Student Number:	
Class:	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2015

MATHEMATICS EXTENSION 2

General Instructions:

- Reading Time: 5 minutes.
- Working Time: 3 hours.
- Write in black pen.
- Board approved calculators \& templates may be used
- A Standard Integral Sheet is provided.
- In Question 11-16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 100
Section I: 10 marks
Attempt Question 1-10.
Answer on the Multiple Choice answer sheet provided.
Allow about 15 minutes for this section.

Section II: 90 Marks
Attempt Question 11-16

Answer on lined paper provided. Start a new page for each new question.

- Allow about 2 hours \& 45 minutes for this section.

The answers to all questions are to be returned in separate stapled bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Section 1 (10 Marks)

Attempt questions $1-10$. Use the Multiple Choice answer sheet supplied.

1. A circle with centre (0,2) and radius 3 units is shown below on an Argand diagram.

Which of the following inequalities represents the shaded region?
A) $\quad \operatorname{Im}(z) \leq 0$ and $|z-2| \leq 3$
B) $\quad \operatorname{Re}(\mathrm{z}) \leq 0$ and $|z-2| \leq 3$
C) $\quad \operatorname{Im}(z) \leq 0$ and $|z-2 i| \leq 3$
D) $\quad \operatorname{Re}(\mathrm{z}) \leq 0$ and $|z-2 i| \leq 3$
2. The equation $x^{2}-x y+y^{2}=3$ defines y implicitly in terms of x.

The expression for $\frac{d y}{d x}$ is :
A) $\frac{y-2 x+3}{2 y-x}$
B) $\frac{y-2 x+3}{x-2 y}$
C) $\frac{y-2 x}{2 y-x}$
D) $\frac{y-2 x}{x-2 y}$
3. In how many ways can five letters be chosen from the letters ARRANGE ?
A) 9
B) 10
C) 12
D) 21
4. Consider a polynomial $P(x)$ of degree 3 .

Two real numbers a and b are such that :

$$
\begin{aligned}
& a<b \\
& P(a)>P(b)>0 \\
& P^{\prime}(a)=P^{\prime}(b)=0
\end{aligned}
$$

The polynomial has:
A) 3 real zeroes
B) I real zero γ such that $\gamma<a$
C) 1 real zero γ such that $a<\gamma<b$
D) 1 real zero γ such that $\gamma>b$
5. The graph shows a part of the hyperbola $x=c t, y=c / t$.

Which pair of parametric equations precisely describes the graph as shown?
A) $x=c\left(t^{2}+1\right), y=c /\left(t^{2}+1\right)$
B) $\quad x=c\left(1-t^{2}\right), y=c /\left(1-t^{2}\right)$
C) $x=c \sqrt{1-t^{2}}, y=c / \sqrt{1-t^{2}}$
D) $x=c \sin t, y=c / \sin t$
6. The region enclosed by $y=x^{3}, y=0$ and $x=2$ is rotated about the y-axis to produce a solid. What is the volume of that solid?
A) $\frac{8 \pi}{5}$ units 3
B) $\frac{32 \pi}{5}$ units 3
C) $\frac{64 \pi}{5}$ units 3
D) $\frac{16 \pi}{5}$ units 3
7. The equation $|z-4|+|z+4|=10$ defines an ellipse. What is the length of the semi minor axis?
A) $2 \frac{2}{5}$
B) 3
C) 4
D) 5
8. A particle is moving in a circle of radius 80 cm with a linear speed of $4 \pi \mathrm{~m} / \mathrm{s}$. It has a constant angular speed (in revolutions per minute) of :
A) $3 / 8 \mathrm{rpm}$
B) $3 / 2 \mathrm{rpm}$
C) $37 \frac{1}{2} \mathrm{rpm}$
D) 150 rpm
9. Which of the diagrams below best represents the graph of $y=\sin ^{-1}(\sin x)$?

10. A particle of mass m moves in a straight line under the action of a resultant force F where $F=F(x)$. Given that the velocity v is v_{0} when the position x is x_{0}, and that v is v_{1} when x is x_{1}, it follows that $\left|v_{1}\right|=$
A) $\sqrt{\frac{2}{m}} \int_{x_{0}}^{x_{1}} \sqrt{F(x)} d x+v_{0}$
B) $\sqrt{2} \int_{\sqrt{x_{0}}}^{\sqrt{x_{1}}} F(x) d x+v_{0}$
C) $\sqrt{\frac{2}{m} \int_{x_{0}}^{x_{1}} \sqrt{F(x)} d x+\left(v_{0}\right)^{2}}$
D) $\sqrt{\frac{2}{m} \int_{x_{0}}^{x_{1}}\left\{F(x)+\left(v_{0}\right)^{2}\right\} d x}$

End of Section 1

Section 2 (90 Marks)

Attempt all questions 11-16. Start each question on a new sheet of paper.
QUESTION 11 (Start a new sheet of paper)
a) Find $\int \frac{1}{\sqrt{5+4 x-x^{2}}} d x$
b) i) Find the real numbers a and b such that

$$
\frac{3 x^{2}-3 x+7}{(x-2)\left(x^{2}+9\right)} \equiv \frac{a}{(x-2)}+\frac{b x+1}{\left(x^{2}+9\right)}
$$

ii) Find $\int \frac{3 x^{2}-3 x+7}{(x-2)\left(x^{2}+9\right)} d x$
c) i) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
ii) Hence find the value of $\quad \int_{0}^{2} x(2-x)^{5} d x$.
d) Consider the equation $z^{2}+a z+(2+i)=0$.
i) Find the complex number a, given that i is a root of the equation.
ii) Also write down the second root of the equation.
e) In the Argand diagram, $O A B C$ is a rectangle, where $3 O C=O A$. The vertex at A represents the complex number ω.
i) What complex number corresponds to the vertex C ?
ii) What complex number corresponds to the point of intersection D of the diagonals $O B$ and $A C$?

