JRAHS Trial HSC 2006 Extension 2

Question 1 (15 Marks) Marks (a) Find $\int \frac{2x}{1+2x} dx$. 2 (b) How many different ways are there of choosing a cricket 11 from a team of 15 3 players, if there can only be at most, one of the 2 Lee brothers and 2 of 3 Abey brothers? Find $\lim_{x \to -5} \frac{\sqrt{20 - x} - 5}{5 + x}$. 2 (c) Find the sum of all the coefficients of powers of z in the expansion $(1 + z)^8$. 2 (d) Find the equation of the tangent to the hyperbola $3x^2 - y^2 = 12$ at the point (i) 3 (e) $T(x_1, y_1)$. This tangent meets the line d(x = 1) in the point M. Prove that $FM \perp FT$, 3 (ii) where F is the focus (4, 0). **Question 2 (15 Marks) START A NEW PAGE**

(i)
$$a^2 + b^2 + c^2 > ab + bc + ca$$

(ii) If
$$a + b + c = 6$$
 show that $ab + bc + ca < 12$ **2**

(c) Let
$$I_n = \frac{1}{n!} \int_0^1 x^n e^{-x} dx$$
 for $n \ge 0$.

(i) Use integration by parts to show that
$$I_n = I_{n-1} - \frac{e^{-1}}{n!}$$
 3

(ii) Hence, evaluate I_4 .

2

(a) The diagram below is a sketch of the function y = f(x).

On separate diagrams sketch neatly:

(i)	y = f(x)	2
(ii)	$y = e^{f(x)}$	2
(iii)	$y = \ln(f(x))$	2

- (b) Reduce the polynomial $x^4 2x^2 15$ over the rational and the complex field. 2
- (c) If z_1 , z_2 are 2 complex numbers such that $|z_1 + z_2| = |z_1 z_2|$. With the aid of a diagram, show that arg (z_1) and arg (z_2) differ by either $\frac{\pi}{2}or\frac{3\pi}{2}$.

(d)	Evaluate	$\int_{0}^{\frac{\pi}{2}} \frac{1 - \tan x}{1 + \tan x} dx .$	3
-----	----------	---	---

Question 4 (15 Marks) START A NEW PAGE

(a) A string 50 cm of length can just sustain a weight of mass 20 kg without breaking. A mass of 4 kg is attached to one end of the string and revolves uniformly on a smooth horizontal table; the other end is being fixed to a point on the table.

Find the greatest number of complete revolutions the mass can make in a minute without breaking the string. [Use acceleration due to gravity as 9.8 m/s^2]

(b) Evaluate
$$\int_{a}^{a^{2}} \frac{dx}{x \ln x}$$
, leaving your answer in simplified, exact form.

The area between the graphs of $y = \cos^2 x$ and $y = \cos^2 x$ for $0 \le x \le \frac{\pi}{2}$ and $x = \frac{\pi}{2}$ is rotated about the *y* – axis. By considering cylindrical shells, find volume of revolution of the solid formed, in terms of π .

(d) Use the properties of odd and even functions to evaluate $\int_{-4}^{4} \cos x (e^x - e^{-x}) dx$. 3

3

3

Question 5 (15 Marks) START A NEW PAGE

(a) (i) Find A and B for which
$$\frac{x^4}{x^2+1} = A(x^2-1) + \frac{B}{x^2+1}$$
. 2

- (ii) Show that this result may be used in the integration of the function $x^3 \tan^{-1} x$. 5 Hence, evaluate the integral $\int_{0}^{1} x^3 \tan^{-1} x \, dx$.
- (b) A particle *P* is projected vertically upwards from the surface of the Earth with initial speed *u*. The acceleration due to gravity at any point on its path is inversely proportional to the square of it's distance from the centre of the Earth.

- (i) Prove that the speed v in any position x is given by $v^2 = u^2 2gR + \frac{2gR^2}{x}$, 4 where R is the radius of the Earth and g is the acceleration due to gravity at the surface of the Earth.
- (ii) If $u = \sqrt{2gR}$, find the time taken to reach a height 3*R* above the surface 4 of the earth, in terms of *g* and *R*.

