Student		
Number:		
Class:		

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2018

MATHEMATICS EXTENSION 2

General Instructions:

- Reading Time: 5 minutes.
- Working Time: 3 hours.
- Write in black pen.
- · Board approved calculators & templates may be used
- · A Standard Integral Sheet is provided.
- In Question 11 16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 100

Section I: 10 marks

- Attempt Question 1 10.
- Answer on the Multiple Choice answer sheet provided.
- Allow about 15 minutes for this section.

Section II: 90 Marks

- Attempt Question 11 16
- Answer on lined paper provided. Start a new page for each new question.
- Allow about 2 hours & 45 minutes for this section.

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Section A MULTIPLE CHOICE

(Use the Multiple choice answer sheet for questions 1 - 10)

One mark will be awarded for each correct answer.

Question 1

After using the method of slicing to find a volume, the final calculation requires the evaluation of this integral

$$\int_{-8}^{8} \sqrt{64 - x^2} \, dx$$

The value of this integral is :

A) 0 B) 32π C) 64π D) 128π

Question 2

If ω is a complex root of the equation $z^3 = 1$, then the value of

$$\frac{1}{5+6\omega+5\omega^2} - \frac{1}{3+3\omega+2w^2}$$
 is
A) -1 B) $-\frac{1}{2}$ C) $\frac{1}{2}$ D) 1

Question 3

If the polynomial P(x) is divided by $(x^2 + 25)$ then the remainder is 3x + 4. What is the remainder when P(x) is divided by (x + 5i)?

A) 15-4i B) 15+4i C) 4-15i D) 4+15i

Question 4

The gradient of the tangent to the curve $x^3 + y^3 - 8xy + 7 = 0$ at the point (1,2) is:

A) $\frac{4}{13}$ B) Undefined C) $\frac{13}{4}$ D) $\frac{3}{2}$

Question 5

A projectile is fired from the origin at a fixed angle θ with a velocity V. If this velocity is doubled, while the angle of projection remains the same, then the range of the projectile across horizontal ground will:

A)	Remain unchanged.
B)	Increase by a factor of $\sqrt{2}$
C)	Increase by a factor of 2.
D)	Increase by a factor of 4.

Question 6

Which of the following loci is identical to the locus |z| = 2, Im(z) > 0?

A)	$z\overline{z}=4$, Re(z) > 0	B) $\operatorname{Arg}\left(\frac{z-2}{z+2}\right) = \frac{\pi}{2}$
C)	$\operatorname{Re}\left(\frac{z+2}{z-2}\right) = 0$	D) $\operatorname{Arg}\left(\frac{z+2}{z-2}\right) = \frac{\pi}{2}$

Question 7

What is the solution of the inequality			$\frac{x(5-x)}{x-4} \ge -3$?				
A)	$2 \le x < 4$ or $x \ge 6$	B)	$4 < x \le 5 \text{or} x \le 1$				
C)	$4 < x \le 6$ or $x \le 2$	D)	$1 \le x < 4$ or $x \ge 5$				

Question 8

f(x) is a continuous, differentiable function over $a \le x \le b$ and g(x) is a continuous, differentiable function over $c \le x \le d$. Which one of the following integrals is always greater than, or equal to, the other choices?

A) $\int_{a}^{b} f(x) dx + \int_{c}^{d} g(x) dx$ B) $\left| \int_{a}^{b} f(x) dx \right| + \left| \int_{c}^{d} g(x) dx \right|$

C)
$$\int_{a}^{b} |f(x)| dx + \int_{c}^{d} |g(x)| dx$$
 D) $\left| \int_{a}^{b} f(x) dx + \int_{c}^{d} g(x) dx \right|$

Question 9

A particle is moving along a straight line so that initially its displacement is x=1, its velocity v=2 and its acceleration is a=4.

Which of the following is a possible equation describing the motion of the particle?

A)	$v^2 = 4(x^2 - 2)$	B)	$v = 2 + 4\log_e x$
C)	$v = 2\sin(x-1) + 2$	D)	$v = x^2 + 2x + 4$

Question 10

In the diagram, ABCD is a square in the first quadrant as shown. If A represents the complex number z and C represents the complex number w, then B represents which of the following complex numbers?