QUESTION 12 (Start a new sheet of paper)
a) The diagram below shows the graph of $y=f(x)$.

Draw separate one-third page sketches of the following graphs:
i) $y=\frac{1}{f(x)} \quad 2$
ii) $\quad y^{2}=f(x)$
iii) $y=(f(x))^{2}$
b) i) The polynomial $P(x)=x^{4}-6 x^{3}+13 x^{2}-a x-b$ has two double zeroes. Find a and b.
ii) Hence determine the equation of the line which touches the curve $y=x^{4}-6 x^{3}+13 x^{2}$ at two distinct points.
c) The base of a solid S is the region in the xy plane enclosed by the parabola $y^{2}=4 x$ and the line $x=4$. Each cross section perpendicular to the x axis is a semi-ellipse with the major axis in the xy plane and with the major and minor axes in the ratio a:b.

i) Assuming that the area of an ellipse with semi-axes A and B is $\pi A B$, show that the area of the semi-ellipse shown at $x=h$ is $2 \pi h b / a$.
ii) Find the volume of the solid S.
iii) The solid T is obtained by rotating the region enclosed by the parabola and the line $x=4$ about the x axis. Using (with a little care) your result from (ii), or otherwise, find the volume of T.

QUESTION 13 (Start a new sheet of paper)
a)

In the diagram above $A B C D$ is a cyclic quadrilateral whose diagonals are perpendicular and intersect at Q. Let M be the midpoint of $B C$ and suppose that $M Q$ produced meets $A D$ at N. Let $\angle Q B C=\alpha$.
i) Explain why $B M=Q M$.
ii) Prove that $M N \perp A D$.
b) At a point on a railway line where the radius of curvature is 200 m , the track is designed so that a train travelling at $50 \mathrm{~km} / \mathrm{hr}$ exerts no lateral force on the track. What lateral force would a stationary locomotive, of mass 40 tonnes, exert on the track at this point? (Take g to be $9.81 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.)
c) The diagram shows the side view of a vertical cylindrical water cooler of constant cross sectional area A. Water drains through a hole at the bottom of the cooler. It is known that the volume of water decreases at a rate given by $\frac{d V}{d t}=-k \sqrt{y} \quad$ where k is a positive constant and y is the depth of the water. Initially the cooler is full and it would take T seconds to drain completely.

i) Show that $\frac{d y}{d t}=-\frac{k}{A} \sqrt{y}$
ii) Show that $y=y_{0}\left(1-\frac{t}{T}\right)^{2}$ for $0 \leq t \leq T$.
iii) If it takes 10 seconds for half the water to drain, evaluate T.

QUESTION 14 (Start a new sheet of paper)
a) A particle moves in Simple Harmonic Motion , the period being 2 seconds and the amplitude 3 metres. Find the maximum speed and the maximum acceleration during the motion.
b) i) Use de Moivre's Theorem to show that

$$
\begin{equation*}
(\cot \theta+i)^{n}+(\cot \theta-i)^{n}=\frac{2 \cos n \theta}{\sin ^{n} \theta} \tag{2}
\end{equation*}
$$

ii) Show that the equation $(x+i)^{5}+(x-i)^{5}=0$ has roots $0, \pm \cot \frac{\pi}{10}, \pm \cot \frac{3 \pi}{10}$.
iii) Hence show that the equation $x^{4}-10 x^{2}+5=0$ has roots $\pm \cot \frac{\pi}{10}, \pm \cot \frac{3 \pi}{10}$.
iv) Hence show that $\cot \frac{\pi}{10}=\sqrt{5+2 \sqrt{5}}$
c) A ball is projected so as to just clear two walls. The first wall is at a height b at a horizontal distance a from the point of projection and the second is of height a at a horizontal distance b from the point of projection. $(b>a)$

It may be assumed that, if the ball is projected from the origin with velocity V at an angle α to the horizontal (x axis), then the equation of the path is given by

$$
y=x \tan \alpha-\frac{g x^{2} \sec ^{2} \alpha}{2 V^{2}}
$$

i) Show that the range on the horizontal plane is $\frac{a^{2}+a b+b^{2}}{a+b}$.
ii) Show that the angle of projection must exceed $\tan ^{-1} 3$.

QUESTION 15 (Start a new sheet of paper)
a) The diagram shows a segment of the circle $x^{2}+y^{2}=r^{2}$ which is rotated about the y axis to form a collar. This collar is thus a sphere with a symmetrical hole through it. Let the hole be of height $2 h$ as shown.

Use the method of cylindrical shells to show that the volume of the material in the collar is given by the integral

$$
4 \pi \int_{\sqrt{r^{2}-h^{2}}}^{r} x \sqrt{r^{2}-x^{2}} d x
$$

Evaluate the integral to show that the volume of material in the collar is
a function of h only and independent of r.

b) Consider the equation $z^{5}+32=0$.
i) Write down the roots of this equation in modulus argument form.
ii) Illustrate these roots on an Argand diagram.
iii) If the points A, B, C, D and E cyclically represent these roots, find the area of triangle $A C D$. (Give your answer to 2 decimal places)

Question 15 (continued)

c) i) Consider the diagram below. The tangent at $T(2 \mathrm{t}, 2 / \mathrm{t})$ to the rectangular hyperbola $x y=4$ meets the ellipse $x^{2}+4 y^{2}=4$ at P and Q. The tangents to the ellipse at P and Q intersect at M. Find the equation of the locus of M. (You may use standard forms of tangents and such things without proof.)
ii) Describe briefly the locus and any restrictions that it may have.