Question 6 (15 Marks) START A NEW PAGE

- (a) A total of five players is selected at random from four sporting teams. Each of the teams consists of 10 players numbered from 1 to 10. What is the probability that the five selected players contain at least four players from the same team? Clearly explain your answer.
- (b) A particle P of mass m is attached by two equal, light inextensible strings of length l, to two points Q and S, distant h units apart in the same vertical line; S is directly below Q. P rotates in a horizontal circle with uniform angular velocity, ω.

- (i) Prove that the tension in the string PQ is $ml\left(\frac{1}{2}\omega^2 + \frac{g}{h}\right)$ where g is the **5** acceleration due to gravity.
- (ii) Find the tension in the string *PS*. 1 (iii) Show that for both strings to remain stretched then $\omega > \sqrt{\frac{2g}{h}}$. 2
- (iv) If the tensions in the string are in the ration of 2:1, find the period of the motion of the particle.

Marks

Question 7 (15 Marks) START A NEW PAGE

(a) α , β , γ are non – zero roots of the equation $x^3 + px + q = 0$. Find the equation whose roots are

(i)
$$\alpha^{3}, \beta^{3}, \gamma^{3}$$

(ii) $\frac{\alpha}{\beta\gamma}, \frac{\beta}{\alpha\gamma}, \frac{\gamma}{\alpha\beta}$
3
4

(b) The diagram below shows the hyperbola $xy = c^2$. The point $P\left(ct, \frac{c}{t}\right)$ lies on the curve, where $t \neq 0$. The normal at *P* intersects the straight line y = x at *N*.

curve, where $t \neq 0$. The normal at P intersects the straight line y = x at N. O is the origin.

(i) Prove that the equation of the normal at *P* is $y = t^{2}x + \frac{c}{t} - c^{3}.$ (ii) Find the coordinates of *N*. (iii) Show that $\triangle OPN$ is isosceles. (iii) A

(c) (i) Draw a neat sketch of the graph of
$$y = \frac{4}{x} - x$$
. 2

(ii) Draw a neat sketch of the curve
$$y = \sqrt{f(x)}$$
. 2

Marks

Question 8 (15 Marks) START A NEW PAGE

- Marks
- (a) Ben's Hot Wheel travels along an inclined ramp to jump over a truck. The Hot Wheel travels at an initial speed V m/s inclined at an angle θ to the horizontal at O, and acceleration due to gravity is $g \text{ m/s}^2$.

- (i) Write this equation in the general form of a parabola: $(x h)^2 = 4a(y k)$, 3 where *a*, *h*, *k* are constants.
- (ii) Calculate the angle of projection, θ , if the range is three times the width of **3** the truck and the top of the truck passes through the focus of equation in part (a).
- (b) Given p and q are positive real numbers,

(i) Prove that:
$$\frac{1}{2}(p+q) \ge \sqrt{pq}$$
. 1

(ii) Hence, deduce that:
$$\sqrt{p} \le \frac{1}{2} \left(\frac{p}{\sqrt{q}} + \sqrt{q} \right)$$
. 1

Question 8 Part (c) continued on the next pag

- (c) Given $a_1, a_2, a_3, ..., a_n$ and $b_1, b_2, b_3, ..., b_n$ are positive real numbers, where $A_n = a_1 + a_2 + a_3 + ... + a_n$ and $B_n = b_1 + b_2 + b_3 + ... + b_n$, are such that $a_1, a_2, ..., a_n > 0$, $b_1, b_2, ..., b_n > 0$ and $A_r \le B_r$, for r = 1, 2, 3, ..., n.
 - (i) Prove, by mathematical induction for n = 1, 2, 3, ..., that:

$$\frac{1}{\sqrt{b_n}} B_n + \left(\frac{1}{\sqrt{b_{n-1}}} - \frac{1}{\sqrt{b_n}}\right) B_{n-1} + \left(\frac{1}{\sqrt{b_{n-2}}} - \frac{1}{\sqrt{b_{n-1}}}\right) B_{n-2} + \dots + \left(\frac{1}{\sqrt{b_1}} - \frac{1}{\sqrt{b_2}}\right) B_1$$
$$= \sqrt{b_1} + \sqrt{b_2} + \sqrt{b_3} + \dots + \sqrt{b_n}.$$