A)
$$\frac{z-w}{2} - \frac{i(z+w)}{2}$$

B) $\frac{z-w}{2} + \frac{i(z+w)}{2}$
C) $\frac{z+w}{2} - \frac{i(z-w)}{2}$
D) $\frac{z+w}{2} + \frac{i(z-w)}{2}$

End of Section A

Section B

In this section you should include all necessary reasoning and calculations.

Question 11 (Start each new question on a separate sheet of paper.) Marks

(a) By using partial fractions, or otherwise, evaluate
$$\int_{-2}^{-1} \frac{18dx}{x^2(x+3)}$$
 3

(b) Evaluate
$$\int_0^{\frac{\pi}{4}} \sec^4 x \, dx$$
 3

(c) (i) Show that
$$\frac{d}{dx}(x^2 \tan^{-1}x) = 2x \tan^{-1}x + 1 - \frac{1}{1+x^2}$$
 2

(ii) Hence find the exact value of
$$\int_0^{\sqrt{3}} x \tan^{-1} x \, dx$$
 2

(d)
$$z_1 = -2 + 2i$$
 and $z_2 = -1 + i\sqrt{3}$ are two complex numbers.

(i) Express
$$z_1$$
, z_2 and $\frac{z_1}{z_2}$ in modulus/argument form. 3

2

(ii) Find the smallest positive integer *n* such that $\frac{z_1^n}{z_2^n}$ is purely imaginary and, for this value of *n*, write down the value of $\frac{z_1^n}{z_2^n}$ in the form *bi* where *b* is a real number.

Marks

A sketch of the curve $y = x^2(x-3)$ is shown above.

On separate sets of axes sketch the graphs of:

(i)
$$y^2 = x^2(x-3)$$
 2

(ii)
$$y = \frac{1}{x^2(x-3)}$$
 2

(iii)
$$y = \frac{1}{x^2(|x|-3)}$$

(b) Consider the ellipse $4x^2 + 3y^2 = 48$.

- (ii) Write down the coordinates of the foci and the equations of the directrices. 2
- (iii) Sketch the ellipse, showing the above features and the intercepts on the 1 coordinate axes.
- (c) (i) Prove that, for all real a and b,

$$a^2 + b^2 \ge 2ab \tag{1}$$

(ii) Prove that, for any positive, real x and y,

$$\frac{x}{y} + \frac{y}{x} \ge 2$$
 1

(iii) Prove by induction, or otherwise, that

$$(x_1 + x_2 + x_3 + \dots + x_{n-1} + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_{n-1}} + \frac{1}{x_n}\right) \ge n^2$$

where the x_i are all real and positive.

Question 13 (Start each new question on a separate sheet of paper.)

- (a) The figure shows a cyclic quadrilateral ABCD with diagonals AC and BD. E is a point on AC such that angle ABE equals angle DBC.
 - (i)Prove that triangle ABE is similar to triangle DBC.2(ii)Prove that triangle ABD is similar to triangle EBC.2(iii)Hence prove Ptolemy's Theorem, which, in this context, states3 $AB \times CD + AD \times BC = AC \times BD$ 3Sketch the curve $y = \frac{(x-2)(x+1)}{5-x}$ over the domain $\{x: -5 < x < 15\}$ showing the axis intercepts and the relationship of the curve to its oblique asymptote.
 - (You are given that there are turning points near x = 0.75 and x = 9.25 but you need not evaluate their values exactly.)
- (c) A jar contains w white and r red jelly beans. Three jellybeans are taken at random from the jar and eaten.

(b)

(i) Write down an expression, in terms of w and r, for the probability that the three jellybeans were all white. (Leave in factorised form.)

It was observed that, if the jar had initially contained (w + 1) white and r red jellybeans, then the probability that the 3 eaten jellybeans were white would have been double that in part (i).

(ii) Show that
$$r = \frac{(w-2)(w+1)}{5-w}$$
 2

(iii) Using part (b) or otherwise, determine all possible values of w and r.

Marks

3

1

Question 14 (Start each new question on a separate sheet of paper.)

- (a) Consider the polynomial $p(x) = ax^4 + bx^3 + cx^2 + dx + f$ where a, b, c, d and f are integers. Suppose α is a non-zero integer such that $p(\alpha) = 0$.
 - (i) Prove that α divides f.
 - (ii) Show that the polynomial $q(x) = 4x^4 x^3 + 3x^2 + 2x 3$ does not have an integer zero.
- (b) Two light rigid rods PQ and QR, each of length d metres, are smoothly jointed at Q and the rod PQ is smoothly jointed at the fixed point P. The joint at Q has a mass of Mkg attached.