QUESTION 16 (Start a new sheet of paper)

a) A box contains n jellybeans, some white and some black. Alan and Betty take turns picking a jellybean from the box, without looking, until the box is empty.
Alan picks first.
i) If there is 1 black and $n-1$ white jellybeans and n is odd, find the probability that Alan picks the black jellybean.
ii) If there are 2 black and $n-2$ white jellybeans and n is even, find the probability that Alan is the first to pick a black jellybean.
iii) If there are 2 black and $n-2$ white jellybeans and n is odd, find the probability that Alan is the first to pick a black jellybean.

Question 16 (continued)

b) Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
i) Show that lines with equations $y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$ are always tangent to the ellipse for any real value of m.
ii) From any point external to the ellipse, two tangents may be drawn. By considering the above as a quadratic equation in m, or otherwise, show that the locus of points where the two tangents are perpendicular to each other is a circle with equation $x^{2}+y^{2}=a^{2}+b^{2}$.
iii) Show that the area of the ellipse's circumscribing rectangle of which $y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$ are two parallel sides, is given by

$$
A=\frac{4}{\left(1+m^{2}\right)} \sqrt{\left(a^{2}+m^{2} b^{2}\right)\left(a^{2} m^{2}+b^{2}\right)}
$$

You are given that this formula for the area can be rearranged to give the following form for the square of the area: $\quad A^{2}=16 a^{2} b^{2}+\underline{16\left(a^{2}-b^{2}\right)^{2}}$

$$
\left(m+\frac{1}{m}\right)^{2}
$$

iv) Show that, for any $m>0, m+\frac{1}{m} \geq 2$.
v) Hence, or otherwise, find the maximum and minimum areas of rectangles which circumscribe the ellipse.

JRAHS EXTENSION 2 MATHS TRIAL 2015 (SOLUTIONS)

2/ $2 x-y-x \frac{d y}{d x}+2 y \frac{d y}{d x}=0$

$$
\frac{d y}{d x}(2 y-x)=y-2 x
$$

$$
2 R \text { of } \frac{1}{12 w a y}
$$

6.) $\frac{8-t_{i}^{y=x^{3}}}{\frac{t_{1}}{2}}$

$$
\begin{aligned}
& \pi, 2^{2} 8-\int_{0}^{8} \pi x^{2} d y \\
& =\pi\left(32-\int_{0}^{8} y^{y / 3} d y\right) \\
& =\pi\left(32-\left[\frac{3 y^{5 / 3}}{5}\right]_{0}^{3}\right) \\
& =\pi\left(32-32 \times \frac{3}{5}\right) \\
& =64 \pi / 5
\end{aligned}
$$

8%

$$
\begin{aligned}
0.8 \omega & =4 \pi(\mathrm{~m} / \mathrm{sec}) \\
\omega & =4 \pi / 0.8=5 \pi(\mathrm{rad} / \mathrm{sec}) \\
& =300 \pi \mathrm{rad} / \mathrm{min} \\
& =150 \mathrm{rev} / \mathrm{min} .
\end{aligned}
$$

io.

$$
\begin{aligned}
F(x) & =m \ddot{x} \\
& =m \frac{d}{d x}\left(v^{2} / 2\right) \\
\int_{x_{0}}^{x_{1}} F(x) d x & =m\left[\frac{v^{2}}{2}\right]_{v_{0}}^{v_{1}} \\
\frac{2}{m} \int_{x_{0}}^{x_{1}} F(x) d x & =v_{1}^{2}-v_{0}^{2} \\
v_{1}^{2} & =\frac{2}{m} \int_{x_{0}}^{x} F(x) d x+v_{0}^{2} \\
\left|v_{1}\right| & =\sqrt{\frac{2}{m} \int_{x_{0}}^{x_{1}} F(x) d x+v_{0}^{2}}
\end{aligned}
$$

Question 11
a) $\int \frac{d x}{\sqrt{9-(x-2)^{2}}}=\sin ^{-1} \frac{(x-2)}{3}+k$
b)

$$
\begin{gathered}
a\left(x^{2}+9\right)+(b x+1)(x-2) \\
\equiv 3 x^{2}-3 x+7
\end{gathered}
$$

Set $x=2$

$$
13 a=13 \quad a=1
$$

Coif of $x^{2}: a+b=3 \therefore b=2$

$$
\text { (ii) } \int \frac{3 x^{2}-3 x+7}{(x-2)\left(x^{2}+9\right)}=\int \frac{d x}{(x-2)}+\int \frac{2 x+1}{x^{2}+9} d x
$$

$$
=\int \frac{1}{(x-2)} d x+\int \frac{2 x d x}{x^{2}+9}+\int \frac{d x}{x^{2}+9}
$$

$$
=\ln |x-2|+\ln \left(x^{2}+9\right)+\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)+k
$$

c) Let $I=\int_{0}^{q} f(x) d x$.

Set $u=a-x \rightarrow x=a-u$

$$
" d u=-d x "
$$

When $x=a, u=0$

$$
x=0, u=a
$$

$I=\int_{a}^{0} f(a-u)-d u$
$=-\int f(a-u) d u$

$=\int_{0}^{a} f(a-x) d x$
(Rummy variable)
ii)

$$
\begin{aligned}
I & =\int_{0}^{2} x(2-x)^{5} d x \\
& =\int_{0}^{2}(2-x) x^{5} d x \quad(u \operatorname{sing}(i)) \\
& =\int_{0}^{2} 2 x^{5}-x^{6} d x \\
& =\left[\frac{x^{6}}{3}-\frac{x^{7}}{7}\right]_{t}^{2}=\frac{64}{3}-\frac{128}{7} \\
& =\frac{7 \times 64-3 \times 128}{21}=\frac{64}{21}
\end{aligned}
$$