(ii) Hence, given:
$$\frac{a_1}{\sqrt{b_1}} + \frac{a_2}{\sqrt{b_2}} + \frac{a_3}{\sqrt{b_3}} + \dots + \frac{a_n}{\sqrt{b_n}} = \frac{1}{\sqrt{b_n}} A_n + \left(\frac{1}{\sqrt{b_{n-1}}} - \frac{1}{\sqrt{b_n}}\right) A_{n-1} + \left(\frac{1}{\sqrt{b_{n-2}}} - \frac{1}{\sqrt{b_{n-1}}}\right) A_{n-2} + \dots + \left(\frac{1}{\sqrt{b_1}} - \frac{1}{\sqrt{b_2}}\right) A_1,$$

show that:

$$\sum_{r=1}^{n} \frac{a_r}{\sqrt{b_r}} \le \sum_{r=1}^{n} \sqrt{b_r}.$$
1

(iii) Deduce that:
$$\sum_{r=1}^{n} \sqrt{a_r} \le \sum_{r=1}^{n} \sqrt{b_r}$$
. 3

Solutions to Questions	Marking Scheme	Comments
Question 1		
(a) $\int \frac{2x}{1+2x} dx = \int 1 - \frac{1}{1+2x} dx$	1 for changing the integral	
$= x - \frac{1}{2} \ln 1 + 2x + c$	1 correct integration	
(b) Let the Lee brothers be L_1 and L_2 Let the Abey brothers be A_1, A_2 and A_3 . Then there are 10 others. \therefore # possibilities is 365 ways. $\frac{L A \text{Others}}{1 0 10}$ $\frac{1 1 9}{1 2 8}$ $0 1 10$ $0 2 9$ $\therefore 2 + 60 + 270 + 3 + 30 = 365 [\text{ using } {}^nC \]$	1 for correct answer 2 for justification	
(c) $\lim_{x \to -5} \frac{\sqrt{20 - x} - 5}{5 + x} \times \frac{\sqrt{20 - x} + 5}{\sqrt{20 - x} + 5}$ $= \lim_{x \to -5} \frac{20 - x - 25}{(5 + x)(\sqrt{20 - x} + 5)}$ $= \lim_{x \to -5} \frac{-1}{\sqrt{20 - x} + 5}$	 for multiplying by conjugate 1 correct simplification & answer 	
$=-\frac{1}{10}$		

Year 12 Mathematics Extension 2 TRIALS 2006 – Suggested Solutions (LK)

Solutions to Questions	Marking Scheme	Comments
Question 1 continued		
(d) $(1+z)^8 = \binom{8}{0} + \binom{8}{1}z + \binom{8}{2}z^2 + \dots + \binom{8}{7}z^7 + \binom{8}{8}z^8$	1 correct expansion	
Let $z = 1$ then $2^8 = \binom{8}{0} + \binom{8}{1} + \binom{8}{2} + \dots + \binom{8}{8}$	1 correct substitution of $z = 1$ and the correct answer.	
\therefore sum of coefficients = 2 ⁸ or 256.		
(e) (i) Since $3x^2 - y^2 = 12$ then we get	1 correct differential	
$6x - 2y \frac{dy}{dx} = 0$ $\therefore \frac{dy}{dx} = \frac{3x_1}{y_1}$ at T.	1 gradient at <i>T</i> .	
: equation of tangent: $y - y_1 = \frac{3x_1}{y_1}(x - x_1)$	1 correct tangent equation	
(ii) since this tangent meets the line $x = 1$		
$\therefore y = \frac{3x_1 - 12}{y_1}$ & since $F(4, 0)$		
:. $FM_{\text{grad}} = -\frac{(x_1 - 4)}{y_1} \& FT_{\text{grad}} = \frac{y_1}{x_1 - 4}$	1+1 for correct gradients	
$\therefore FM \times FT = -1 \qquad \therefore FM \perp FT.$	1 correct justification of $FM \perp FT$.	

