Student Number:	
Class:	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2016

MATHEMATICS EXTENSION 2

General Instructions:

- Reading Time: 5 minutes.
- Working Time: 3 hours.
- Write in black pen.
- Board approved calculators \& templates may be used
- A Reference Sheet is provided.
- In Questions 11-16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 100
Section I: 10 marks
Attempt Question 1 - 10.
Answer on the Multiple Choice answer sheet provided.
Allow about 15 minutes for this section.

Section II: 90 Marks
Attempt Question 11-16
Answer on lined paper provided. Start a new page for each new question.
Allow about 2 hours \& 45 minutes for this section.

The answers to all questions are to be returned in separate stapled bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Section I

10 Marks

Attempt Questions 1-10. Mark your answers on the sheet provided. Allow about 15 minutes for this section.

1. The complex equation $|z-3+2 i|=|z+3|$ can be expressed in Cartesian form as:
(A) $y=3 x-1$
(B) $y=x^{2}+1$
(C) $y=3-x$
(D) $y=1-3 x$
2. A particle moves along a straight line with an acceleration of $\frac{2}{v} \mathrm{~m} / \mathrm{s}^{2}$, where $v \mathrm{~m} / \mathrm{s}$ is the velocity at any instant. The initial velocity of the particle is $-1 \mathrm{~m} / \mathrm{s}$. The particle will move to the
(A) Left increasing in speed
(B) Left, stop, then move to the right
(C) Right increasing in speed
(D) Right, stop, then move to the left
3. Using an appropriate substitution, then $\int e^{2 x} \sqrt{e^{x}-1} d x$ is equivalent to:
(A) $\int\left(u^{3}-u\right) d u$
(B) $\int\left(u^{3}+u\right) d u$
(C) $\int\left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right) d u$
(D) $\int\left(u^{\frac{3}{2}}+u^{\frac{1}{2}}\right) d u$
4. When factorised, $x^{2}+6 x+1$ is equal to:
(A) $(x+3+2 \sqrt{2})(x+3-2 \sqrt{2})$
(B) $(x-3-2 \sqrt{2})(x-3-2 \sqrt{2})$
(C) $(x+3+2 \sqrt{2} i)(x+3-2 \sqrt{2} i)$
(D) $(x-3-2 \sqrt{2} i)(x-3-2 \sqrt{2} i)$
5. The range of the function $f(x)=e^{\tan x}$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$ is:
(A) $y \in R$
(B) $y \geq 0$
(C) $y>0$
(D) $0<y \leq 1$
6. The tangent to the curve $y^{2}-x y+9=0$ is vertical when:
(A) $y=0$
(B) $y= \pm 3$
(C) $y= \pm \sqrt{3}$
(D) $y=\frac{1}{2}$
7. The number of non zero integer solutions of the equation $w+x+y+z=20$ is:
(A) 969
(B) 1140
(C) 1771
(D) 4845
8. The position of a moving object is given by the Cartesian coordinates ($3 t, e^{t}$). Its acceleration is:
(A) constant in both magnitude and direction
(B) constant in magnitude only
(C) constant in direction only
(D) constant in neither magnitude nor direction
9. The region bounded by the parabolas $y=x^{2}$ and $y=6 x-x^{2}$ is rotated around the x-axis so that a vertical line segment cut off by the curves generates a ring. The value of x for which the ring of largest area is obtained is:
(A) 4
(B) 3
(C) 2.5
(D) 2
10. The value of $\lim _{h \rightarrow 0} \frac{1}{h}\left(\int_{\frac{\pi}{4}}^{\frac{\pi}{4}+h} \frac{\sin x}{x} \mathrm{~d} x\right)$ is:
(A) 0
(B) 1
(C) $\frac{1}{\pi \sqrt{2}}$
(D) $\frac{2 \sqrt{2}}{\pi}$

END OF SECTION I

Section II 90 marks
 Attempt Questions 11-16
 Allow about 2 hours 45 minutes for this section

Question 11 (15 marks)

(a) Let $z=1+i$ and $w=3+2 i$
(i) Express $\frac{Z}{w}$ in simplest form with a real denominator. 1
(ii) Write \bar{Z} in modulus-argument form.
(b) Simplify $\left(1+2 \omega+3 \omega^{2}\right)\left(1+3 \omega+2 \omega^{2}\right)$, where ω is a complex cube root of unity.
(c) (i) Prove for any two real numbers and b that $a^{2}+b^{2}>2 a b$, where $a \neq b$.
(ii) Hence, or otherwise, prove if $a+b+c=1$ then $(1-a)(1-b)(1-c)>8 a b c$ where a, b and c are positive numbers and $a \neq b \neq c$.
(d) Evaluate $\int_{0}^{1} \frac{d x}{(x+2)(x+3)}$.
(e) $\quad P(3 \cos \theta, 2 \sin \theta)$ is a point on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ for $0<\theta<\frac{\pi}{2}$.

The tangent at P meets the y-axis at A and the x-axis at B, as shown in the diagram below. Find the minimum length of $A B$.

You may assume the equation of the tangent at P is $\frac{x \cos \theta}{3}+\frac{y \sin \theta}{2}=1$

Question 12 (15 marks) Start a new page

(a) The base of a solid is in the shape of an equilateral triangle of side b, with one vertex at the origin and its altitude along the positive x-axis as shown in the diagram below. Each cross-sectional plane perpendicular to the x-axis is a square with one side in the base of the solid.

(i) Calculate the side length of a square cross-section x units from the origin.
(ii) Find the volume of the solid.
(b) Consider the function $y=\frac{3}{5} x^{\frac{5}{3}}-3 x^{\frac{2}{3}}$.
(i) Find the x-coordinate(s) of any stationary points and describe their nature.
(ii) Describe the concavity of the function for $x<0$.
(iii) Sketch the graph, showing all important features.
(c) The diagram below shows the graph of the function $y=f(x)$.

Copy the diagram and neatly sketch the graph of $y^{2}=f(x)$ on the same set of axes, showing all important features.