d) By factor thin:

$$
\begin{aligned}
(i)^{2}+a(i)+2+i & =0 \\
i(a+1) & =-1 \\
a+1 & =-1 / i=i
\end{aligned}
$$

ii) Let other root be β

Sum of roots $=-a=\beta+i$

$$
\begin{aligned}
\therefore(1-i) & =\beta+i \\
\beta & =(1-i)-i \\
& =1-2 i
\end{aligned}
$$

e) i) Rotation \equiv Muttiply by i The length is shortened by a factor of 3 .
$\therefore C$ represents ics/3
ii) Diagonals bisect each other: $|O D|=-i / 2|O B|$

$$
\begin{aligned}
& O B=O A+A B=O A+O C \\
& O D=\frac{1}{2}\left(\omega+\frac{i \omega}{3}\right)=\omega\left(\frac{1}{2}+\frac{i}{6}\right)
\end{aligned}
$$

Question 12
a) i)

ii)

iii)

Question 12 (cont)
b) i) Let the zeros of $P(x)$ be $\alpha, \alpha, \beta, \beta$.

$$
\begin{align*}
2(\alpha+\beta) & =6 \quad \text { (sum of root }) \\
\alpha+\beta & =3 \tag{1}
\end{align*} \quad \text { (1) } \quad l
$$

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+4 \alpha \beta & =13 \\
(\alpha+\beta)^{2}+2 \alpha \beta & =13 \\
2 \alpha \beta & =4 \\
\alpha \beta \beta & =2
\end{aligned}
$$

Now $b=-\alpha^{2} \beta^{2} \quad$ (Product I root)

$$
\begin{aligned}
a & =2 \alpha^{2} \beta+2 \beta^{2} \alpha(\text { sum } \eta \operatorname{rot} 3 \\
& =2 \alpha \beta \alpha+\beta) \\
a & =12
\end{aligned}
$$

ii) Two touching points is the above sienaine it we solve $x^{4}-6 x^{3}+13 x^{2}$ against $a x+b$
\therefore Line is $y=12 x-4$

If $x=h, y= \pm 2 \sqrt{h}$
Length of major aux is is $4 \sqrt{h}$.
\therefore Length of nimor axis is $4 b \sqrt{h} / a$ Semi Major, Semi Minor are $2 \sqrt{h}, 2 b \sqrt{h} / a$ Area of Full Ellipse $=4 \pi \mathrm{hb} / a$ Area of Half Ellipse sham $=2 \pi \mathrm{hb} / \mathrm{a}$
ii."

$$
\begin{aligned}
\delta V & \doteq \frac{2 \pi x b}{a} \delta x \\
V & =\lim _{\delta x \rightarrow 0} \sum_{x=0}^{4} \frac{2 \pi x b}{a} \delta x \\
& =\frac{2 \pi b}{a} \int_{0}^{4} x d x=\frac{2 \pi b}{a}\left[\frac{x^{2}}{2}\right]_{0}^{4} \\
& =16 \pi b / a u^{3}
\end{aligned}
$$

iii) This will generate circles rather than semi ellipses Hence ratio b/a $=1$. But it will include two halm

$$
\therefore V \alpha=32 \pi i n t^{3}
$$

Question 13
a) i) $\angle B Q C$ is right angle (liven that diagonal perpendicular) $\therefore \triangle B Q C$ is an angle in a semicircle with $B C$ as diameter and M as the circle centre. MB and QM are radii of this circe Thus equal is $B M=Q M$
ii) $\therefore \angle B Q M=\alpha$ (Equal angles opposite equal sides in $\triangle B M C$)

$\therefore \angle N Q D=\alpha$ (Vertically appoint angles are equal
Now let $\angle A C B=\beta$
Then $\angle A D Q=\beta$ (Angles standing on the same ar are equal
I $\triangle B Q C, \quad \alpha+\beta+90^{\circ}=180^{\circ}$
In $\triangle Q N D, \alpha+\beta+\angle Q N D=180^{\circ}$ (angle sum of triangle is 180°)

$$
\begin{aligned}
& \angle \angle Q N D=90^{\circ} \\
& \text { ie, } M N \perp A D
\end{aligned}
$$

b) Let angle δ rail inclination be α. There is wi lateral force
 at the design speed, $50 \mathrm{~km} / \mathrm{hr}$

$$
\begin{equation*}
50 \mathrm{k} / \mathrm{h}=\frac{50000}{3600} \mathrm{~m} / \mathrm{s}=13 / \mathrm{m} / \mathrm{s} \tag{1}
\end{equation*}
$$

Resolving vertically $R \operatorname{cis} \alpha=m g$
(2) - (1) $\quad \tan \alpha$ anally $R \sin \alpha=m v / r$
(2) \div (1) $\quad \tan \alpha=\frac{v^{2}}{r g}=\frac{(133 / 1)^{2}}{200 \times 9.81}(=0.6983$

No movement or acceleration
Rescue vertically $N \cos \alpha+T \sin \alpha=m g$ hoijoutally $N \sin \alpha-T \cos \alpha=0$

$$
\begin{aligned}
& T \frac{\cos ^{2} \alpha}{\sin \alpha}+T \sin \alpha=m g=T \cot \alpha \\
& T\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=m g \sin \alpha
\end{aligned}
$$

\therefore With $m=40000, \sin \alpha=0.09785$

$$
T=38396 \mathrm{~N}=38.4 \mathrm{kN} \quad(\text { to } 3 \mathrm{sf})
$$

Question 13 (cont)
c) i)

$$
\begin{aligned}
& \text { i) } \quad \begin{aligned}
V & =A y \\
\frac{d V}{d t} & =A \frac{d y}{d t} \\
\therefore \frac{d y}{d t} & =\frac{1}{A} \frac{d V}{d t}=\frac{1}{A}(-k \sqrt{y})=-\frac{k \sqrt{y}}{A}
\end{aligned}
\end{aligned}
$$

ii.