Solutions to Questions	Marking Scheme	Comments
Question 2		
(a)(i) $z = 2 \operatorname{cis}(-\frac{\pi}{4})$	1 for modulus 1 for argument	
(ii) $z^{22} = \left[2cis\left(-\frac{\pi}{4}\right)\right]^{22}$ by De Moivre's Theorem = $2^{22}\left[\cos\left(-\frac{22\pi}{4}\right) + i\sin\left(-\frac{22\pi}{4}\right)\right]$	1 correct use of De Moivre's theorem	
$= 2^{22} \left[\cos\left(\frac{11\pi}{2}\right) - i\sin\left(\frac{11\pi}{4}\right) \right]$ = 2 ²² (0i) = 2²² i.	1 correct simplification 1 correct answer	
(b)(i) Since $a^2 + b^2 > 2ab$ then similarly	1 correctly writing the other two	
$a^{2} + c^{2} > 2ac$ and $b^{2} + c^{2} > 2bc$.	inequalities.	
: $2(a^2 + b^2 + c^2) > 2(ab + bc + ac)$	1 correct inequality	
$\therefore a^2 + b^2 + c^2 > ab + bc + ac$ as required		
(ii) Since $a + b + c = 6$ Then $(a + b + c)^2 = 36$		
$\frac{1}{a^2 + b^2 + c^2 + 2ab + 2bc + 2ac - 36}$	1 correct expansion	
But from part (i) $a^2 + b^2 + c^2 > ab + bc + ac$	1	
$\therefore a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ac > 3(ab + bc + ac)$ $\therefore 36 > 3(ab + bc + ac)$ $\therefore ab + bc + ac < 12 \text{ as required.}$	1 correct substitution	

Solutions to Questions	Marking Scheme	Comments
Question 2 continued		
(c)(i) $I_n = \frac{1}{n!} \int_0^1 x^n e^{-x} dx$, $n \ge 0$ By integration by parts		
$= \frac{1}{n!} \left[-x^{n} e^{-x} \right]_{0}^{1} - \frac{1}{n!} \int_{0}^{1} \left[-n x^{n-1} e^{-x} \right] dx$	1 + 1 marks	
$= \frac{1}{n!} \left[-e^{-1} \right] + \frac{n}{n!} \int_{0}^{1} \left[x^{n-1} e^{-x} \right] dx$	1 mark	
$= -\frac{e^{-1}}{n!} + \frac{1}{(n-1)!} \int_{0}^{1} \left[x^{n-1} e^{-x} \right] dx$		
$=I_{n-1}-\frac{e^{-1}}{n!}$ as required.		
(ii) $I_4 = I_3 - \frac{e^{-1}}{4!} = I_2 - \frac{e^{-1}}{3!} - \frac{e^{-1}}{4!}$		
$= I_1 - \frac{e^{-1}}{2!} - \frac{e^{-1}}{3!} - \frac{e^{-1}}{4!}$ $= I_0 - \frac{e^{-1}}{2!} - \frac{e^{-1}}{2!}$	1 up to this line	
$= \frac{1}{0!} \int_{0}^{1} e^{-x} dx - \frac{e^{-1}}{1!} - \frac{e^{-1}}{2!} - \frac{e^{-1}}{3!} - \frac{e^{-1}}{4!}$		
$= -[e^{-x}]_0^1 - e^{-1}\left(\frac{41}{24}\right)$	1 for this line	
$=1-\frac{65}{24e}$	1 correct answer	

	Solutions to Questions	Marking Scheme	Comments
Question 3 continued			
(c)			
(d)	$\int_{0}^{\frac{\pi}{2}} \frac{1 - \tan x}{1 + \tan x} dx = \int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{\cos x + \sin x} dx$	1 correct conversion to sin & cos	
	$= \left[\ln \left \cos x + \sin x \right \right]_0^{\frac{\pi}{2}}$	1 correct integration + answer	
	$\equiv 0$		

Solutions to Questions		Marking Scheme	Comments
Question 4			
(a)	$T \le 20 \times 9.8$ But $T = m \omega^2 r$	$1 T \le 20 \times 9.8$	
	$\therefore m\omega^2r \le 20 \times 9.8$		
	$\therefore 4 \times \omega^2 \times \frac{1}{2} \le 20 \times 9.8$		
	$\therefore \omega^2 \leq 98 \text{ rads/ sec}$	1	
	$\therefore \omega \leq \sqrt{98} \times 60 \times \frac{1}{2\pi}$ revs / min	1 converting to revs/ min & correct answer	
	: greatest no. of revolutions 94 revs/ min		
(b)	$\int_{a}^{a^{2}} \frac{dx}{x \ln x} = \left[\ln(\ln x) \right]_{a}^{a^{2}}$	1 correct integration	
	$= \ln (\ln a^2) - \ln(\ln a)$		
	$= \ln\left(\frac{\ln a^2}{\ln a}\right)$ $= \ln 2$	1 correct use of log. Rule 1 correct answer	