A small ring of mass m kg is smoothly jointed to QR at R and can slide on a smooth vertical rod which also passes through P.

The system rotates about the vertical causing the ring to rise up the vertical rod.

In equilibrium the system is rotating at ω rads/sec and the rods form an angle θ with the vertical (as shown).

- (i) Copy the diagram and, by resolving forces at points Q and R, show that $M\omega^2 d = (2mg + Mg)\sec\theta$
- (ii) Now suppose that M = 4m and that a safety switch operates when $\theta = \pi/3$. 1 Show that this occurs when $\omega = \sqrt{\frac{3g}{d}}$
- (c) The complex number z satisfies the condition $|z 8| = 2 \operatorname{Re}(z 2)$.
 - Write down the equation of the locus in its more usual Cartesian form, 3
 noting any restrictions that apply.
 - (ii) Sketch the locus on an Argand diagram and find the possible values 3 of Arg z.
 - (iii) Write down the value of |z + 8| |z 8| for any point on the curve. 1

Marks

1

2

Que	<u>estion</u>	15 (Start each new question on a separate sheet of paper.) Man	rks
(a)	The a rotate find t	area bounded by the parabola $y = x(3 - x)$ and the x axis is ed about the line $x = 4$. Use the method of cylindrical shells to the volume of the solid formed.	4
(b)	Let o	α , β and γ be the roots of the equation $x^3 - 3x^2 + 5 = 0$.	
	(i)	Find a cubic polynomial equation with integer coefficients whose roots are α^2 , β^2 and γ^2 .	2
	(ii)	Find the value of $\alpha^4 + \beta^4 + \gamma^4$.	2
(c)	<i>P(3p</i>) The c	(3/p) and $Q(3q,3/q)$ are two points on the rectangular hyperbola $xy = 9$. Equation of the chord PQ is $pqy + x = 3(p + q)$ (DO NOT PROVE THIS)	
	The	chord PQ meets the x and y axes at G and H respectively.	
	(i)	Find the coordinates of M , the midpoint of PQ .	1
	(ii)	Show that $PH = QG$	2
	(iii)	If the chord PQ always passes through the point (0,2), find the locus of M , proving any restrictions.	4

Question 16 (Start each new question on a separate sheet of paper.)

(a) A particle P, of unit mass, is thrown vertically downwards in a resistive medium where the resistive force is proportional to speed. Thus, taking downwards as positive, the equation of motion is $\ddot{x} = g - kv$ where k > 0.

The particle is thrown, with an initial speed U, from a point T which is d units above a fixed point O which should be taken as the origin. So the initial conditions are : when t = 0, v = U and x = -d

(i) Show that, during the subsequent motion of P,

$$v = \frac{g}{k} - \left(\frac{g - kU}{k}\right)e^{-kt}$$

(You may assume that $U < \frac{g}{k}$)

(ii) Integrate again to show that

$$x = \frac{gt-kd}{k} + \left(\frac{g-kU}{k^2}\right)(e^{-kt} - 1).$$

- (iii) An identical particle Q is dropped from rest at O at the same instant that P is thrown down. Use the above results to write down expressions for v and x as functions of time for Q.
- (iv) The particles P and Q collide. Find when the collision occurs and the difference in speeds as the particles collide.

Question 16 is continued on the next page...

Marks

2

2

A tunnel has an isosceles trapezium ABCD as its base with AB of side length 4r and CD of side length 2r. The tunnel is of length H and the height along the centre line is constant at 3r. The cross section perpendicular to the floor at AB is a semi-ellipse with AB as the minor axis and with a semi-major axis of length 3r. The cross section perpendicular to CD is a square CDEF surmounted by a semicircle of radius r.

A typical internal cross-section (as shown) comprises a rectangle surmounted by a semi-ellipse. *AED* and *BCF* are thence plane triangles.

(You may assume that the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab square units.)

(i) Show that the tunnel cross-sectional area at a perpendicular distance h from AB is given by :

$$\frac{r^2}{2H^2}(2H-h)(3\pi H+(8-2\pi)h)$$
4

(ii) Hence find the volume of the tunnel.