$$
\begin{aligned}
\frac{d t}{d y} & =\frac{-A}{k} y^{-1 / 2} \\
t & =\frac{-2 A y^{1 / 2}}{k}+c
\end{aligned}
$$

When $t=T, y=0 \quad \therefore c=T$

$$
\therefore t=\frac{-2 A \sqrt{y}}{k}+T
$$

When $t=0, y=y_{0}$.

$$
\therefore T=\frac{2 A \sqrt{y_{0}}}{k} \Longrightarrow \frac{A}{k}=\frac{T}{2 \sqrt{y_{0}}}
$$

Sit this into

$$
\begin{aligned}
& t=-\frac{2 T}{2 \sqrt{y_{0}}} \sqrt{y}+T \\
& \frac{t}{T}=1-\frac{\sqrt{y}}{\sqrt{y_{0}}} \\
& \sqrt{\frac{y}{y_{0}}}=1-\frac{t}{T} \\
& \frac{y}{y_{0}}=\left(1-\frac{t}{T}\right)^{2} \\
& y=y_{0}\left(1-\frac{t}{T}\right)^{2}
\end{aligned}
$$

iii) $t=10$ when $y=\frac{y}{2}, \therefore \frac{1}{2}=\left(1-\frac{10}{T}\right)^{2} \Rightarrow 1-\frac{10}{T}=\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
\Rightarrow \frac{10}{T}=1-\frac{1}{\sqrt{2}}=\frac{\sqrt{2}-1}{\sqrt{2}} \Rightarrow T=\frac{10 \sqrt{2}}{\sqrt{2}-1} \sec & =10 \sqrt{2}(\sqrt{2}+1) \sec \\
& =20+10 \sqrt{2} \sec
\end{aligned}
$$

Question 14 (cont)
iii)

$$
\begin{aligned}
& (x+i)^{5}+(x-i)^{5}=0 \\
& \left(x^{5}+{ }^{5} C_{1} x^{4}(i)+C_{2} x^{3}(i)^{2}+C_{3} x^{2}(i)^{3}+C_{4} x(i)^{4}+i^{5}\right) \\
& \quad+\left(x^{5}+C_{1} x^{4}(-i)+C_{2} x^{3}(-i)^{2}+C_{3} x^{2}(-i)^{3}+C_{4} x(-i)^{4}+(-i)^{5}\right)=0
\end{aligned}
$$

The imaginary tens cancel

$$
2 x^{5}+2^{5} C_{2} x^{3} i^{2}+2^{5} C_{4} x i^{4}=0
$$

But ${ }^{5} C_{2}=10,{ }^{5} C_{4}=5, i^{2}=-1 \quad \therefore x^{5}-10 x^{3}+5 x=0$ is the equivalat

$$
x\left(x^{4}-10 x^{2}+5\right)=0
$$ equation

But the 0 root is quien by x factor.

$$
\therefore \text { rots of } x^{4}-10 x^{2}+5=0 \text { are } \pm \cos \pi / 10 \pm \cot \operatorname{l}^{3}
$$

iv) Sole: $\quad x^{2}=\frac{10 \pm \sqrt{100-20}}{2}=5 \pm 2 \sqrt{5}$
\therefore Four roots are $\pm \sqrt{5 \pm 2 \sqrt{5}}$
But the positive rots are $\cot \pi / 10, \cot 3 \pi / 10$ The largest positive root is cot $\pi / 10$.

$$
\therefore \cot \pi / 10=\sqrt{5+2 \sqrt{5}}
$$

c)

The point (a, b) and (b, a) lice on the path
$\therefore b=a \tan \alpha-\frac{g a^{2} \sec ^{2} \alpha}{2 v^{2}}$ (1) to be solved for

$$
\left.a=b \tan \alpha-\frac{g b^{2} \sec ^{2} \alpha}{2 v^{2}} \theta\right\}
$$ V and α.

Question 14
a)

$$
\begin{aligned}
& \ddot{x}=-n^{2} x \quad\left(2=\frac{2 \pi}{n} \rightarrow n=\pi\right) \\
& \therefore \frac{d}{d x}\left(\frac{v^{2}}{2}\right)=-\pi^{2} x \\
& \frac{v^{2}}{2}=-\frac{\pi^{2} x^{2}}{2}+k
\end{aligned}
$$

when $x=3, v=0 \quad \therefore k=9 \pi / 2$

$$
\therefore v^{2}=\left(9-x^{2}\right) \pi^{2}
$$

Max speed when $x=0 \quad|v|=3 \pi$ max
Max acc at $x=-3 \quad \ddot{x}_{\max }=3 \pi^{2} \mathrm{~m} / \mathrm{sec}^{2}$
b) i)

$$
\text { 1) } \begin{aligned}
(\cot \theta+i)^{n}+(\cot \theta-i)^{n} & =\left(\frac{\cos \theta+i \sin \theta}{\sin \theta}\right)^{n}+\left(\frac{\cos \theta-i \sin \theta}{\sin \theta}\right)^{n} \\
& =\frac{1}{\sin ^{n} \theta}\left\{(\cos \theta+i \sin \theta)^{n}+(\cos (-\theta)+i \sin (-\theta))^{n}\right. \\
& =\frac{1}{\sin ^{n} \theta}(\cos n \theta+i \sin n \theta+\cos (-n \theta)+i \sin (-i \\
& =\frac{1}{\sin ^{n} \theta}(\cos n \theta+i \sin n \theta+\cos n \theta-i \sin n \theta) \\
& =\frac{2 \cos n \theta}{\sin ^{n} \theta}
\end{aligned}
$$

ii) Put $n=5, x=\cot \theta$ whee θ are rote of $\frac{2 \cos 5 \theta}{\sin ^{5} \theta}=0$ ie

$$
\begin{aligned}
\cos 5 \theta= & 0 \\
5 \theta= & 2 k \pi \pm \pi / 2 \quad(\text { General solution for } \cos) \\
= & \pm \frac{\pi}{2} \quad(k=0), \\
& 2 \pi \pm \pi / 2 \quad(k=1) \text { or }-2 \pi \pm \pi / 2 \quad(k=-1) \\
\theta= & \pm \pi / 10, \frac{5 \pi}{10}, \frac{3 \pi}{10},-\frac{5 \pi}{10},-\frac{3 \pi}{10} .
\end{aligned}
$$