(c) (i) $\partial V = 2\pi x y \partial x$	1 showing correct volume of slice	
$\therefore \text{ Total volume} = \int_{0}^{\frac{\pi}{2}} 2\pi x (\cos^2 x - \cos 2x) dx$	1 correct integral + limits	
$=\int_{0}^{\frac{\pi}{2}}2\pi(x-x\cos^{2}x)dx$	1 correct simplified integral	
$= \frac{1}{2}x^{2} - \frac{1}{2}x\left(x + \frac{1}{2}\cos 2x\right)_{0}^{\frac{\pi}{2}}$	1 correct use of IBP	
$=\frac{\pi^2}{8} - \frac{1}{2} \left(\frac{\pi^2}{8} - \frac{1}{4} - \frac{1}{4} \right)$	1 correct integration by parts	
$= \left(\frac{\pi^3}{8} + \frac{\pi}{2}\right) \text{ units}^3$	1 correct answer in terms of π .	
(d) $\int_{-\infty}^{4} \cos x (e^x - e^{-x}) dx$		Note: students do not need to physically find
Since $\cos x$ is an EVEN function & $e^x - e^{-x}$ is an ODD function, EVEN \times ODD \rightarrow ODD	1 + 1 for correct justification	the integral!
$\therefore \int_{-4}^{4} \cos x \left(e^x - e^{-x} \right) dx = 0$	1 correct answer	

Solutions to Questions	Marking Scheme	Comments
Question 5		
(a) (i) $\frac{x^4}{x^2 + 1} = A(x^2 - 1) + \frac{B}{x^2 + 1}$ Let $x = 0 \Rightarrow B - A = 0$ Let $x = 1 \Rightarrow \frac{1}{2} = \frac{1}{2} \times B$ $\therefore B = 1 \text{ and } A = 1$	 substituting a reasonable <i>x</i> values correct answers for <i>A</i> and <i>B</i>. 	
(ii) $\int_{0}^{1} x^{3} \tan^{-1} x dx$		
$= \left[\frac{x^4}{4} \tan^{-1} x\right]_0^1 - \frac{1}{4} \int_0^1 \frac{x^4}{1 + x^2} dx$	1 + 1 for integration by parts	
$= \frac{\pi}{16} - \frac{1}{4} \left[\frac{x^3}{3} - x + \tan^{-1} x \right]_0^1$	1 for integration	
π 1 π	1 substitution	
$ = \frac{1}{16} + \frac{1}{6} = \frac{1}{6} $	1 correct answer	

Solutions to Questions	Marking Scheme	Comments
Question 5 continued		
(b)(i) particle moving upwards & acceleration is acting		
downwards $\therefore a = -\frac{k}{x^2}$		
When $x = R$, $a = g$ $\therefore k = gR^2$.	1 for finding k in terms of g and R .	
$\therefore \frac{d}{dx} \left(\frac{1}{2}v^2\right) = \frac{-gR^2}{x^2} \text{ since } a = \frac{d}{dx} \left(\frac{1}{2}v^2\right)$	1 for finding a in terms of g and R	
$\therefore \frac{1}{2}v^2 = \frac{gR^2}{r} + c$	1 integration	
Now when $x = R$, $v = u$ initially $\therefore c = \frac{1}{2}u^2 - gR$	1 for <i>c</i>	
$\therefore v^{2} = u^{2} - 2gR + \frac{2gR^{2}}{x}$ (ii) when $u = \sqrt{2gR} \Rightarrow v^{2} = \frac{2gR^{2}}{x}$ $\therefore v = \frac{dx}{dt} = \sqrt{\frac{2gR^{2}}{x}}, v > 0$ $\therefore dt = \sqrt{x}$	$1 v^2$ equation	
$\therefore t = \int_{R}^{4R} \frac{x^{\frac{1}{2}}}{\sqrt{2gR^2}} dx = \frac{1}{\sqrt{2gR^2}} \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{R}^{4R}$ $14 \sqrt{R}$	1 for $\frac{dt}{dx}$ 1 correct integration for <i>t</i>	
$\therefore t = \frac{14}{3} \sqrt{\frac{R}{2g}}$	1 correct answer	

