Student Number:	
Class:	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2018

MATHEMATICS EXTENSION 2

General Instructions:

- Reading Time: 5 minutes.
- Working Time: 3 hours.
- Write in black pen.
- Board approved calculators \& templates may be used
- A Standard Integral Sheet is provided.
- In Question 11-16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 100
Section I: 10 marks

- Attempt Question 1-10.
- Answer on the Multiple Choice answer sheet provided.
Allow about 15 minutes for this section.

Section II: 90 Marks
Attempt Question 11-16

Answer on lined paper provided. Start a new page for each new question.

- Allow about 2 hours \& 45 minutes for this section.

The answers to all questions are to be returned in separate stapled bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Section A MULTIPLE CHOICE

(Use the Multiple choice answer sheet for questions 1-10)
One mark will be awarded for each correct answer.

Question 1

After using the method of slicing to find a volume, the final calculation requires the evaluation of this integral

$$
\int_{-8}^{8} \sqrt{64-x^{2}} d x
$$

The value of this integral is :
A) 0
B) 32π
C) 64π
D) 128π

Question 2

If ω is a complex root of the equation $z^{3}=1$, then the value of

$$
\frac{1}{5+6 \omega+5 \omega^{2}}-\frac{1}{3+3 \omega+2 w^{2}} \text { is }
$$

A) -1
B) $\quad-\frac{1}{2}$
C) $\frac{1}{2}$
D) 1

Question 3

If the polynomial $P(x)$ is divided by $\left(x^{2}+25\right)$ then the remainder is $3 x+4$.
What is the remainder when $P(x)$ is divided by $(x+5 i)$?
A) $15-4 \mathrm{i}$
B) $15+4 \mathrm{i}$
C) $4-15 \mathrm{i}$
D) $4+15 \mathrm{i}$

Question 4

The gradient of the tangent to the curve $x^{3}+y^{3}-8 x y+7=0$ at the point $(1,2)$ is:
A) $\frac{4}{13}$
B) Undefined
C) $\frac{13}{4}$
D) $\frac{3}{2}$

Question 5

A projectile is fired from the origin at a fixed angle θ with a velocity V. If this velocity is doubled, while the angle of projection remains the same, then the range of the projectile across horizontal ground will:
A) Remain unchanged.
B) Increase by a factor of $\sqrt{2}$.
C) Increase by a factor of 2 .
D) Increase by a factor of 4 .

Question 6

Which of the following loci is identical to the locus $|z|=2, \operatorname{Im}(z)>0$?
A) $z \bar{z}=4, \operatorname{Re}(z)>0$
B) $\operatorname{Arg}\left(\frac{z-2}{z+2}\right)=\frac{\pi}{2}$
C) $\quad \operatorname{Re}\left(\frac{z+2}{z-2}\right)=0$
D) $\operatorname{Arg}\left(\frac{z+2}{z-2}\right)=\frac{\pi}{2}$

Question 7

What is the solution of the inequality $\frac{x(5-x)}{x-4} \geq-3$?
A) $2 \leq x<4$ or $x \geq 6$
B) $4<x \leq 5$ or $x \leq 1$
C) $4<x \leq 6$ or $x \leq 2$
D) $1 \leq x<4$ or $x \geq 5$

Question 8

$f(x)$ is a continuous, differentiable function over $a \leq x \leq b$ and $g(x)$ is a continuous, differentiable function over $c \leq x \leq d$. Which one of the following integrals is always greater than, or equal to, the other choices?
A) $\int_{a}^{b} f(x) d x+\int_{c}^{d} g(x) d x$
B) $\left|\int_{a}^{b} f(x) d x\right|+\left|\int_{c}^{d} g(x) d x\right|$
C) $\quad \int_{a}^{b}|f(x)| d x+\int_{c}^{d}|g(x)| d x$
D) $\left|\int_{a}^{b} f(x) d x+\int_{c}^{d} g(x) d x\right|$

Question 9

A particle is moving along a straight line so that initially its displacement is $x=1$, its velocity $v=2$ and its acceleration is $a=4$.