Question 13 (15 marks) Start a new page

(a) A sequence is defined by the formula:
$U_{\mathbf{0}}=0$ and $U_{n}=\sqrt{U_{n-1}+2}$ for $n=1,2,3 \ldots$
Prove by mathematical induction that $U_{n}=2 \cos \left[\frac{\pi}{2^{n+1}}\right]$ for $n=0,1,2,3 \ldots$
(b) A 50 kg boy (P) is sitting on the edge of a smooth horizontal circular plate, 3 m in diameter, which is spinning at a constant rate about a vertical axis through its centre C at 20 revolutions per minute. The boy holds onto two separate ropes which are attached to the ends of the diameter $(A B)$ of the plate.

The ropes are such that $A P=1.8 \mathrm{~m}$ and $B P=2.4 \mathrm{~m}$. (Given $\angle A P B=90^{\circ}$ and $\angle P A B=\theta^{\circ}$)

(i) Write motion equations in the tangential and radial directions for the boy. 3
(ii) Calculate the tension in the shorter rope.
(c) (i) Show that the equation of the tangent to the rectangular hyperbola $x y=c^{2}$ at the point $P\left(c p, \frac{c}{p}\right)$ is $x+p^{2} y=2 c p$.
(ii) The tangent at P meets the x-axis at X and the y-axis at Y and the normal at P meets the lines $y=x$ and $y=-x$ at L and M respectively, as shown in the diagram below.

Prove that $L Y^{\prime} M X$ is a rhombus provided that $p \neq 1$.
You may assume that the equation of the normal at P is $p x-\frac{1}{p} y=\mathrm{c}\left(p^{2}-\frac{1}{p^{2}}\right)$.

Question 14 (15 marks) Start a new page

(a) (i) Show that $\int_{-a}^{a} \frac{x^{4}}{1+e^{x}} d x=\int_{-a}^{a} \frac{x^{4} e^{x}}{1+e^{x}} d x$
(ii) Hence, or otherwise, evaluate $\int_{-2}^{2} \frac{x^{4}}{e^{x}+1} d x$
(b) The equation $z^{2}+(a+i b) z+m+i n=0$ has one real root, where a, b, m and $n \in R$.

Show that $n^{2}-a b n+m b^{2}=0$.
(c) Two boys each throw two dice. Each person adds the two numbers uppermost on his dice. What is the probability that they gain an equal score?
(d) Two circles intersect at X and Y and $A B$ is a common tangent.

The lines $A X$ and $B Y$ meet at P. The lines $A Y$ and $B X$ meet at Q as shown in the diagram below.

Not to scale
(i) Copy the diagram and show that $X P Y Q$ is a cyclic quadrilateral, giving reasons.
(ii) Prove that $Q P \| A B$.
(ii) Hence, or otherwise, prove that $X Y$ bisects $P Q$.

Question 15 (15 marks) Start a new page

(a) The equation $x^{3}-x-1=0$ has roots α, β and γ.

Find an equation whose roots are $\frac{1+\alpha}{1-\alpha}, \frac{1+\beta}{1-\beta}$ and $\frac{1+\gamma}{1-\gamma}$ in the form $A x^{3}+B x^{2}+C x+D=0$.
(b) A model of part of the roof of a new art gallery is generated by rotating the curves
$y=2^{x}$ and $4 y=2^{x}$ from $1 \leq y \leq 2$ around the line $x=3$ as shown in the diagram below.

(i) Show that the area (A) of a cross-sectional slice of the roof taken at $y=h$, for $1 \leq h \leq 2$, is given by the formula $A=4 \pi\left[2-\log _{2} h\right]$.
(ii) Calculate the volume of the material required to build the model of this part of the roof.
(c) (i) Given $z^{n}=(z+1)^{n}$.

Show that: $\quad Z=\frac{1}{\cos \left(\frac{2 k \pi}{n}\right)+i \sin \left(\frac{2 k \pi}{n}\right)-1} \quad$ for $k=1,2 \ldots$
(ii) Hence, or otherwise, find the roots of $z^{n}=(z+1)^{n}$ in Cartesian form.
(iii) Find the Cartesian equation of the line on which the roots lie.

Question 16 (15 marks) Start a new page

(a) Given $I_{n}=\int_{0}^{1} \frac{x^{n}}{\sqrt{x+1}} d x, \quad n=0,1,2,3, \ldots \ldots \ldots$
(i) Show that $(2 n+1) I_{n}=2 \sqrt{2}-2 n I_{n-1} \quad n=1,2,3, \ldots \ldots \ldots$
(ii) Evaluate $\int_{0}^{1} \frac{x^{3}}{\sqrt{x+1}} d x$
(b) A projectile of mass $m \mathrm{~kg}$ is launched from the origin O at an angle θ° above the horizontal where the air resistance has a magnitude $m k v \mathrm{~N}, v \mathrm{~m} / \mathrm{s}$ is the speed of the particle and k is a positive constant.

Initially the horizontal and vertical components of its velocity are $U_{0} \mathrm{~m} / \mathrm{s}^{2}$ and $V_{0} \mathrm{~m} / \mathrm{s}^{2}$ respectively.
(i) Show that the vertical displacement $(y \mathrm{~m})$, whilst the projectile is rising, at time t seconds after the launch is given by:
$y=\left(\frac{g}{k^{2}}+\frac{V_{o}}{k}\right)\left(1-e^{-k t}\right)-\frac{g t}{k}$
where $g \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity.
(ii) Find the Cartesian equation of the trajectory of the projectile before it reaches its maximum height.