Solutions to Questions	Marking Scheme	Comments
Question 6		
(a) 4 players There are ${}^{4}C_{1}$ ways of choosing the team Then we need four players of the 10: ${}^{10}C_{4}$ ways The 5 th player is chosen from the remaining 30 in ${}^{30}C_{1}$ way \therefore total number of ways = ${}^{4}C_{1} \times {}^{10}C_{4} \times {}^{30}C_{1} = 25200$	1 correct answer + 1 justification	
5 players \rightarrow ${}^{4}C_{1} \times {}^{10}C_{5} = 1008$ ways \therefore p(at least 4 players from same team) 25200 + 1008 = 1	1 correct answer	
$= \frac{23200 + 1008}{\binom{40}{5}} = \frac{1}{25}$	1 correct probability	
(b) Q θ l T_1 P h T_2 R_2 R_3 R_3		

Solutions to Questions	Marking Scheme	Comments
Question 6 continued		
(b) (i)By trig. $R = l\sin\theta$ and $h = 2l\cos\theta$.	1 sin θ and cos θ relationships	
Resolving forces:		
Vertically : $0 = mg + T_2 \cos\theta - T_1 \cos\theta$.	1 vertical force	
$\therefore mg = (T_1 - T_2)\cos\theta. \Rightarrow \bigcirc$		
Horizontally: $m\omega^2 r = T_1 \sin\theta + T_2 \sin\theta$	1 horizontal force	
$\therefore m(l\sin\theta) \ \omega^2 = (T_1 + T_2) \sin\theta. \Rightarrow \Box$		
From $\mathbb{O} \Rightarrow T_1 - T_2 = \frac{mg}{\cos \theta} = \frac{2mgl}{h}$		
From $\square \rightarrow T_1 + T_2 = ml \omega^2$	1 rearrangements of equation	
① + □ → $T_1 = ml(\frac{1}{2} \omega^2 + \frac{g}{h})$ → tension in PQ.	1 correct addition & simplification	
(ii) $\square - \boxdot \Rightarrow T_2 = ml\left(\frac{1}{2}\omega^2 - \frac{g}{h}\right)$	1 for answer	
(iii) String <i>PS</i> (hence <i>PQ</i>) will only remain stretched is		
$T_2 > 0 \therefore \left(\frac{1}{2}\omega^2 - \frac{g}{h}\right) > 0$ $\boxed{2g}$	1 knowing $T_2 > 0$	
$\therefore \omega > \sqrt{\frac{-\alpha}{h}}$	1 showing answer is true	
(iv) If $T_1: T_2 = 2: 1$ then $\omega^2 = \frac{6g}{h}$	1 getting ω^2	
$\therefore \ \omega = \sqrt{\frac{6g}{h}} \ \therefore \text{ period of motion} = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{h}{6g}}}$	1 for ω + 1 period	

Solutions to Questions	Marking Scheme	Comments
Question 7		
(a)(i) $\alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)^3 + 3\alpha\beta\gamma$	(1) correct relationship	
$= (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \alpha\gamma - \beta\gamma) + 3\alpha\beta\gamma$ $= 0 + 3(-q) = -3q$	(1) correct expansion(1) correct answer	
(ii) Let $X = \frac{\alpha}{\beta\gamma} = \frac{\alpha^2}{\alpha\beta\gamma} = -\frac{\alpha^2}{q}$ $\therefore \alpha^2 = -qX$ But $\alpha^3 + p\alpha + q = 0$ as α is a root	(1) a^2 equation	
$\therefore -qXa + pa + q = 0$ (qX - p)a = q $(qX - p)^{2}a^{2} = q^{2}$ $\therefore (qX - p)^{2}(-qX) = q^{2}$	(1)	
$\therefore (qX - p) (qX) - q$ $\therefore X(qX - p)^2 = -q$	(1) correct solution	
(b) (i) \therefore gradient of normal at <i>P</i> is t^2 \therefore equation is given by $\left(y - \frac{c}{t}\right) = t^2(x - ct)$	(1) correct gradient & use of point – gradient formula.	
Which leads to the required equation.		
(ii) $N\left(\frac{c-tc^3}{t(t^2-1)}, \frac{c-tc^3}{t(t^2-1)}\right)$	(1) correct coordinates.	
(iii) $\tan \angle NOP = \left \frac{1 + \frac{1}{t^2}}{1 - \frac{1}{t^2}} \right = \left \frac{1 + t^2}{t^2 - 1} \right = \left \frac{1 + t^2}{1 - t^2} \right $ $\tan \angle ONP = \left \frac{1 + t^2}{t^2} \right = \left \frac{1 - t^2}{t^2 - 1} \right = \left \frac{1 + t^2}{1 - t^2} \right $	(1) Finding angles $+$ (1) conclusion $\therefore \Delta ONP$ is isosceles (equal base angles)	Can also show <i>PN = OP</i>
$\frac{1}{\left 1-t^{2}\right } \cdot \frac{1}{\left 1-t^{2}\right } \cdot \frac{1}{\left 1-t^{2}\right }$		