Which of the following is a possible equation describing the motion of the particle?
A)
$v^{2}=4\left(x^{2}-2\right)$
B) $\quad v=2+4 \log _{\mathrm{e}} x$
C)
$v=2 \sin (x-1)+2$
D) $v=x^{2}+2 x+4$

Question 10

In the diagram, $A B C D$ is a square in the first quadrant as shown. If A represents the complex number z and C represents the complex number w, then B represents which of the following complex numbers?
A) $\frac{z-w}{2}-\frac{i(z+w)}{2}$
B) $\frac{z-w}{2}+\frac{i(z+w)}{2}$
C) $\frac{z+w}{2}-\frac{i(z-w)}{2}$
D) $\frac{z+w}{2}+\frac{i(z-w)}{2}$

Section B

In this section you should include all necessary reasoning and calculations.

Question 11 (Start each new question on a separate sheet of paper.)
(a) By using partial fractions, or otherwise, evaluate $\int_{-2}^{-1} \frac{18 d x}{x^{2}(x+3)}$
(b) Evaluate $\int_{0}^{\frac{\pi}{4}} \sec ^{4} x d x$
(c) (i) Show that $\frac{d}{d x}\left(x^{2} \tan ^{-1} x\right)=2 x \tan ^{-1} x+1-\frac{1}{1+x^{2}}$
(ii) Hence find the exact value of $\int_{0}^{\sqrt{3}} x \tan ^{-1} x d x$
(d) $\quad z_{1}=-2+2 i$ and $z_{2}=-1+i \sqrt{3}$ are two complex numbers.
(i) Express z_{1}, z_{2} and $\frac{z_{1}}{z_{2}}$ in modulus/argument form.
(ii) Find the smallest positive integer n such that $\frac{z_{1} n}{z_{2}{ }^{n}}$ is purely imaginary and, for this value of n, write down the value of $\frac{z_{1}^{n}}{z_{2}{ }^{n}}$ in the form $b i$ where b is a real number.
(a)

A sketch of the curve $y=x^{2}(x-3)$ is shown above.
On separate sets of axes sketch the graphs of:
(i) $y^{2}=x^{2}(x-3)$
(ii) $y=\frac{1}{x^{2}(x-3)}$
(iii) $y=\frac{1}{x^{2}(|x|-3)}$
(b) Consider the ellipse $4 x^{2}+3 y^{2}=48$.
(i) Find the eccentricity of the ellipse.
(ii) Write down the coordinates of the foci and the equations of the directrices.
(iii) Sketch the ellipse, showing the above features and the intercepts on the coordinate axes.
(c) (i) Prove that, for all real a and b,

$$
\begin{equation*}
a^{2}+b^{2} \geq 2 a b \tag{1}
\end{equation*}
$$

(ii) Prove that, for any positive, real x and y,

$$
\begin{equation*}
\frac{x}{y}+\frac{y}{x} \geq 2 \tag{1}
\end{equation*}
$$

(iii) Prove by induction, or otherwise, that

$$
\left(x_{1}+x_{2}+x_{3}+\cdots+x_{n-1}+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n-1}}+\frac{1}{x_{n}}\right) \geq n^{2}
$$

where the x_{i} are all real and positive.

(a) The figure shows a cyclic quadrilateral $A B C D$ with diagonals $A C$ and $B D$. E is a point on $A C$ such that angle $A B E$ equals angle $D B C$.
(i) Prove that triangle $A B E$ is similar to triangle $D B C$.
(ii) Prove that triangle $A B D$ is similar to triangle $E B C$.
(iii) Hence prove Ptolemy's Theorem, which, in this context, states

$$
\begin{equation*}
A B \times C D+A D \times B C=A C \times B D \tag{3}
\end{equation*}
$$

(b) Sketch the curve $y=\frac{(x-2)(x+1)}{5-x}$ over the domain $\{x:-5<x<15\}$ showing the axis intercepts and the relationship of the curve to its oblique asymptote. (You are given that there are turning points near $x=0.75$ and $x=9.25$ but you need not evaluate their values exactly.)
(c) A jar contains w white and r red jelly beans. Three jellybeans are taken at random from the jar and eaten.
(i) Write down an expression, in terms of w and r, for the probability that the three jellybeans were all white. (Leave in factorised form.)