END OF EXAMINATION

muthepte chorce
1.

$$
\begin{aligned}
& |z-3+2 i|=|z+3| \\
& |z-(3-2 i)|=|z-(-3)|
\end{aligned}
$$

tine is nerp biecifor
midpt $=(0,-1)$ gread $=\left(\frac{2}{-6}\right)^{-1}$

$$
=+\frac{1}{3}
$$

2. Acietcictior is an denction of notron \therefore notstop
30.... $\int e^{2 x} \sqrt{e^{x}-1} d x$

$$
u=e^{x}-1
$$

$\int e^{x} \sqrt{e^{x}-1} e^{x} d x$ $\frac{d u}{d x}=e^{x}$ $d u=e^{x} d x$
$\int(u+1) u^{2} d u$

$$
\int\left(u^{3 / 2}+u^{4}\right) d u
$$

A
(4)

$$
\begin{aligned}
& \text { (4) } \begin{aligned}
& x^{2}+6 x+1=0 \\
& x=-\frac{6 \pm \sqrt{36-4}}{2} \\
&=-3 \pm \sqrt{2} \\
& \therefore \quad(x+3-2 \sqrt{2})(x+3+2 \sqrt{2})=0 \\
& f(x)=e^{\tan x} \quad-\pi / 2 c x<\pi / 2 \\
& \\
& 0<f(x) \quad \tan x \in R . \\
&
\end{aligned} \quad y>0 .
\end{aligned}
$$

(6)

$$
\begin{aligned}
& y^{2}-x y+9=0 \\
& 2 y \frac{d y}{d x}-x \frac{d y}{d x}-y=0 \\
& \frac{d y}{d x}[2 y-x]=y \\
& \frac{d y}{d x}=\frac{y}{2 y-x}
\end{aligned}
$$

rerlecal when $x=2 y$.

$$
\begin{gathered}
y^{2}=y^{2}+9=0 \quad \therefore y= \pm 3 . \\
=y^{2}+9=0 \quad
\end{gathered}
$$

(7) $\ldots \ldots . . .20$ nos

3 durders mospaces.

$$
{ }^{19} c_{3}=969
$$

$$
\begin{array}{ll}
x=3 t & y_{y}=e^{t} \tag{8}\\
x=3 & y_{0}=e^{t} \\
x=0 & y^{t}=e^{t}
\end{array}
$$

No x acceleradion ans y acceleradion \therefore constant n devecto.
（a）
osic

$$
\begin{aligned}
& A=\pi\left(r_{2}^{2}-r_{1}^{2}\right) \\
&=\pi\left(\left(6 x-x^{2}\right)^{2}-\left(x^{2}\right) 3\right) \\
&=\pi\left(6 x-x^{2}-x^{2}\right)\left(6 x-x^{2}+x^{2}\right) \\
&=\pi\left(6 x-2 x^{2}\right) 6 x \\
&=\pi\left(36 x^{2}-12 x^{3}\right) \\
& \frac{d A}{d x}=\pi\left(72 x-36 x^{2}\right)=0 . \\
& 72 x=36 x^{2} . x \neq 0 \\
& x=2 .
\end{aligned}
$$

（10）

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{1}{h} \int_{\pi / 4}^{\pi / 4} \cdot \frac{\sin x}{x} d x \text {. } \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[F\left(\frac{\pi}{4}+h\right)-F(\pi / 4]\right. \\
& \text { where } F^{\prime}(x)=\frac{\sin x}{x} \text {. } \\
& \text { 虹化跬 } \\
& =\frac{\sin \pi / 4}{\pi / 4}=\frac{\frac{1}{\sqrt{2}}}{\pi / 4} \\
& =\frac{4}{\pi \sqrt{2}} \\
& =\frac{2 \sqrt{2}}{\pi}
\end{aligned}
$$

QuIn Ext 2 ywis TrIAL will
pi) $\frac{z}{4}=\frac{1+i}{3+2 i} \cdot \frac{3-2 i}{3-2 i}=\frac{5+i}{13}$
ii) $\bar{t}=1-\bar{i}=\sqrt{2} \cos \left(-\frac{\pi}{4}+i \sin -\frac{\pi}{4}\right)$
b) $\left(1+2 w+3 w^{-}\right)\left(1+3 w+2 w^{-}\right)$

$$
\begin{aligned}
& \left(1+2 w+3 w^{2}\right)\left(1+3 w+2 w^{2}\right) \\
= & 1+3 w+2 w^{2}+2 w+6 w^{2}+4 w^{4}+3 w^{2}+99^{9}+6 w^{4} \\
= & \left(4+11\left(w+w^{2}\right)\right. \\
= & \left(w^{3}=1\right) \\
= & (w+11(-1)
\end{aligned}
$$

ch)

$$
\begin{aligned}
& \geq \\
& (a-b)^{2}>0 \quad(a \neq b) \\
& a^{2}+b^{2}>2 a b
\end{aligned}
$$

i)

$$
\begin{array}{rlrl}
(1-a)(1-b)(1-c) & & \\
=(b+c)(a+c)(a+b) & >(2 \sqrt{b c})(2 \sqrt{a c})(2 \sqrt{a b}) \quad 1 m \\
& >8 \sqrt{a^{2} b^{2} c^{2}} & \\
& >8 a b c & 1 m
\end{array}
$$

d)

$$
\begin{aligned}
\frac{1}{(x+2)(x+3)} & =\frac{1}{x+2}-\frac{1}{x+3} \\
\int_{0}^{1} \frac{d x}{(x+2)(x+3)} & \left.=\int_{0}^{1} \frac{1}{x+2}-\frac{1}{x+3} d x=\ln \left(\frac{x+2}{x+3}\right)\right] l_{0} \\
& =\ln 9 / 8
\end{aligned}
$$

e)

$$
\begin{aligned}
& A=\left(0 \frac{2}{\sin \theta}\right) \quad B=\left(\frac{3}{\cos \theta}, 0\right) \quad \ln \\
& L^{2}=\frac{4}{(\sin \theta)^{2}}+\frac{9}{(\cos t)^{2}}=2 L \frac{d L}{d t}=-\frac{\sin \theta}{\sin ^{3} \theta}+\frac{18 \sin \theta}{\cos ^{3} \theta} \\
& \operatorname{sen}^{4} \theta=18 \sin ^{4} \theta
\end{aligned}
$$