END OF EXAMINATION

MULTIPLE CHOICE 4. C 5. D 6. B 7. C 8. C 9. C 10 D 1. B. 2. A. 3.C 1 Semicicale rad = 8, TT 8/2 2. $1+\omega+\omega^2=0$ $1-1=1+1=\omega+\omega^2=-1$ $\omega-\omega^2=\omega-\omega^2=0$ 3. P(x) = Q(x) (x + 5i)(x - 5i) + 3x + 4P(-5i) = -15i + 44. $3x^{2}+3y^{2}y^{2}-8y-8xy^{2}=0$ $y^{2}=8y-3x^{2}=16-3$ $3y^{2}-8$ 12-85. Range = V sin 20 7-2 +2 $\frac{x<4}{x \leq 2}, \frac{x<4}{x \leq 2}, \frac{x<4}{x \leq 2}$ 7. x>4 x(5-x) ≥ -3(x-4) 07x2-8x+12 0≥ (x-6)(x-2) 4< x < 6 8 C 9, a) $\sqrt{2} < 0$ b) $v dv = (2 + 4 lm x) 4 = 8 \ln x = 1 \times d) \sqrt{1/2} = 1$ 10, 0B = 0A + AB= OA + AC | cio(-45°)= z + (w - z)(1 - i) $= z + (w - z) + (1 - \dot{z}) = \sqrt{52} (5z - \sqrt{52})$ $= \frac{z}{2} + \frac{1}{2} + \frac{$

MATHEMATICS Extension 2: Questio	11	
Suggested Solutions	Marks	Marker's Comments
$ \begin{pmatrix} (4) \\ 18 \\ \overline{x^{2}(x+3)} &= \frac{A}{x^{2}} + \frac{B}{y_{L}} + \frac{C}{x+3} \\ A(x+3) + B_{x}(x+3) + C_{x}^{2} = 18 \\ x = -3 c = 2 \\ x = 0 3A = 18 A = 6 \\ \end{pmatrix} $		other methods also valies At + B JC2 J(+3
$\chi = 1 + 4A + 4B + C = 18$		is not counce
$P_{24} + 40 + 2 = 18$		
4B = -8 $B = -2$	1	
$\int_{-2}^{-1} \frac{6}{x^2} \frac{\overline{x}}{\overline{x}} \frac{2}{\overline{x}} + \frac{2}{\overline{x+3}} dx$		$\frac{NB}{\pm} \int \frac{-6}{3x^3}$
$= \left[\frac{-6}{x} - 2\ln x + 2\ln x+3 \right]^{-1}$ or $-\ln x^{2}$	1	x critical ar (-2) not
= (6+21n2) - (38-21-2+0)		defi-ed
= 3 + 41 - 2	1	with regative
b) T_{4} $5 = \int_{0}^{T_{4}} \int_{0}^{T_{4}$		

H:\Maths\marking templates\Suggested Mk solns template_V2_no Ls.doc

()

		(2)
MATHEMATICS Extension 2 : Oues	tion 5 l	\smile
Suggested Solutions	Marks	Marker's Comments
let ustan x dy = sect x		students racle
$\chi = \frac{TT}{CI}$ $G = 1$		difficult
7(=0 4=0	· ·	1L tegration
$\int (1+u^2) du$		Ly parts.
0 7		
$= \left[\begin{array}{c} u + \frac{u^3}{3} \end{array} \right]_0^1$		
= 4		
3		

· —

H:\Maths\marking templates\Suggested Mk solns template_V2_no Ls.doc

MATHEMATICS Ext 2: Question	<u>s tl</u>	
Suggested Solutions	Marks	Marker's Comments
(c) (u) $\frac{d}{dx}(\chi^2 + \alpha - \chi) = 2\chi + \alpha - \chi + \chi^2 + \frac{1}{1 + \chi^2}$ (product rule)		
(ii) $\sqrt{3}$ $\int \chi + 4an^{-1} \chi = \frac{1}{2} \left[\chi^{2} + 4an^{-1} \chi \right]_{6}^{\sqrt{3}}$ $-\frac{1}{2} \int 1 dx + \frac{1}{2} \int \frac{d_{32}}{1 + \chi^{2}}$ $= \frac{1}{2} \left[\chi^{2} + 4an^{-1} \chi - \chi + \frac{1}{2} dn^{-1} \chi \right]_{6}^{\sqrt{3}}$		
$= \frac{1}{2} \begin{bmatrix} 3 \times \frac{1}{3} & -\sqrt{3} + \frac{1}{3} & -0 \end{bmatrix}$ $= \frac{2}{3} - \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}$	l	
(d) $Z_1 = 2\sqrt{2} \left(\cos^3 \frac{\pi}{4} + i \sin^3 \frac{\pi}{4} \right)$ $Z_2 = 2 \left(\cos^2 \frac{2\pi}{3} + i \sin^2 \frac{2\pi}{3} \right)$ $\frac{Z_1}{Z_2} = \sqrt{2} \operatorname{cis} \left(\frac{3\pi}{4} - \frac{2\pi}{3} \right)$ (de rejure's) $= \sqrt{2} \cos \frac{\pi}{4} + i \sin \frac{\pi}{3}$		Students who wrote cis lost a mark. A number of students found point in wrong guedrant