It was observed that, if the jar had initially contained $(w+1)$ white and r red jellybeans, then the probability that the 3 eaten jellybeans were white would have been double that in part (i).
(ii) Show that $r=\frac{(w-2)(w+1)}{5-w}$
(iii) Using part (b) or otherwise, determine all possible values of w and r.
(a) Consider the polynomial $p(x)=a x^{4}+b x^{3}+c x^{2}+d x+f$ where a, b, c, d and f are integers. Suppose α is a non-zero integer such that $p(\alpha)=0$.
(i) Prove that α divides f.
(ii) Show that the polynomial $q(x)=4 x^{4}-x^{3}+3 x^{2}+2 x-3$ does not have an integer zero.
(b) Two light rigid rods $P Q$ and $Q R$, each of length d metres, are smoothly jointed at Q and the $\operatorname{rod} P Q$ is smoothly jointed at the fixed point P. The joint at Q has a mass of $M \mathrm{~kg}$ attached.

A small ring of mass $m \mathrm{~kg}$ is smoothly jointed to $Q R$ at R and can slide on a smooth vertical rod which also passes through P.

The system rotates about the vertical causing the ring to rise up the vertical rod.

In equilibrium the system is rotating at ω rads $/ \mathrm{sec}$ and the rods form an angle θ with the vertical (as shown).

(i) Copy the diagram and, by resolving forces at points Q and R, show that $\quad M \omega^{2} d=(2 m g+M g) \sec \theta$
(ii) Now suppose that $M=4 m$ and that a safety switch operates when $\theta=\pi / 3$.

Show that this occurs when $\omega=\sqrt{\frac{3 g}{d}}$
(c) The complex number z satisfies the condition $|z-8|=2 \operatorname{Re}(z-2)$.
(i) Write down the equation of the locus in its more usual Cartesian form, noting any restrictions that apply.
(ii) Sketch the locus on an Argand diagram and find the possible values of $\operatorname{Arg} z$.
(iii) Write down the value of $|z+8|-|z-8|$ for any point on the curve.
(a) The area bounded by the parabola $y=x(3-x)$ and the x axis is rotated about the line $x=4$. Use the method of cylindrical shells to find the volume of the solid formed.
(b) Let α, β and γ be the roots of the equation $x^{3}-3 x^{2}+5=0$.
(i) Find a cubic polynomial equation with integer coefficients whose roots are α^{2}, β^{2} and γ^{2}.
(ii) Find the value of $\alpha^{4}+\beta^{4}+\gamma^{4}$.
(c) $\quad P(3 p, 3 / p)$ and $Q(3 q, 3 / q)$ are two points on the rectangular hyperbola $x y=9$. The equation of the chord $P Q$ is $p q y+x=3(p+q)$ (DO NOT PROVE THIS) The chord $P Q$ meets the x and y axes at G and H respectively.
(i) Find the coordinates of M, the midpoint of $P Q$. 1
(ii) Show that $P H=Q G$
(iii) If the chord $P Q$ always passes through the point (0,2), find the locus of M, proving any restrictions.
(a) A particle P, of unit mass, is thrown vertically downwards in a resistive medium where the resistive force is proportional to speed. Thus, taking downwards as positive, the equation of motion is $\ddot{x}=g-k v$ where $k>0$.