The roots of equation are $\cot (\pi / 2), \cot (\pm \pi / 10), \cot (\pm 3 \pi / 10)$ ($\cot (-\pi / 2)$ is same as $\cot (\pi / 2)$
ie since $\cot (-\theta)=\cot \theta$, roots are $0, \pm \cos \pi / 10, \pm \cot 3 \pi / 1$

Questian 14 (cont)
(1) $\times b^{2} \quad b^{3}=a b^{2} \tan \alpha-\frac{g a^{2} b^{2} \sec ^{2} \alpha}{2 v^{2}}$
(2) $\times a^{2}$

$$
\begin{equation*}
a^{3}=a^{2} b \tan \alpha-\frac{g a^{2} b^{2} \sec ^{2} \alpha}{2 v^{2}} \tag{3}
\end{equation*}
$$

(3) (4)

$$
\begin{align*}
b^{3}-a^{3} & =\tan \alpha a b(b-a) \tag{4}\\
\therefore \tan \alpha & =\frac{b^{3}-a^{3}}{a b(b-a)}=\frac{b^{2}+a b+a^{2}}{a b} \tag{5}
\end{align*}
$$

(1) $\times b \quad b^{2}=a b \tan \alpha-\frac{g a^{2} b \sec ^{2} \alpha}{2 v^{2}}$
(2) $\times a \quad a^{2}=a b \tan \alpha-\frac{g a b^{2} \sec ^{2} \alpha}{2 v^{2}}$
(5) - (6)

$$
\begin{align*}
& b^{2}-a^{2}=\frac{g \sec ^{2} \alpha}{2 v^{2}} \cdot a b(b-a) \tag{6}\\
& \frac{2 v^{2}}{g \sec ^{2} x}=\frac{a b}{a+b}
\end{align*}
$$

If the range is r, then ($r, 0$) lies on the curve

$$
\therefore 0=r \tan \alpha-\frac{g r^{2} \sec ^{2} \alpha}{2 v^{2}}
$$

Rejectio the $r=0$, sicution

$$
\begin{aligned}
\frac{\operatorname{gr} \sec ^{2} \alpha}{2 v^{2}} & =\tan \alpha \\
r & =\tan \alpha \frac{2 v^{2}}{g \sec ^{2} \alpha}=\frac{b^{2}+a b+a^{2}}{a b} \frac{a b}{a+b}=\frac{b^{2}+a b+a^{2}}{a+b}
\end{aligned}
$$

ii) From * $\tan \alpha=\frac{b^{2}+a b+a^{2}}{a b}$

But since $(a-b)^{2}>0 \quad$ (since $b \neq a$, give)

$$
\begin{aligned}
& a^{2}+b^{2}-2 a b>0 \\
& a^{2}+b^{2}>2 a b \\
& \therefore \tan \alpha> \frac{2 a b+a b}{a b} \\
& \tan \alpha>3
\end{aligned}
$$

$\alpha>\tan ^{-1}(3) \quad$ Since α is acente and $\tan ^{-1}$ is ain increosing function.

Question 15

$$
\begin{aligned}
\delta v & =4 \pi x y \delta x \\
\therefore . v & =\lim _{\delta x \rightarrow 0} \sum_{x<d} 4 \pi x y \delta x \\
& =4 \pi \int_{\alpha}^{r} x y d x
\end{aligned}
$$ in diagram

But, by Pythagoras, $d=\sqrt{r^{2}-h^{2}}, y=\sqrt{r^{2}-x^{2}}$

$$
\begin{aligned}
& V=4 \pi \int_{\sqrt{r^{2}-h^{2}}}^{r} x \sqrt{r^{2}-x^{2}} d x \\
& =\left[(4 \pi)\left(\frac{-1}{3}\right)\left(r^{2}-x^{2}\right)^{3 / 2}\right]_{\sqrt{r^{2}-h^{2}}} \\
& =\frac{4 \pi}{3}\left\{-0+\left(r^{2}-\left(r^{2}-h^{2}\right)^{3}\right\}^{3}=\frac{4 \pi h^{3}}{3} \quad\right. \text { (independent on) }
\end{aligned}
$$

b) i) $\quad z^{5}=2^{5}(-1) \quad \operatorname{Rot}$ are $2(\cos \pi / 5+i \sin \pi / 5)$ c

$$
\begin{aligned}
& 2(\cos 3 / / 5+i \sin 3 \pi / 5) \\
& 2(\cos \pi+i \sin \pi)=-2 A \\
& 2(\cos (-3 \pi)+i \sin (-3 / 5)) \\
& 2(\cos (-1 / 3)+i \sin (-\pi / 3))
\end{aligned}
$$