Sf when $\begin{aligned} d t & \operatorname{sen}^{4} \theta=18 \sin ^{4} \theta \\ d t & \tan ^{4} \theta=2\end{aligned}$
Check $\max / \min \quad 1 \mathrm{~m} \quad\binom{0<\theta<90}{\tan \theta>0}$ $\sin \theta=\sqrt{\frac{2}{5}}, \cos =\sqrt{\frac{3}{5}}$

$$
\therefore L^{2}=\frac{9}{\frac{3}{5}}+\frac{4}{\frac{2}{5}}=25
$$

D. Not accent $\sqrt{2}\left(\sin \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)$ nor non principal argument
Do Not get any marks, just expanding

$$
w^{3}=1 w 1+w+w^{2}=0
$$

2 mark given when simplied and ven coles to final answer =i like ore step away

Some students wrote \geqslant ably $/ \mathrm{m}$
Altanatinaly $(b+c)(a+c)(b+a)$
$=a\left(b^{2}+c^{2}\right)+H\left(c^{2}+a^{2}\right)+c\left(a^{2}+b^{2}\right)+2 b$
$72 a b+2 a b+2 a b+2 a b c \quad 11$
$>8 \mathrm{abc}$ 1 m

1 m for $A^{A} \gamma^{B}$
$1 m$ for $S P$ tan $\theta=\frac{2}{3}$
in fo check mar $/ \mathrm{m}_{i}$
1 m for correct $L=5$
Te get the $3^{\text {rot }}+4$ mack, o< $\theta<\frac{\pi}{2}$ an not a 'random glens

MATHEMATICS: Question... 12.
Extension 2

(ii) Area of square $=\left(\frac{2 x}{\sqrt{3}}\right)^{2}=\frac{4 x^{2}}{3}$
volume f slice o $\delta v=\frac{4 x^{2}}{3} \delta x$
volume of solid $=\lim _{\delta x \rightarrow 0} \sum_{0} \frac{4 x^{2}}{3} \delta x$

$$
=\frac{\sqrt{3} b^{3}}{6} \operatorname{unts}^{3}
$$

$$
\text { side }=\frac{2 x}{\sqrt{3}}
$$

If the lin $\delta x \rightarrow 0$
statement is missing then students loft ore mark.
\square
$\frac{4 h^{3}}{9}$ or $\frac{4 b^{3}}{9}=2 m k s$
(1)

| 9 9 maximum
 |
| :---: | :---: | :---: |

MATHEMATICS: Question.......
Extension 2

Suggested Solutions	
(b) y	$=\frac{3}{5} x^{5 / 3}-3 x^{2 / 3}$
$\frac{d y}{d x}$	$=x^{2 / 3}-2 x^{-1 / 3}$
poss. stat points when $\frac{d y}{d x}=0$	

ie $0=x^{2 / 3}-2 x^{-1 / 3}$
(1)

$$
0=x^{-1 / 3}(x-2)
$$

$$
x^{-1 / 3} \neq 0 \quad \therefore x=2 \text { only }
$$

$$
\frac{d^{2} y}{d x^{2}}=\frac{2}{3} x^{-1 / 3}+2 / 3 x^{-4 / 3}
$$

When $x=2, \begin{aligned} & d^{2} y \\ & d x^{2}=0.52913+0.2645668 \\ &=0.793696\end{aligned}$
70 : concave up
'i rel min at $x=2$
(1)
(ii) when $x<0$, what happens to $\frac{d^{2} y \text { ?? }}{d x^{2}}$?

$$
\begin{aligned}
& \frac{d y}{d x^{2}}=\frac{1}{3} x^{-1 / 3}+2 / 3 x^{-1 / 3} \\
&=2 / 3 x^{-1 / 3}\left(1+x^{-1}\right) \\
&
\end{aligned}
$$

poss pts of inflexion when $\frac{d^{2} y}{d x^{2}}=0$

$$
\begin{aligned}
& \text { ie } 0=2 / 3 x^{-1 / 3}\left(1+\frac{1}{x}\right) \\
& x^{-1 / 3} \neq 0,1+\frac{1}{x}=0 \\
& x \neq 0 \\
& \frac{1}{x}=-1 \\
& x=-1 \\
& \left.\begin{array}{c|c|c|c|}
x & -1.1 & -1 & -0.9 \\
l^{2} y & \frac{1}{2 x} & -0.059 & 0
\end{array}\right) 0.0767 \\
& \hline
\end{aligned}
$$

\therefore change in concqity at $x=-1$
: pt of influx on at $\left(-1,-3^{3 / 5}\right)$
\therefore © concave up for $-1<x<0$
\therefore concave down for $\quad x<-1$
(1)

A lot of students just R quoted that $\frac{d^{2} g}{d x^{2}}<0$ withot substutingionalues \rightarrow max γ mack
\qquad
\qquad
\qquad
\qquad
\qquad

MATHEMATICS: Question.12...
Extension 2

$y=0$ when $x=0$ or $3 / 5 x=3$

$$
x=5
$$

\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& y^{2}=f(x) \\
& i \mu y= \pm \sqrt{f(x)}
\end{aligned}
$$

* A lot of students forget to change the asymptote to $y=\sqrt{\beta}$ or they pit the asymptote $y=\sqrt{\beta}$ in the wrong place.

Marks
Marker's Comments
\longrightarrow
\square
\square
\longrightarrow
for x intercepts cusp at $x=0$
for concrinty change at $x=-1$ and minnu.n point

* If the graph did NOT represent what the students found in (i) and (i) they lost a mark.
\qquad
\qquad
\qquad
\qquad
\qquad
* 0 graph $\alpha<x<1$
$* y=f(x)$ and $y^{2}=f(x)$ intersect at $y=1$ x * vertical tangents at $\begin{aligned} & x=\alpha \text { and } x=1 \\ &\end{aligned}$ * horizontal asymptote is lower than β bit higher than $y=1$.
* If then didñt draw the original graph, they last one mark.