The particle is thrown, with an initial speed U, from a point T which is d units above a fixed point O which should be taken as the origin.
So the initial conditions are : when $t=0, v=U$ and $x=-d$
(i) Show that , during the subsequent motion of P,

$$
\begin{equation*}
v=\frac{g}{k}-\left(\frac{g-k U}{k}\right) e^{-k t} \tag{2}
\end{equation*}
$$

(You may assume that $U<\frac{g}{k}$)
(ii) Integrate again to show that

$$
\begin{equation*}
x=\frac{g t-k d}{k}+\left(\frac{g-k U}{k^{2}}\right)\left(e^{-k t}-1\right) . \tag{2}
\end{equation*}
$$

(iii) An identical particle Q is dropped from rest at O at the same instant that P is thrown down. Use the above results to write down expressions for v and x as functions of time for Q.
(iv) The particles P and Q collide. Find when the collision occurs and the difference in speeds as the particles collide.
(b)

A tunnel has an isosceles trapezium $A B C D$ as its base with $A B$ of side length 4 r and $C D$ of side length $2 r$. The tunnel is of length H and the height along the centre line is constant at $3 r$. The cross section perpendicular to the floor at $A B$ is a semi-ellipse with $A B$ as the minor axis and with a semi-major axis of length $3 r$. The cross section perpendicular to $C D$ is a square $C D E F$ surmounted by a semicircle of radius r.

A typical internal cross-section (as shown) comprises a rectangle surmounted by a semi-ellipse. $A E D$ and $B C F$ are thence plane triangles.
(You may assume that the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$ square units.)
(i) Show that the tunnel cross-sectional area at a perpendicular distance h from $A B$ is given by :

$$
\begin{equation*}
\frac{r^{2}}{2 H^{2}}(2 H-h)(3 \pi H+(8-2 \pi) h) \tag{4}
\end{equation*}
$$

(ii) Hence find the volume of the tunnel.
multiple choice

1. B 2.A $3 . C \quad 4 . C \quad 5 . D \quad 6, B \quad 2, C \quad$ I.C a.C $10 . D$
2. Semiciale $\mathrm{rad}=8 \quad \pi 8^{2} / 2$
3. $1+\omega+\omega^{2}=0 \quad \frac{i}{\omega}-\frac{1}{-\omega^{2}}=\frac{1}{\omega}+\frac{1}{\omega^{2}}=\frac{\omega+\omega^{2}}{\omega^{3}}=-1$
4.

$$
\begin{aligned}
& P(x)=Q(x)(x+5 i)(x-5 i)+3 x+4 \\
& P(-j i)=
\end{aligned}
$$

4. $3 x^{2}+3 y^{2} y^{\prime}-8 y-8 x y^{\prime}=0 \quad y^{\prime}=\frac{8 y-3 x^{2}}{3 y^{2}-8}=\frac{16-3}{12-8}$
5. Range $=\frac{v^{2}}{g} \sin 2 \theta$

$$
6
$$

7. $\quad x>4 \quad \dot{x}(5-x) \geqslant-3(x-4)$

$$
\begin{aligned}
& 0 \geqslant x^{2}-8 x+12 \\
& 0 \geqslant(x-6)(x-2) \\
& 4<x \leqslant 6
\end{aligned}
$$

8. C
a. a) $v^{2}<0 \nexists \quad$ b) $\quad v d v=(2+4 \ln x) \frac{4}{x}=8 \Omega \ln x=1 \times \quad$ d) $\quad v(1) \neq 1 \quad \therefore c /$
9.

$$
\begin{aligned}
O B & =O A+A B \\
& =O A+A C \frac{1}{\sqrt{2}} \operatorname{cio}\left(-45^{\circ}\right) \\
& =z+(w-z) \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)=z+(w-2)\left(\frac{1}{2}-\frac{i}{2}\right) \\
& =2\left(\frac{1}{2}-\frac{i}{2}\right) \quad z\left(2+\frac{1}{2}+\frac{i}{2}\right)=(z+w) \frac{1}{2}+(z-w) \frac{i}{2}
\end{aligned}
$$