Question 15 (cont)

$$
\begin{aligned}
& \text { Total area }=\triangle \operatorname{coD}+\triangle A O C+\triangle A O D \\
& =\frac{1}{2} \times 2 \times 2 \sin \frac{2 \pi}{5}+2\left(\frac{1}{2} \times 2 \times 2 \sin \frac{4 \pi}{5}\right) \\
& =2 \sin \frac{2 \pi}{5}+4 \sin \frac{4 \pi}{5} \\
& =1.902113+2.35114 \\
& =4.25 u^{2}(\text { to } 2 D P)
\end{aligned}
$$

c)

Let M le the point (x, y)
The chord of contact from M to the ellipse is given by

$$
\begin{equation*}
x X+4 y Y=4 \tag{1}
\end{equation*}
$$

The tangent from T has equation

$$
\begin{equation*}
x\left(\frac{2}{t}\right)+2 t y=8 \tag{2}
\end{equation*}
$$

or $\frac{x}{t}+t_{y}=4$

(1) and (2) are the same line
$\left.\therefore \therefore \quad \begin{array}{rl}x & =1 / t \\ y & =t / 4\end{array}\right\}$ Eliminate $t \Rightarrow x y=\frac{1}{4}$. Loos $1 M$ is $x y=\frac{1}{4}$
ii) This is a rectangular hypebola, centred on origin. gt will be "tighter" to the axes.
Chords of contact canst be draw in from inside ellipse. The curve crosses ellipse when $x^{2}+\frac{4}{16 x^{2}}=4$
Restriction on $\left.x: \quad x>\sqrt{2+\frac{\sqrt{15}}{2}}, \begin{array}{rl}0<x<\sqrt{2-\frac{\sqrt{15}}{2}}\end{array}\right\}$

$$
\begin{aligned}
& 4 x^{4}-16 x^{2}+1=0 \\
& x^{2}=(16 \pm \sqrt{240}) / 8 \\
&=2 \pm \frac{\sqrt{15}}{2}
\end{aligned}
$$

Question 16
a) Alan picks first:

$$
\begin{aligned}
& \text { Prob. } 0 \text { success }=\frac{1}{n}+\frac{(n-1)(n-2)}{n} \frac{1}{(n-1)}+\frac{(n-1)}{n} \frac{(n-2)(n-3)(n-4)}{(n-1))} \frac{1}{n-2)(n-3)}+\cdots \\
& \text { dst pion Afaik foul Apueb }+\frac{(n-1)(n-2)}{n(n-1)}-\frac{4}{5} \cdot \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2} \text {, }
\end{aligned}
$$

Each term is $1 / n$, and there are $(n+1) / 2$ terms

$$
\therefore P_{r o b}=\frac{n+1}{2 n}
$$

ii)

$$
\begin{aligned}
\text { Prob } & =\frac{2}{n}+\frac{n-2}{n} \frac{n-3}{n-1} \frac{2}{n-2}+\ldots+\frac{(n-2)}{n} \frac{(n-3)}{(n-1)}-\frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \frac{2}{2} \\
& =\frac{2}{n}\left(\frac{n-1}{n-1}+\frac{n-3}{n-1}+\frac{n-5}{n-1}+\cdots+\frac{1}{n-1}\right) \\
& =\frac{2}{n(n-1)}(1+3+5+\ldots+(n-1)) \\
& =\frac{2}{n(n-1)} \frac{n}{4}\left(2+\left(\frac{n}{2}-1\right)^{2}\right)=\frac{2}{n(n-1)} \frac{n^{2}}{4} \\
& =\frac{n}{2(n-1)}
\end{aligned}
$$

$$
\text { iii) } \begin{aligned}
\text { Prot } & =\frac{2}{n}+\frac{(n-2)}{n}(n-3) \frac{2}{(n-1)}+\cdots+\frac{(n-2)}{n}(n-3) \\
& =\frac{2}{n}\left(\frac{n-1}{n-1}+\frac{5}{7} \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3}\right. \\
& =\frac{2}{n(n-1)}\left(2+4+6+\frac{2}{n-1}\right) \\
& \left.=\frac{2}{n(n-1)} \frac{(n-1)}{4}(4+((n-1))-1) 2\right) \\
& =\frac{2}{n(n-1)} \frac{(n-1)(n+1)}{4} \\
& =\frac{n+1}{2 n}
\end{aligned}
$$

Question 16 (cont)
b) i) Solve $y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$ against $\frac{x^{2}}{a^{2}} \frac{y^{2}}{b^{2}}=1$

Sub for y to get quadratic in x.

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{\left(m x \pm \sqrt{a^{2} m^{2}+b^{2}}\right)^{2}}{b^{2}}=1 \\
& \frac{x^{2}}{a^{2}}+\frac{m^{2} x^{2}+a^{2} m^{2}+b^{2} \pm 2 m x \sqrt{m^{2} a^{2}+b^{2}}}{b^{2}}-1=0 \\
& b^{2} x^{2}+a^{2} m^{2} x^{2}+a^{4} m^{2}+a^{2} b^{2} \pm 2 a^{2} m \sqrt{m^{2} a^{2}+b^{2}} x-a^{2} b^{2}=0 \\
& x^{2}\left(a^{2} m^{2}+b^{2}\right) \pm 2 a^{2} m \sqrt{m^{2} a^{2}+b^{2} x}+a^{4} m^{2}=0 \\
& \left(x \sqrt{a^{2} m^{2}+b^{2}} \pm a^{2} m\right)^{2}=0
\end{aligned}
$$

As this always gives a double root, the lines $\dot{y}=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$ are always tangats to the ellipse.
ii) Let $p(x, y)$ be external to the ellipse Then the gradients of the 2 tangents from P are given by

$$
\begin{gathered}
Y=m x \pm \sqrt{a^{2} m^{2}+b^{2}} \\
y-m X=\sqrt{a^{2} m^{2}+b^{2}} \\
y^{2}+m^{2} x^{2}-2 m x Y=a^{2} m^{2}+b^{2} \\
m^{2}\left(x^{2}-a^{2}\right)-2 m x Y+\left(y^{2}-b^{2}\right)=0
\end{gathered}
$$

If these lines are perpendicular, the two roots m_{1}, m_{2} mit grue $m_{1} m_{2}=-1$. This is the product of the roots.

$$
\therefore \begin{aligned}
\frac{y^{2}-b^{2}}{x^{2}-a^{2}} & =-1 \\
y^{2}-b^{2} & =-x^{2}+a^{2} \\
x^{2}+y^{2} & =a^{2}+b^{2}
\end{aligned}
$$

Thus the louses of points where the two tangents are perpendicular is $x^{2}+y^{2}=a^{2}+b^{2}$, a curdle.