4) If $u_{0}=0 \quad u_{n}=\sqrt{u_{n-1}+2} \quad n=1,2,3$.

$$
\begin{aligned}
\text { Test } & u_{0}=0 \\
u_{0} & =2 \cos \frac{\pi}{2} \\
& =0
\end{aligned}
$$

\therefore true for $n=0$
A ssumptrue for $k=0,1,2,3$.

$$
u_{k}=2 \cos \left(\frac{\pi}{2 k+1}\right)
$$

Prore true for $n=k+1$

$$
u_{k+1}=2 \cos \left(\frac{\pi}{2 k+2}\right)
$$

Now

$$
\begin{aligned}
u_{k+1} & =\sqrt{u_{k}+2} \\
& =\sqrt{\left.2 \cos ^{\left(\frac{\pi}{2 k+1}\right.}\right)+2} \\
& =\sqrt{2\left[2 \cos ^{2} \frac{\pi}{2^{k+2}}-1\right]+2}
\end{aligned}
$$

$\operatorname{since} \cos 2 \theta=1-2 \cos \theta \theta$

$$
\begin{aligned}
& \operatorname{so} \cos \theta=1-2 \cos ^{2} \frac{\theta}{2} \\
= & \sqrt{4 \cos ^{2} \frac{\pi}{2 k+2}}-2+2 \\
= & 2 \cos \frac{\pi}{2 k+2} \\
= & 0<-\frac{\pi}{2 k+2} c \pi
\end{aligned}
$$

$$
\begin{aligned}
& =\text { RHS } \\
& \therefore \text { by proccos ofmathentical indinction } \\
& 2^{k+2}
\end{aligned}
$$

true for $n \geqslant 0 \quad n \in 2$

(i) $\begin{aligned} \cos \theta & =\frac{1.8}{3} \\ & =0 .\end{aligned}$

$$
\text { tange-hal }=0.8
$$

Radial

$$
0.6 T_{2}=0.8 T_{1} \therefore T_{2}=\frac{4}{3} T_{1}
$$

$$
\begin{aligned}
& \text { dial } \\
& 0.8 \times \frac{4}{3} T_{1}+0.6 T_{1}=\frac{100 \pi^{2}}{3} \\
& \therefore \frac{5}{3} T_{1}=\frac{100 \pi^{2}}{3} \\
& T_{1}=20^{2} \text { Nevtons }
\end{aligned}
$$

- did not get both notclear whot was redial and
ta-je-hah
- Studantsala notclewu indicale
whid te-sio
 Equations reeded to make some seral to get carm forwad errors.

Suggested Solutions	Marks	Marker's Comments
c) (i) $\begin{aligned} & x y=c^{2} \\ & y=\frac{c^{2}}{x} \\ & \frac{d y}{d x}=-\frac{c^{2}}{x^{2}} \end{aligned}$ when $x=c p$ $\begin{gathered} \frac{d y}{d x}=-\frac{1}{p^{2}} \\ y-\frac{c}{p}=-\frac{1}{p^{2}}(x-c p) \\ p^{2} y-c p=-x+c p \\ x+p^{2} y=2 c p \end{gathered}$ (u) For rhombus diagonals bisect at right angles. coords $X=(2 c p, 0)$ midpoint $Y=\left(0, \frac{2 c}{p}\right)=F\left(p, \frac{c}{p}\right)$	1	well done

3:Mathsimarking templates\Suggested Mk solns template_V2.doc

Coordinates L $y=x$
Normal

$$
\begin{gathered}
p x-\frac{1}{p} y=c\left(p^{2}-\frac{1}{p^{2}}\right) \\
x\left(p-\frac{1}{p}\right)=c\left(p-\frac{1}{p}\right)\left(p+\frac{1}{p}\right) \\
x=c\left(p+\frac{1}{p}\right) y=c\left(p+\frac{1}{p}\right) \\
L\left(c\left(p+\frac{1}{p}\right), c\left(p+\frac{1}{p}\right)\right)
\end{gathered}
$$

FOR M $y=-x$

$$
\begin{aligned}
& m: x\left(p+\frac{1}{p}\right)=c\left(p^{2}-\frac{1}{p^{2}}\right) \\
& x=c\left(p-\frac{1}{p}\right) y=-c\left(p-\frac{1}{p}\right)
\end{aligned}
$$

$$
M\left(c\left(p-\frac{1}{p}\right) ; c\left(p-\frac{1}{p}\right)\right.
$$

$$
L\left(c\left(p+\frac{1}{p}\right), c\left(p+\frac{1}{p}\right)\right.
$$

Midpoint $\left(c p, \frac{c}{p}\right)$
which is \mathbb{P}
\therefore diagonals are normal and tangent \therefore perpediculle.
\therefore Rhombus since diagonals bisect at right angles

- Students didnit sumplify ad ended up withers expressions
- Students diduit know suiffoceredy Conditions forts rLonbus
- coned also pros parallelogram with adjacent sides equal uris graderts and distal. OI seer 4 sides equal!

Q14 Fx+2 y 122016
ai)

$$
\begin{aligned}
& \text { Let } u=-x \quad d u=-d x \\
& \int_{-a}^{a} \frac{x^{4} d x}{1+e^{x}}=\int_{-a}^{a}(-u)^{4}-d u=\int_{-a}^{a} \frac{u^{4}}{1+e^{-u}} d u=\int_{-a}^{a} \frac{e^{u} h^{4}}{1+e^{u}} d u x d x d i l
\end{aligned}
$$

$$
\therefore \int_{-a}^{a} \frac{x^{4} d x}{1+e^{x}}=\int_{-a}^{a} \frac{e^{x} x^{4}}{1+e^{x}} d x \text { (clayge of variable) }
$$

ii) Let $I=\int_{-2}^{2} \frac{x^{4}}{1+e^{x}} d x=\int_{-2}^{2} \frac{e^{x} x^{4}}{1+e^{x}} d x$

$$
\begin{aligned}
& \left.2 I=\int_{-2}^{2} \frac{\left(1+e^{x}\right) x^{4}}{1+e^{x}} d x=\int_{-2}^{2} x^{4} d x=\frac{x^{5}}{5}\right]_{-2}^{2} \\
& 2 I=\frac{1}{5}[32--32]=\frac{64}{5} \\
& \therefore I=\frac{32}{5} 1 \mathrm{~m}
\end{aligned}
$$

b) Let x be the real root, then

$$
\begin{aligned}
& \text { Let } x \text { be } \\
& x^{2}+x(a+i b)+m+i n=0+0 i \\
& x^{2}+a x+m=0
\end{aligned}
$$