MATHEMATICS Extension 2 : Question $\$ 1$

(c) (c) $\frac{d}{d x}\left(x^{2} \tan ^{-1} x\right)=2 x \tan ^{-1} x+x^{2} \times \frac{1}{1+x^{2}}$
(product rule)
(ii)

$$
\begin{aligned}
& \int_{0}^{\sqrt{3}} x \tan ^{-1} x=\frac{1}{2}\left[x^{2} \tan ^{-1} x\right]_{0}^{\sqrt{3}} \\
& -\frac{1}{2} \int_{0}^{\sqrt{3}} 1 d x+\frac{1}{2} \int_{0}^{\sqrt{3}} \frac{d x}{1+x^{2}}
\end{aligned}
$$

$$
=\frac{1}{2}\left[x^{2} \tan ^{-1} x-x+\tan ^{-1} x\right]_{0}^{\sqrt{3}}
$$

$$
=\frac{1}{2}\left[3 \times \frac{\pi}{3}-\sqrt{3}+\frac{\pi}{3}-0\right]
$$

$$
=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}
$$

(d)

$$
\begin{aligned}
z_{1} & =2 \sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \\
z_{2} & =2\left(\cos ^{2} \frac{\pi}{3}+i \sin \frac{2 \pi}{3}\right) \\
\frac{z_{1}}{z_{2}} & \left.=\sqrt{2} \operatorname{cis}\left(\frac{3 \pi}{4}-\frac{2 \pi}{3}\right) \text { (dersiutes}\right) \\
& =\sqrt{2} \cos \frac{\pi}{12}+i \sin \frac{\pi}{12}
\end{aligned}
$$

Marker's Comments
-

E:Imarking templates\Suggested Mk solns template_V2_no Ls.doc

JRAHS: TRIALS 2018 MATHEMATICS Extension 2: Question 12

$$
\begin{aligned}
& \text { Suggested Solutions } \\
& \text { c) (1) For } a, b \in \mathbb{R},(a-b)^{2} \geqslant 0 \\
& \Rightarrow a^{2}-2 a b+b^{2} \geqslant 0 \\
& \therefore a^{2}+b^{2} \geqslant 2 a b
\end{aligned}
$$

Method II: Consider $a^{2}+b^{2}-2 a b$
Method III: Assume $a^{2}+b^{2} \leq 2 a b$ and arrive at a contradiction
(ii) Let $a=\sqrt{x / y}$ and $b=\sqrt{y / x}$

$$
\text { where } x, y>0
$$

Since $a^{2}+b^{2} \geqslant 2 a b$, from (1)
then $(\sqrt{x / y})^{2}+(\sqrt{y / x})^{2} \geqslant 2 \sqrt{\frac{x}{y}} \cdot \sqrt{\frac{y}{x}}$

$$
\Rightarrow \quad \frac{x}{y}+\frac{y}{x} \geqslant 2
$$

Method II: From (1) $x^{2}+y^{2} \geqslant 2 x y$

$$
\begin{aligned}
& \Rightarrow \frac{x^{2}+y^{2}}{x y} \geqslant 2 \quad \text { if } x, y>0 \\
& \Rightarrow \frac{x^{2}}{x y}+\frac{y^{2}}{x y} \geqslant 2 \\
& \text { and } x y>0 \\
& \text { ie } \frac{x}{y}+\frac{y}{x} \geqslant 2
\end{aligned}
$$

Method III: Consider $\frac{x}{y}+\frac{y}{x}-2$
and proceed as usual

JRAHS : TRIALS: 2018 MATHEMATICS Extension 2: Question 12

Suggested Solutions	Marks	Marker's Some
(III) To prove $\left(x_{1}+x_{2}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right) \geqslant$	n^{2} for $n \geqslant[?]$	

Prof: Base case: Prove true for $n=1$

$$
\begin{aligned}
& \text { CHS }=x_{1} \times \frac{1}{x_{1}}=1 \\
& \text { RHS }=1^{2}=1 \\
& \therefore \text { CHS } \geqslant \text { RHS }
\end{aligned}
$$

$$
\therefore \text { true for } n=1
$$

Assume true for $n=k \in Z^{+}$
1.e.

$$
\left(x_{1}+x_{2}+\cdots+x_{k}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{k}}\right) \geqslant k^{2}
$$

	$x_{i} \in \mathbb{R}^{t}$
1	For Base case
1	For Assumption
1	For using $A \cdot B \geqslant k^{2}$
1	For use of part (ii)
	A.B $\geqslant k^{2}$