H:\Maths\marking templates\Suggested Mk solns template_V2_no Ls.doc

MATHEMATICS Extension 2 : Oues	tion5	
Suggested Solutions	Marks	Marker's Comments
(ii) (2) h = (J2) (corntt + isi - nt) (J2) (corntt + isi - nt) (J2 Hoivres) Purely when the second		
le n=6	١	readed to show working
$ \left(\begin{array}{c} 2\\ 2\\ 2 \end{array} \right)^{6} = \left(\sqrt{2} \right)^{1} + 1 + \frac{1}{2} \\ = 8^{1} \\ \end{array} $		

Ý

H:\Maths\marking templates\Suggested Mk solns template_V2_no Ls.doc

E:\marking templates\Suggested Mk solns template_V2_no Ls.doc

- Page 2 -

JRAHS: TRIALS 2018 MATHEMATICS Extension 2: Question 12			
Suggested Solutions	Marks	Marker's Comments	
b) (i) $4x^{2} + 3y^{2} = 48$ $\Rightarrow \frac{x^{2}}{12} + \frac{y^{2}}{16} = 1$ which is of the form $\frac{x^{2}}{12} + \frac{y^{2}}{12} = 1$		Note for transverse ellepse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a > b and $b^2 = a^2(1-e^2)$	
with $a > b$ [vertual] Hence $b^2 = a^2(1-e^2)$ $b^2 = 16(1-e^2)$ $\therefore e = \frac{1}{2}$, $0 < e < 1$	1	For correct e>o	
(11) Foci at (0,±ae) (0,±4xt)		Note for horizontal ellipse, Foci at (±90,0)	
$(o, \pm 2)$ directrix at $y = \pm \frac{a}{e}$ $= \pm \frac{4}{e}$		For Foci Note for horizontal ellepse, derectrix at $x = \pm \frac{9}{6}$	
$=\pm 8$	1	For directrix	
(11) $-2\sqrt{3}$ $-2\sqrt{3}$ s' -2 -4 -4 y = -8	1	For Foci, directrix and intercepts	

E:\marking templates\Suggested Mk solns template_V2_no Ls.doc

		- lage 3 -
JRAHS : TRIALS 2018 MATHEMATICS Extension 2: Questio	n 12	
Suggested Solutions	Marks	Marker's Comments
c) (1) For $a, b \in \mathbb{R}$, $(a-b)^2 \ge 0$ $\Rightarrow a^2 - 2ab + b^2 \ge 0$	ŀ	for convect proof
$\frac{a^{2}+b^{2}}{Method \Pi} : \frac{consider}{A^{2}+b^{2}-2ab}$ Method Π : Assume $a^{2}+b^{2} \leq 2ab$ and		
avrive at a contradiction		
(i) set $u = \int \frac{y}{y}$ and $y = \int \frac{y}{y}$ where $x, y > 0$ Since $a^2 + b^2 > 2ab$ from (1)		
then $\left(\sqrt{3}\frac{1}{y}\right)^2 + \left(\sqrt{3}\frac{1}{x}\right)^2 \gg 2\sqrt{\frac{1}{y}} \cdot \sqrt{\frac{1}{y}}$		
$\Rightarrow \frac{\chi}{g} + \frac{y}{\chi} > 2$ Method π : from (1) $\chi^2 + \mu^2 > 2\chi_g$	ſ	For correct proof
$\Rightarrow \frac{\chi^2 + y^2}{\chi_y} > 2 \text{if } \chi_y > 0$ $\Rightarrow \frac{\chi^2}{\chi_y} + \frac{y^2}{\chi_y} > 2$ $\Rightarrow \frac{\chi^2}{\chi_y} + \frac{y^2}{\chi_y} > 2$		
1.e x + # > 2 y x		
Method III: Consider x+y-2		
and proceed as usual		