\therefore Real part $\quad x^{2}+a x+m=0 \quad$ (1) $\quad \mathrm{rm}$
Imagitan pent $\quad 6 x+n=0 \Rightarrow x=\frac{-n}{b} \mathrm{~lm}$
Sulk $x=\frac{-n}{b}$ in to (1) $\left(\frac{-n}{6}\right)^{2}+n\left[\frac{-n}{6}\right]+m=0 \quad 1 m$

$$
n^{2}-a_{n} b+m b^{2}=0
$$

Altemativdy let α is the real root

$$
\begin{aligned}
& \text { Altematively } \left.\begin{array}{l}
\text { and } \beta \text { be the complex } \\
\therefore \text { sum roots } \alpha+\beta=-(a+i b) \\
\alpha \beta=m+i n
\end{array} \right\rvert\, 1 m \\
& \text { product roots } \\
& \qquad \alpha \beta=\alpha \mid[\alpha-a]-(
\end{aligned}
$$

$$
\begin{aligned}
\alpha=(-\alpha-a)-i b & \alpha \beta=\alpha[[-\alpha-a]-(\bar{c} a b) \\
& \alpha \beta=m+i n
\end{aligned}
$$

Alternations

$$
\begin{aligned}
& \text { Let } f(x)=\frac{\left(1-e^{x}\right) x^{4}}{1+e^{x}} \\
& -f(-x)=\frac{(-x)^{-x}\left(e^{-x}\right)}{1+e^{-x}} \cdot \frac{e^{x}}{e^{x}} \\
& -f(-x)=\frac{\left(1-e^{x}\right) x^{4}}{1+e^{x}}=f(x)
\end{aligned}
$$

$\therefore f(x)$ is odd lm

$$
\begin{aligned}
& \therefore \int_{-a}^{a} f(x) d x=0 \\
& \therefore \int_{-a}^{a} \frac{x^{4} d x}{1+e^{x}}=\int_{-a}^{a} \frac{e^{x} x^{4}}{1+e^{x^{2}}} d x
\end{aligned}
$$

Ina) for equating real part/ imaginary pout
1 m for final prof

In fo sum^{2} product of roots

Note A let of students think only I real root $\therefore \Delta=0$
Thu is only auth to real polynomial. 0 m

$$
\therefore-\alpha[\alpha+a]=m \underbrace{\text { and } \quad n=-\alpha b}_{1 m} \underbrace{\text { and }}_{\left(\operatorname{ce\alpha } \alpha=-\frac{n}{b}\right)}
$$

Solving sim taneousls

$$
\begin{aligned}
& -\frac{-n}{b}\left[\frac{-n}{b}+a\right]=m \\
& \frac{-n^{2}}{b^{2}}+\frac{a n}{b}=m \\
& n^{2}-a b n+m b^{2}=0
\end{aligned}
$$

c)

+	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	10	12

$$
\begin{aligned}
& P(x=2)=\frac{1}{36} \\
& P(x=3)=\frac{2}{36} \\
& P(x=4)=\frac{3}{36} \\
& P(x=5)=\frac{4}{36} \\
& P(x=6)=5 / 36
\end{aligned}
$$

$$
p(x=7)=\frac{6}{36}
$$

$$
p(x-8)=\frac{5}{36}
$$

$$
p(x=9)=4 / 36
$$

$$
P(x=10)=3 / 36
$$

$$
P(x=11)=\frac{2}{30}
$$

$$
P(x=12)=\frac{1}{36}
$$

$$
\begin{aligned}
f(\text { equal scores }) & =\frac{1}{36^{2}}\left[\begin{array}{c}
1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+ \\
\left.5^{2}+4^{2}+3^{2}+2^{2}+1^{2}\right] \\
1 \mathrm{~m}
\end{array}\right. \\
& =\frac{73}{648} \quad 1 \mathrm{~m}
\end{aligned}
$$

1 m for real r ingeinary pts

In final line

Getting the right formae
final answer
Well Done overall
$214 a$

(i) Join $x y$ Let $\angle B A X=x, \quad \angle A B x=y$
$\angle B X P=x+y$ (exterior angle of $\triangle A B x$
$\angle B A X=\angle A Y X=x$ (angle between tayent and chored at point on in in

Sinkedy cotact equals sepment)
$\angle A B X=\angle B Y x=y$

$$
\therefore \angle B X P=\angle Q Y P=x+y
$$

\therefore XPY Q is cyctic quadrileteral
(exterior arple epwab oppisite interior arpl)
(ii) Joir $P Q$ (angbot cirmiffere $\angle X P Q=\angle Q Y x=x$ (ander standiy on sume are as XPY在 5 cye.
$\therefore \angle B A P=\angle X P Q=c$
$\therefore A B \| Q P$ (alteinte aples equal.)
$i=$) Extend $y x$ to nect $A B$ at M, QPatc
$A M^{2}=M x \cdot M y:\left(\begin{array}{c}\text { poduct of intercopto on secants equpe } \\ \text { to thanpentis suavod) }\end{array}\right.$
simitarly $B M^{2}=M X M y$

$$
\begin{aligned}
& \therefore A M^{2}=B M^{2} \\
& \therefore A M=B M \quad(A M>0, \quad B M>0) \quad 1 m
\end{aligned}
$$

Same studants do nut kaow th exaet fle urem.

In $\triangle A M Y, \triangle Q C Y$
$A B \| Q P$ (proved)
$\angle A M Y=L Q C Y$ (corresponding andes on parallel lina)

LAYM in conman
$\triangle A M Y I I \Delta Q C Y$ (equiapplar)
$\therefore \frac{A M}{Q C}=\frac{M Y}{C Y}$ (ratio of correspading sids of similar triangle) 1 m
$\sin \operatorname{larly} \frac{B M}{P C}=\frac{M Y}{C Y}$

$$
\therefore \frac{A M}{Q C}=\frac{B M}{P C}
$$

As $A M=B M \therefore Q C=A C$
$1 m$
\therefore XY bisects $P Q$.