Prove statement frue for $n=k+1$
1.e. to show/prove

$$
\left[\left(x_{1}+\cdots+x_{k}\right)+x_{k+1}\right]\left[\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{k}}\right)+\frac{1}{x_{k+1}}\right] \geqslant\left.(k+1)\right|^{2}
$$

Now
CHS $=\left[A+x_{k+1}\right]\left[B+\frac{1}{x_{k+1}}\right]$ where

$$
=A B+A \cdot \frac{1}{x_{k+1}}+B \cdot x_{k+1}+\frac{x_{k+1}}{x_{k+1}}
$$

$\geqslant k^{2}+\left[\left(\frac{x_{1}}{x_{k+1}}+\frac{x_{k_{+1}}}{x_{1}}\right)+\left(\frac{x_{2}}{x_{k+1}}+\frac{x_{k+1}}{x_{2}}\right)^{\cdots}+\cdots+\left(\frac{x_{k}}{x_{k+1}}+\frac{x_{k+1}}{x_{k}}\right)\right]+1$
$\geqslant k^{2}+[2+2+\cdots+2]+1$
$=k^{2}+2 k+1$

$$
\begin{aligned}
& =k+2 k+1 \\
& =(k+1)^{2}=R H S
\end{aligned}
$$

Hence by PMI, the statement is true for all $n \in Z^{+}$
E:Imarking templaussusugsesed Mk sols template_ vino Ls.doc Note :clear evidence for "appearance"

- " " for use of $\frac{x}{4}+\frac{y}{x}$;
Sugested Solutions Extension 2: Question..13.

MATHEMATICS Extension 2: Question. 13.
Suggested Solutions
Marks \quad Marker's Comments
c) i) $\left(\frac{w}{w+r}\right)\left(\frac{w-1}{w+r-1}\right)\left(\frac{w-2}{w+r-2}\right) \xrightarrow{\text { OR, }{ }^{w} C_{3}}{ }^{w+C_{3}}$
ii) $\left(\frac{w+1}{w+r+1}\right)\left(\frac{w}{w+r}\right)\left(\frac{w-1}{w+r-1}\right)=2\left(\frac{w}{w+r}\right)\left(\frac{w-1}{w+r-1}\right)\left(\frac{w-2}{w+r-2}\right)$

$$
\therefore \frac{w+1}{w+r+1}=\frac{2(w-2)}{w+r-2}
$$

$(w+1)(w+r-2)=2(w-2)(w+r+1)$

$$
w^{2}+r w-2 w+w+r-2=2 w^{2}+2 w r+2 w-4 w-4 r-4
$$

$$
r(-w+5)=w^{2}-w-2
$$

$$
r=\frac{w^{2}-w-2}{-w+5}
$$

$$
=\frac{(w-2)(w+1)}{5-w}
$$

iii) From graph in b)

$$
r ; w>0 \text { and integers }
$$

$\therefore w=3$ or 4 only
when $w=3, r=2$

$$
w=4, r=10
$$

Note: $r \neq 0$ as this would give $w=2$, but 3 jellybeans are taken $\therefore \omega>2$.

MATHEMATICS Extension 2: Question..|4...
Marker's Comments
a) i)

$$
\begin{aligned}
& p(x)=a x^{4}+b x^{3}+c x^{2}+d x+f \\
& -p(\alpha)=0 \\
& a \alpha^{4}+b \alpha^{3}+c \alpha^{2}+d \alpha+f=0 \\
& a \alpha^{4}+b \alpha^{3}+c \alpha^{2}+d \alpha=-f \\
& \alpha\left(a \alpha^{3}+b \alpha^{2}+\alpha+d\right)=-f
\end{aligned}
$$

since a, b, c, d, f and α are integers, α divides f.
ii) $q(x)=4 x^{4}-x^{3}+3 x^{2}+2 x-3$

Suppose there is an integer zero, α.
Then α divides -3 , ie. $\alpha= \pm 1$ or ± 3

$$
\begin{aligned}
q(1) & =4(1)^{4}-(1)^{3}+3(1)^{2}+2(1)-3 \\
& =5 \\
q(-1) & =4(-1)^{4}-(-1)^{3}+3(-1)^{2}+2(-1)-3 \\
& =3 \\
q(3) & =4(3)^{4}-(3)^{3}+3(3)^{2}+2(3)-3 \\
& =327 \\
q(-3) & =4(-3)^{4}-(-3)^{3}+3(-3)^{2}+2(-3)-3 \\
& =369
\end{aligned}
$$

None are 0 .
$\therefore q(x)$ does not have an integer zero.