E:\marking templates\Suggested Mk solns template_V2_no Ls.doc

•

$$-\frac{hge}{hge}$$

$$\frac{-hge}{hge}$$

$$\frac{\int RAHS: TELACS: 2018 MATHEMATICS Extension 2: Question [2]}{Suggested Solutions} (1) \frac{Marks Marker's Comments}{Marks Marker's Comments}$$

$$\frac{f(n)}{n} T_{o} \underline{prove} (\chi_{i}, H_{\chi_{1}}, \dots, H_{n})(\frac{1}{\chi_{i}}, \frac{1}{\chi_{i}}, \frac{1}{\chi_{i}}, \dots, \frac{1}{\chi_{n}}) \ge n^{2} \quad \text{for } n \ge [2] \\ \frac{hood}{hood}: Base case: Prove free from n = 1 \\ LHS = \chi_{i} \times \frac{1}{\chi_{i}} = 1 \\ LHS = \chi_{i} \times \frac{1}{\chi_{i}} = 1 \\ RHS = 1^{2} = 1 \\ \dots HS > RHS \\ \dots free for n = 1 \\ 1 \quad for base case \\ HS = wide for n = Re \in \mathbb{Z}^{+} \\ 1 \quad for using A = B + A^{2} \\ \frac{hove ntationent frue for n = Re + 1}{1 \quad for use of part(n)} \\ \frac{how}{hest} = \frac{h^{2}}{\chi_{i}} + \frac{1}{\chi_{i}} + \dots + \frac{1}{\chi_{i}} \ge R^{2} \\ \frac{how}{how} \\ LHS = [A + \chi_{k+1}] [B + \frac{1}{\chi_{k+1}}] = (R+1) \\ \frac{how}{hest} = AB + A + \frac{1}{\chi_{k+1}} = B + \frac{\chi_{k+1}}{\chi_{k+1}} = where A = (\chi_{i} + h_{2} + \dots + \chi_{k}) \\ \frac{h^{2}}{\chi_{k+1}} + \frac{\chi_{k+1}}{\chi_{k+1}} = \frac{\pi}{h} \\ \frac{h^{2}}{\chi_{k+1}} + \frac{\chi_{k+1}}{\chi_{k+1}} = \frac{\pi}{h} \\ \frac{h^{2}}{\chi_{k+1}} + \frac{\chi_{k+1}}{\chi_{k+1}} = \frac{\pi}{h} \\ \frac{h^{2}}{\chi_{k+1}} + \frac{\chi_{k+1}}{\chi_{k+1}} + \frac{\chi_{k+1}}{\chi_{k+1}} \\ \frac{h^{2}}{\chi_{k+1}} + \frac{\chi_{k+1}}{\chi_{k+1}} \\ \frac{h^{2}}{\chi_{k+1}} + \frac{\chi_{k+1}}{\chi_{k+1}} \\ \frac{h^{2}}{\chi_{k+1}} + \frac{\chi_{k+1}}{\chi_{k+1}} \\ \frac{h^{2}}{\chi_{k+1}} = \frac{h^{2}}{\chi_{k+1}} \\ \frac{h^{2}}{\chi_{k+1}} \\ \frac{h^{2}}{\chi_{k+1}} \\ \frac{h^{2}}{\chi_{k+1}} \\ \frac{h^{2}}{\chi_{k+1}} \\ \frac{\chi_{k+1}}{\chi_{k+1}} \\ \frac{h^{2}}{\chi_{k+1}} \\ \frac{\chi_{k+1}}{\chi_{k+1}} \\ \frac{h^{2}}{\chi_{k+1}} \\ \frac{\chi_{k+1}}{\chi_{k+1}} \\ \frac{\chi_{k+1}}{\chi_$$