2016 Trial $\varepsilon 2$ mathematics: Question. $15 \ldots$
Extension 2
(a) let $m=\frac{1+\alpha}{1-\alpha}$

$$
\begin{aligned}
& m(1-\alpha)=1+\alpha \\
& m-1=\alpha(1+m) \\
& \frac{m-1}{m+1}=\alpha
\end{aligned}
$$

Suggested Solutions
Marks

Marker's Comments

-
\qquad
A liagram with dinsemsion was

$$
T \delta y
$$ necessang to eurn the mash

$$
\left.\begin{array}{r|r|}
r_{1} & =3-x_{1} \\
r_{2} & =3-x_{2}
\end{array} \right\rvert\,
$$

\qquad
\qquad
\qquad

J: IMathslmarking templates\Suggested Mk solns template_Ext 2_all Ls.doc

MATHEMATICS: Question \qquad
Extension 2

MATHEMATICS: Question........
Extension 2

MATHEMATICS: Question. \qquad
Extension 2
(ii)

Suggested Solutions

$$
\begin{aligned}
z & =\frac{1}{\cos \frac{2 \pi h}{n}-1+i \sin \frac{2 \pi h}{n}} \\
& =\frac{1}{1-2 \sin ^{2} \frac{\pi h}{n}-1+2 i \sin \frac{h \pi}{n} \cos \frac{h \pi}{n}}
\end{aligned}
$$

$$
=\frac{1}{2 i \sin \frac{\pi k}{n}\left(\cos \frac{\pi k}{n}+i \sin \frac{\pi k}{n}\right)}
$$

$$
=\frac{1}{2 i \sin \frac{\pi k}{h}\left(\cos \frac{\pi / h}{h}+i \sin \frac{\pi k}{h}\right) \times \operatorname{cis} \frac{\pi x}{h}} \frac{\operatorname{cis} \frac{\pi}{n}}{x}
$$

$$
=\frac{1}{2}\left(\frac{-i \cos \pi k}{\sin \frac{\pi k}{n}}-\frac{i \sin \frac{\pi h}{n}}{i \sin \frac{\pi h}{n}}\right)
$$

$$
=-\frac{1}{2}\left(1-c \cot \frac{1 \pi}{n}\right)
$$

Possible alterative include:

$$
\begin{aligned}
& 3=\frac{\cos \left(\frac{2 \pi n}{n}\right)-1}{2\left(1-\cos \left(\frac{2 k n}{n}\right)\right)}+\frac{i \sin \left(\frac{2 \pi n}{n}\right)}{2\left(1-\cos \left(\frac{2 k \pi}{n}\right)\right)} \\
& -\frac{1}{2}-\frac{i \sin \left(\frac{2 k n}{n}\right)}{2\left(1-\cos \left(\frac{2 n \pi}{n}\right)\right)}
\end{aligned}
$$

(iii) $z=x+i y$ where x constant
\qquad z lies on the line $x=-\frac{1}{2}$
\qquad
\qquad
\qquad

J:\Mathslmarking templates\Suggested Mk solns template_Ext 2_all Ls.doc

16
a)

$$
\text { i) } \begin{align*}
& I_{n}=\int_{0}^{1} \frac{x^{n}}{\sqrt{x+1}} d x, n \varepsilon \mathbb{Z}, n \geqslant 0 \\
&=\left[2(x+1)^{\frac{1}{2}} \times x^{n}\right]_{0}^{1}-n \int_{0}^{1} x^{n-1} \times 2 \sqrt{x+1} d x \tag{1}\\
&=2 \sqrt{2}-2 n \int_{0}^{1} x^{n-1} \sqrt{x+1} d x \\
&=2 \sqrt{2}-2 n \int_{0}^{1} x^{n-1} \cdot \frac{(x+1)}{\sqrt{x+1}} d x \\
&=2 \sqrt{2}-2 n \int_{0}^{1} \frac{x^{n}}{\sqrt{x+1}}+\frac{x^{n-1}}{\sqrt{x+1}} d x \tag{1}\\
&=2 \sqrt{2}-2 n I_{n}-2 n I_{n-1} \\
& \therefore(2 n+1) I_{n}=2 \sqrt{2}-2 n I_{n-1} \tag{1}
\end{align*}
$$

ii)

$$
\begin{align*}
& \int_{0}^{1} \frac{x^{3}}{\sqrt{x+1}} d x=I_{3} \\
& I_{3}=\frac{2 \sqrt{2}-6 I_{2}}{7} \tag{1}\\
& =\frac{2 \sqrt{2}}{7}-\frac{6}{7}\left[\frac{2 \sqrt{2}}{5}-\frac{4 I_{1}}{5}\right] \\
& =\frac{2 \sqrt{2}}{7}-\frac{12 \sqrt{2}}{35}+\frac{24}{35}\left[\frac{2 \sqrt{2}}{3}-\frac{2}{3} I_{0}\right] \\
& =\frac{-2 \sqrt{2}}{35}+\frac{48 \sqrt{2}}{105}-\frac{48}{105} I_{0} \\
& =\frac{42 \sqrt{2}}{105}-\frac{48}{105} \int_{0}^{1} \frac{1}{\sqrt{x+1}} d x \\
& =\frac{42 \sqrt{2}}{105}-\frac{48}{105}[2 \sqrt{x+1}]_{0}^{1} \tag{1}\\
& =\frac{42 \sqrt{2}}{105}-\frac{48}{105}(2 \sqrt{2}-2) \\
& =\frac{96}{105}-\frac{54 \sqrt{2}}{105}=\frac{32}{105}-\frac{18 \sqrt{2}}{105}
\end{align*}
$$

