A car of mass, $m \mathrm{~kg}$, with speed v metres/second travels around a circular track of radius R metres, inclined at angle θ to the horizontal and g is the acceleration due to gravity.
(i) Show that if there is a tendency for the car to slip that

$$
\tan \theta=\frac{v^{2}}{g R} .
$$

(ii) If the speed of the car is now halved, prove that the sideways frictional force F, on the wheels, exerted by the track is given:

$$
F=\frac{3 m g v^{2}}{4 \sqrt{v^{4}+g^{2} R^{2}}}
$$

QUESTION 8 (15 MARKS) Start a new page

a) Two particles of mass 4 kg and 6 kg are attached at either end of a light inextensible string of length 7 metres, which passes through a small vertical frictionless ring R. The heavier particle A hangs vertically at a distance of 4 metres below the ring while the other particle B describes a horizontal circle whose centre is O. Let θ be the acute angle which particle B makes with the vertical.

Find:

(i) The distance $O R$ and the radius $O B$, of the horizontal circle.
(iii) The angular velocity of B about O in revolutions/minute to 2 decimal places (use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$).
b) In the diagram below, $E C$ and $E D$ are perpendicular to $B A$ and $A C$ at G and H respectively. The lines $A C$ and $B D$ meet at I. Let $\angle E C A=\alpha$.
(i) Copy the diagram, then show that FGCH is a cyclic quadrilateral.
(ii) Prove $\triangle B C D$ is isosceles.
(iii) Prove $\triangle C I D||\mid \triangle C D A$.
(iv) Given that $\triangle C I B|\mid \triangle C B A$ and $A B+A D=2 B C$, prove that $2 C I=B D$.