MATHEMATICS Extension 2: Question. $14 .$.

MATHEMATICS: Question 15

Now, if $x>9$, then

$$
\frac{3 p^{2}}{2 p-3}>q
$$

$$
\begin{array}{ll}
\text { So } \quad & 3 p^{2}(2 p-3)>9(2 p-3) \\
\text { So } & (2 p-3)(p-3)^{2}>9 \\
\rightarrow & p>3 / 2
\end{array}
$$

But $q=\frac{3 p}{2 p-3}$ so $q>0$ if $p>3 / 2 \ldots$ but the P, Q are on same branch
\& \therefore don't generate a chord passing through $(0,2)$.
So $x>9$ not allowed

On the other hand, if $x<0$, then $(2 p-3)(p-3)^{2}<0$

$$
\rightarrow \quad p<3 / 2
$$

C:\Users\sguest12 DesktoplSuggested Mk solns template.doc

Ex +2 MATHEMATICS: Question 16
(a).

$\ddot{x}=g-k_{v} \quad$ (given)

$$
\begin{gather*}
\frac{d v}{d t}=g-k v \\
\int_{v}^{v} \frac{1}{g-k v} d v=\int_{0}^{t} d t \\
\frac{-1}{k}[\operatorname{Ln}(g-k v)]_{v}^{v}=[t]_{0}^{t} \tag{tabular}\\
\frac{-1}{k}[\operatorname{Ln}|g-k v|-\operatorname{Ln}|g-k v|]=t \\
\frac{-1}{k}[\operatorname{Ln}(g-k v)-\operatorname{Ln}(g-k v)]=t \quad(g>k v) \\
\frac{-1}{k} \operatorname{Ln}\left(\frac{g-k v}{g-k v}\right)=t \\
\operatorname{Ln}\left(\frac{g-k v}{g-k v}\right)=-k t \\
\frac{g-k v}{g-k v}=e^{-k t} \\
g-k v=(g-k v) e^{-k t} \\
k v=g-(g-k v) e^{-k t} \\
v=\frac{g}{k}-\frac{(g-k v)}{k} e^{-k t}
\end{gather*}
$$

MATHEMATICS Extension 1 : Question........
Suggested Solutions \quad Marks
Marker's Comments

MATHEMATICS Extension 2: Question........
Suggested Solutions
Marker's Comments

MATHEMATICS: Question

$$
\begin{aligned}
& \text { Suggested Solutions } \\
& \therefore V_{p}-V_{Q}=\frac{g}{k}-\left(\frac{g-k u}{k}\right)\left(\frac{U-k d}{U}\right)-\frac{g d}{U} \\
& \quad=\left(\frac{g}{k}-\frac{g}{k}+U+\frac{g d}{U}-k d\right)-\frac{g d}{U} \\
& \quad=U-k d
\end{aligned}
$$

b) : $S P$ is linear in h.

Let $S p=m h+b$.
when $h=0, S p=0, \therefore b=0$

$$
\begin{aligned}
& h=H, S P=2 r \\
& \therefore 2 r=m H \\
& \quad \therefore m=\frac{2 r}{H} \\
& \therefore S P=\frac{2 r h}{H}
\end{aligned}
$$

$P Q$ is also linear in h.
Let $P Q=n h+p$
when $h=0, P Q=4 r$

$$
\therefore p=4 r
$$

when $h=H, P Q=2 r$

$$
\begin{gathered}
\therefore 2 r=n H+4 r \\
n=\frac{-2 r}{H} \\
\therefore P Q=4 r-\frac{2 r h}{H}
\end{gathered}
$$

- (i) nose ot rectangle

MATHEMATICS Extension 1 : Question........