Question 16 (cont)
b) iii)
(1) $A C$ is line $y=m x+\sqrt{a^{2} m^{2}+b^{2}}$
(2) FH b line $y=m x-\sqrt{a^{2} m+b^{2}}$
(3) $D E$ is line $y=m x$.
(4) $C H$ is lin $y=\frac{-x}{m}+\sqrt{\frac{a^{2}}{m}+b^{2}}$
(B) $A F$ is the $y=-\frac{x}{m}-\sqrt{\frac{a^{2}}{m^{2}}+b^{2}}$
(6) $B G$ is line $y=-\frac{x}{m}$

To find length $C A$, solve (1) agganist the arde.

$$
\begin{aligned}
& x^{2}+\left(m x+\sqrt{a^{2} m^{2}+b^{2}}\right)^{2}=a^{2}+b^{2} \\
& x^{2}\left(1+m^{2}\right)+2 m x \sqrt{a^{2} m^{2}+b^{2}}+a^{2} m^{2}-a^{2}=0
\end{aligned}
$$

If roots are x_{1}, x_{2} then $\left(x_{1}-x_{2}\right)^{2}=\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}$

$$
\begin{aligned}
& =\frac{4 m^{2}\left(a^{2} m^{2}+b^{2}\right)}{\left(1+m^{2}\right)^{2}}-\frac{4 a^{2}\left(m^{2}-1\right)}{\left(1+m^{2}\right)} \\
& =\frac{4 m^{2}\left(a^{2} m^{2}+b^{2}\right)-4 a^{2}\left(m^{4}-1\right)}{\left(1+m^{2}\right)^{2}} \\
& =\frac{\frac{4\left(m^{2} b^{2}+a^{2}\right)}{\left(1+m^{2}\right)^{2}}}{\left(y_{1}-y_{2}\right)=m\left(x_{1}-x_{2}\right) \quad \therefore\left(y_{1}-y_{2}\right)^{2}}=\frac{4 m^{2}\left(m^{2} b^{2}+a^{2}\right)}{\left(1+m^{2}\right)^{2}} \\
\left.\therefore(C A)^{2}\right) \text { S (lemth) }\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} & =\frac{4\left(m^{2} b^{2}+a^{2}\right)\left(1+m^{2}\right)}{\left(1+m^{2}\right)^{2}} \\
\therefore C A & =\frac{4\left(m^{2} b^{2}+a^{2}\right)}{\left(1+m^{2}\right)}
\end{aligned}
$$

Similarly, replacing m with $-1 / m, C H=\frac{\sqrt{\frac{4\left(b^{2} / m^{2}+a^{2}\right)}{\left(1+1 / m^{2}\right)}}}{\sqrt{\left.\left(a^{2}\right)^{2}\right)}}$ $=\sqrt{\frac{4\left(a^{2} m^{2}+b^{2}\right)}{\left(1+m^{2}\right)}}$
\therefore Area is $C A \times C H=\sqrt{\frac{4\left(a^{2}+m^{2} b^{2}\right)}{1+m^{2}}} \sqrt{\frac{4\left(a^{2} m^{2}+b^{2}\right)}{1+m^{2}}}$

$$
=\frac{4 \sqrt{\left(a^{2}+m^{2} b^{2}\right)\left(a^{2} m^{2}+b^{2}\right)}}{1+m^{2}}
$$

iv)

$$
\begin{aligned}
& (a-b)^{2} \geqslant 0 \\
& a^{2}+b^{2}-2 a b \geqslant 0 \\
& a^{2}+b^{2} \geqslant 2 a b
\end{aligned}
$$

Substitute $a=\sqrt{m}, b=\frac{1}{\sqrt{m}} \quad$ (Require $m>0$)

$$
\therefore m+\frac{1}{m} \geqslant 2 \frac{\sqrt{m}}{\sqrt{m}}, 1 e, m+\frac{1}{m} \geqslant 2 \text { for } m>0 \text {. }
$$

v)

$$
A^{2}=16 a^{2} b^{2}+\frac{16\left(a^{2}-b^{2}\right)^{2}}{\left(m+\frac{1}{m}\right)^{2}}
$$

Smallest A will be as $m+1 / m \rightarrow \infty$, no contribution from second term

$$
A_{\text {min }}^{2}=16 a^{2} b^{2} \quad A_{\min }=4 a b
$$

Largest A will be when $m+1 / m=2$.

$$
\begin{aligned}
A_{\max }^{2}=16 a^{2} b^{2}+\frac{16\left(a^{2}-b^{2}\right)^{2}}{4} & =16 a^{2} b^{2}+4\left(a^{4}+b^{4}-2 a^{2} b^{2}\right) \\
& =8 a^{2} b^{2}+4 a^{4}+4 b^{4} \\
& =4\left(a^{4}+b^{4}+2 a^{2} b^{2}\right) \\
& =4\left(a^{2}+b^{2}\right)^{2} \\
& =2\left(a^{2}+b^{2}\right)
\end{aligned}
$$