Solutions to Questions	Marking Scheme	Comments
Question 7 continued		
(c) (i) $y = \frac{4}{x} - x$	(1) correct shape	
	(1) correct roots & Asymptotes	
(ii) $y = \sqrt{f(x)}$	(1) + (1) for each arm	

Solutions to Questions	Marking Scheme	Comments
Question 8		
(a)(i) Since $y = x \tan \theta - \frac{gx^2 \sec^2 \theta}{2V^2}$ (÷ by $gsec^2 \theta / 2V^2$)		
$\therefore x^2 - \frac{2V^2 \tan \theta}{g \sec^2 \theta} x = \frac{-2V^2}{g \sec^2 \theta} y$	(1)	
By completing the square:		
$\therefore x^2 - \frac{2V^2}{g}\sin\theta\cos\theta x + \left(\frac{V^2}{g}\sin\theta\cos\theta\right)^2$	(1) completing the square	
$= \frac{-2V^2\cos^2\theta}{g}y + \frac{V^4}{g^2}\sin^2\theta\cos^2\theta$		
$\therefore \left[x - \frac{V^2}{g} \sin \theta \cos \theta \right]^2 = -\frac{2V^2 \cos^2 x}{g} \left[y - \frac{V^2}{2g} \sin^2 \theta \right]$	(1) putting in the form $(x - h)^2 = 4a(y - k)$.	
Which is of the form $(x - h)^2 = 4a(y - k)$.		
(ii) The focal length is $\frac{1}{4} \times -\frac{2V^2 \cos^2 \theta}{g} = \frac{V^2 \cos \theta}{2g}$	(1) focal length	
Horizontal range when $y = 0$		
$\therefore x \tan \theta - \frac{gx^2 \sec^2 \theta}{2V^2} = 0 \implies x \left(\tan \theta - \frac{gx \sec^2 \theta}{2V^2} \right) = 0$		
\therefore ignore $x = 0$, then $x = \frac{V^2 \sin 2\theta}{g}$. since $\frac{2V^2 \cos \theta}{2g} = \frac{V^2 \sin 2\theta}{g}$	(1) for RANGE	
we get $\cos\theta = \sin 2\theta = 2\sin\theta\cos\theta$; $\cos\theta \neq 0$		
$\therefore \sin\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$	(1) answer	

Solutions to Questions	Marking Scheme	Comments
Question 8 continued		
(b)(i) $\frac{1}{2}(p+q) \ge \sqrt{pq}$.		
RTP ¹ / ₄ $(p + q)^2 - pq \ge 0$ LHS = ¹ / ₄ $(p^2 + 2pq + q^2 - 4pq)$ = ¹ / ₄ $(p - q)^2 \ge 0$	(1) mark	
(ii) $\frac{1}{2}(p+q) \ge \sqrt{pq}$. now \div by $\sqrt{q} > 0$	(1) mark	
$\Rightarrow \frac{1}{2} \left(\frac{p}{\sqrt{q}} + \frac{q}{\sqrt{q}} \right) \ge \sqrt{p}$		
→ $\frac{1}{2}\left(\frac{p}{\sqrt{q}} + \sqrt{q}\right) \ge \sqrt{p}$ as required		
(c)(i) see attached		

James Ruse 2008 MX2 Trial Q8(c) Solution

Q8~(c)(i)

For n = 1: This case is trivial.