b)
 positive

$$
\begin{align*}
& \text { vertically }-m \ddot{y}=-m g-m k v \tag{1}\\
& \frac{d v}{d t}=-g-k v \\
& \frac{d t}{d v}=\frac{-1}{g+k v} \\
& \int_{0}^{t} d t=-\int_{v_{0}}^{v} \frac{1}{g+2 v} d v \\
& t=\frac{-1}{k}[\operatorname{Ln}(g+k v)]_{v_{0}}^{v} \\
& =\frac{-1}{k} \ln \frac{g+k v}{g+k v_{0}} \tag{1}\\
& -k t=\operatorname{Ln}\left(\frac{g+k v}{g+k v_{0}}\right) \\
& \frac{g+k v}{g+k v_{0}}=e^{-k t} \\
& g+k v=\left(g+k v_{0}\right) e^{-k t} \\
& k v=\left(g+k v_{0}\right) e^{-k t}-g \\
& v=\frac{\left(g+k v_{0}\right) e^{-k t}}{k}-\frac{g}{k}
\end{align*}
$$

ist Approach

$$
\begin{align*}
\frac{d y}{d t} & =\frac{\left(g+k v_{0}\right) e^{-k t}-g}{k} \\
\int_{0}^{y} d y & =\int_{0}^{t} \frac{\left(g+k v_{0}\right) e^{-k t}-g}{k} \\
y & =\left[\frac{-\left(g+k v_{0}\right) e^{-k t}}{k^{2}}-\frac{g t}{k}\right]_{0}^{t} \tag{1}\\
& =\frac{\left(g+k v_{0}\right)}{k^{2}}-\frac{\left(g+k v_{0}\right) e^{-h t}}{k^{2}}-\frac{g t}{k}=\left(\frac{g}{k^{2}+}+\frac{v_{0}}{k}\right)\left(1-e^{-k t}\right)-\frac{g t}{k}
\end{align*}
$$

Alternatively:

$$
v \frac{d v}{d y}=-g-k v
$$

$$
\frac{d v}{d y}=-\frac{-g-k v}{v}
$$

$$
\frac{d y}{d v}=\frac{-v}{g+k v}
$$

$$
\int_{0}^{y} d y=-\int_{v_{0}}^{v} \frac{v}{g+h v} d v
$$

$$
y=\frac{-1}{k} \int_{v_{0}}^{v}\left(1-\frac{g}{g+k v}\right) d v
$$

$$
=\frac{-1}{k}\left[v-\frac{g}{k} \operatorname{Ln}(g+k v)\right]_{v_{0}}^{v}
$$

$$
=\frac{-1}{k}\left[v-\frac{g}{k} \operatorname{Ln}(g+k v)-v_{0}+\frac{g}{k} \ln \left(g+k v_{0}\right)\right]
$$

$$
\begin{equation*}
=\frac{-1}{k}\left[v-v_{0}+\frac{g}{k} \ln \left(\frac{g+k v_{0}}{g+k v}\right)\right] \tag{1}
\end{equation*}
$$

Sub $v=\frac{\left(g+k v_{0}\right) e^{-b t}-g}{k}$. ints y

$$
\begin{align*}
\therefore y & =\frac{-1}{k}\left[\frac{\left(g+k v_{0}\right) e^{-h t}-g}{k}-v_{0}+\frac{g}{k} \operatorname{Ln}\left(\frac{g+k v_{0}}{g+\left(g+k v_{0}\right) e^{-k t}-g}\right)\right. \\
& =\frac{-1}{k}\left[\frac{\left(g+k v_{0}\right) e^{-k t}}{k}-\frac{g}{k}-v_{0}+\frac{g}{k} \ln \left(\frac{1}{e^{-k t}}\right)\right] \\
& =\frac{-1}{k}\left[\frac{\left(g+k v_{0}\right) e^{-k t}}{k}-\frac{g}{k}-v_{0}+g t\right] \\
& =\frac{v_{0}}{k}-\frac{\left(g+k v_{0}\right) e^{-k t}}{k^{2}}+\frac{g}{k^{2}}-\frac{g t}{k} \\
& =\frac{v_{0}}{k}\left(1-e^{-k t}\right)+\frac{g}{k^{2}}\left(1-e^{-k t}\right)-\frac{g t}{k} \\
& =\left(\frac{g}{k^{2}}+\frac{v_{0}}{k}\right)\left(1-e^{-k t}\right)-\frac{g t}{k} \tag{1}
\end{align*}
$$

ii) Horizontally:

$$
\begin{align*}
m \ddot{x} & =-m k u \\
\ddot{x} & =-k u \\
\frac{d u}{d t} & =-k u \\
\int_{0}^{t} d t & =\frac{-1}{k} \int_{u_{0}}^{u} \frac{1}{u} d u \\
t & =\frac{1}{k} \ln \left(\frac{u_{0}}{u}\right)- \tag{1}\\
e^{k t} & =\frac{u_{0}}{u} \\
u & =u_{0} e^{-k t} \\
\frac{d x}{d t} & =u_{0} e^{-k t} \\
x & =u_{0} \int_{0}^{t} e^{-k t} \\
& =\frac{-u_{0}}{k}\left(e^{-k t}-1\right) \tag{1}\\
\frac{-k x}{u_{0}} & =e^{-k t}-1 \\
e^{k t} & =\frac{-k x}{u_{0}}+1 \\
e^{k t} & =\frac{u_{0}-k x}{u_{0}} \\
t & =\frac{1}{k} \ln \left(\frac{u_{0}-k x}{u_{0}}\right) \tag{1}
\end{align*}
$$

Sub into y from i)

$$
\begin{align*}
y & =\left(\frac{g}{k^{2}}+\frac{v_{0}}{k}\right)\left(1-e^{\ln \left(\frac{u_{0}-b x}{u_{0}}\right)}\right)-\frac{g}{k^{2}} \ln \left(\frac{u_{0}}{u_{0}-b x}\right) \\
& =\left(\frac{g}{k^{2}}+\frac{v_{0}}{k}\right)\left(1-\frac{u_{0}-b x}{u_{0}}\right) \div \frac{9}{k^{2}} \ln \left(\frac{u_{0}}{u_{0}-k x}\right) \\
& =\left(\frac{g}{k^{2}}+\frac{v_{0}}{k}\right)\left(\frac{k x}{u_{0}}\right)-\frac{g}{k^{2}} \ln \left(\frac{u_{0}}{u_{0}-k x}\right)- \tag{1}
\end{align*}
$$