For
$$n = 2$$
:
LHS = $\frac{1}{\sqrt{b_2}} B_2 + \left(\frac{1}{\sqrt{b_1}} - \frac{1}{\sqrt{b_2}}\right) B_1$
= $\frac{1}{\sqrt{b_2}} (b_1 + b_2) + \left(\frac{1}{\sqrt{b_1}} - \frac{1}{\sqrt{b_2}}\right) b_1$
= $\frac{b_1}{\sqrt{b_2}} + \sqrt{b_2} + \sqrt{b_1} - \frac{b_1}{\sqrt{b_2}}$
= $\sqrt{b_2}$ as required. Therefore, true for $n = 2$

Assume result holds up to some n = k (strong induction), that is

$$\frac{1}{\sqrt{b_k}} B_k + \left(\frac{1}{\sqrt{b_{k-1}}} - \frac{1}{\sqrt{b_k}}\right) B_{k-1} + \dots + \left(\frac{1}{\sqrt{b_1}} - \frac{1}{\sqrt{b_2}}\right) B_1 = \sum_{r=1}^k \sqrt{b_r}$$

 $\underline{\text{For } n = k+1}$

$$\begin{aligned} \text{LHS} &= \frac{1}{\sqrt{b_{k+1}}} (B_{k+1} + \left(\frac{1}{\sqrt{b_k}} - \frac{1}{\sqrt{b_{k+1}}}\right) B_k + \left(\frac{1}{\sqrt{b_{k-1}}} - \frac{1}{\sqrt{b_k}}\right) B_{k-1} + \dots + \left(\frac{1}{\sqrt{b_1}} - \frac{1}{\sqrt{b_2}}\right) B_1 \\ &= \frac{1}{\sqrt{b_{k+1}}} (B_{k+1} - B_k) + \left(\frac{1}{\sqrt{b_k}} B_k + \left(\frac{1}{\sqrt{b_{k-1}}} - \frac{1}{\sqrt{b_k}}\right) B_{k-1} + \dots + \left(\frac{1}{\sqrt{b_1}} - \frac{1}{\sqrt{b_2}}\right) B_1 \right) \\ &= \frac{1}{\sqrt{b_{k+1}}} (b_{k+1}) + \sum_{r=1}^k \sqrt{b_r} \\ &= \sqrt{b_{k+1}} + \sum_{r=1}^k \sqrt{b_r} \\ &= \sum_{r=1}^{k+1} \sqrt{b_r} \end{aligned}$$

Therefore, since the initial case and two consecutive cases hold, by the principle of Mathematical Induction, the proposition is true \Box .

Q8~(c)(ii)

$$\sum_{r=1}^{n} \frac{a_r}{\sqrt{b_r}} = \frac{1}{\sqrt{b_k}} A_n + \left(\frac{1}{\sqrt{b_{n-1}}} - \frac{1}{\sqrt{b_n}}\right) A_{n-1} + \dots + \left(\frac{1}{\sqrt{b_1}} - \frac{1}{\sqrt{b_2}}\right) A_1$$

$$\leq \frac{1}{\sqrt{b_k}} B_n + \left(\frac{1}{\sqrt{b_{n-1}}} - \frac{1}{\sqrt{b_n}}\right) B_{n-1} + \dots + \left(\frac{1}{\sqrt{b_1}} - \frac{1}{\sqrt{b_2}}\right) B_1 \quad \text{since } A_i \leq B_i \text{ for all } 0 < i \leq n$$

$$= \sum_{r=1}^{n} \sqrt{b_r}$$

Q8~(c)(iii)

Since all $a_r > 0$ and $b_r > 0$ for all $0 < r \le n$, therefore from Q8(b)(ii)

$$\sqrt{a_r} < \frac{1}{2} \left(\frac{a_r}{\sqrt{b_r}} + \sqrt{b_r} \right), \text{ for all } r \text{ where } 0 < r \le n$$

Summing over n terms gives:

$$\begin{split} \sum_{r=1}^{n} \sqrt{a_r} &\leq \sum_{r=1}^{n} \frac{1}{2} \left(\frac{a_r}{\sqrt{b_r}} + \sqrt{b_r} \right) \\ &= \frac{1}{2} \left(\sum_{r=1}^{n} \frac{a_r}{\sqrt{b_r}} \right) + \frac{1}{2} \left(\sum_{r=1}^{n} \sqrt{b_r} \right) \quad \text{(rearranging the sum)} \\ &\leq \frac{1}{2} \left(\sum_{r=1}^{n} \sqrt{b_r} \right) + \frac{1}{2} \left(\sum_{r=1}^{n} \sqrt{b_r} \right) \quad \text{(using the result from Q8(c)(ii))} \\ &= \sum_{r=1}^{n} \sqrt{b_r} \quad \text{as required} \end{split}$$