MATHEMATICS Extension 2: Question. 1.3.			
Suggested Solutions	Marks	Marker's Comments	
Suggested Solutions (A) D (ABE = $\angle CBD$ (ABE = $\angle CBD$ (ABE = $\angle CBD$ (ABE = $\angle CBD$ (Angles at the C'rcumference Standing on arc BC are (ABE = $\angle CBD$ (Angles at the C'rcumference Standing on arc BC are (ABE = $\angle CBD$ (ABE = $\angle BDC$ (Angles at the C'rcumference Standing on ABE = $\angle ABE$	Marks	2 pairs of equal angles Need "at the circumference" Please check your wording.	
: DABE MADBC	1		
(equiangular) 11) In DABD & DEBC ABD = /_EBC (Both are sum of given equal angles and /_EBD)			
<u>LADB = LECB (angles at the civcumference</u> <u>Standing on the Same arc AB</u> <u>are equal</u>	1	2 pairs of equal angles	
<u> </u>	1		
III) AB = AE (corresponding sides of DB DC similar triangles ABE and DB are in the same ratio)	c I	Check wording of reason	
Similarly in DABD and DEBC $\frac{BC}{BD} = EC$ $\frac{BD}{AD}$	1		
$\frac{AD \times BC}{and AD \times BC} = EC \times BD$ $\frac{O + O}{AB \times CD} + AD \times BC = BD (AE + EC)$ $\frac{O + O}{AB \times CD} + AD \times BC = BD \times AC$ $\frac{BD \times AC}{AEC + S = BD \times AC}$	1	combining	

MATHEMATICS Extension 2: Question.) 	
Suggested Solutions	Marks	Marker's Comments
b) $y = (\chi - 2)(\chi + 1) = \chi^2 - \chi - 2$		
5-2 5-2		
-2-4		
$\chi - 5) - \chi^2 + \chi + 2$		
$-\chi^{2}+5\chi$		
x+2		
-4x + 20		
- 18		
$1 = -\chi - 4 = -18$		
71-5		
$\frac{1}{1} + \frac{1}{1} + \frac{1}$		
N interporte are 2 and 1		
<u>x-intercepts are 2 and -1</u>		
4-INFERCEDE IS = 75		
When $\lambda = 0.75$, $y = 0.5$ sturning		
$\chi = 9.25, \ y = -17.5$) points		
endpoints: $\mathcal{K} = -5$, $\mathcal{Y} = 2.8$		
$\kappa = 15, \ \eta = -20.8$		
<u></u>		
<u></u>		Asymptotes
		~ WALAGAROX
		L-Intercepts
0.75 9.25		y-merepi
5-4 -1-2 2 5 15		l'extrema
		x-values of its
		must have 5
		out of these
		6.
	1	shape
		Shupe
20-		

Marks **Marker's** Comments **Suggested Solutions** WC3 OR, W -W ł WTC WYY. corvect equation from your (i) W-2 ł H W+1 Wtr WYI W-2Ξ wtr tl W++-2 2(w-2)(w+r+1) (w+1)(w+r-2)= $^{2}+2wr+2w-4w-4r-1$ $W^{2}+rW-2W+W+r-2$ simplification $= W^2 - W - 2$ ł r(-w+5 $W^2 - W - 2$ -W+5 W-2)(W+1)= 5-W From graph ÌИ Шİ statement integers I ano including "integers". t 4 W =3 Or only final answers when w=3, r=2 Ì W = 4, r = 10Only one mark given if only one pair found r = 0 as this would give Note: w = 2, but 3 jellybeans are taken w > 2. are taken

MATHEMATICS Extension 2: Question			
Suggested Solutions	Marks	Marker's Comments	
a) i) $p(x) = ax^4 + bx^3 + cx^2 + dx + f$			
$: - ax^{4} + bx^{3} + cx^{2} + dx + f = 0$			
$\underline{\alpha x^{+} + b x^{3} + c x^{2} + d x = -f}$		must mention	
$\alpha (\alpha \alpha^3 + b \alpha^2 + \alpha + d) = -f$		integers.	
since a, b, c, d, f and x are	1	9	
integers, ~ divides t.			
$ii) q(x) = 4x^{4} - x^{3} + 3x^{2} + 2x - 3$			
Suppose there is an integer zero, d.			
Then a divides -3, ie. a=±lor ±3	\	listing all	
$q(1) = 4(1)^{4} - (1)^{3} + 3(1)^{2} + 2(1) - 3$		possiblex	
5			
$\underline{q(-1) = 4(-1)^{4} - (-1)^{3} + 3(-1)^{2} + 2(-1) - 3}$			
= 3			
$a(3) = 4(3)^{4} - (3)^{3} + 3(3)^{2} + 2(3) - 3$			
= 327			
$q(-3) = 4(-3)^{4} - (-3)^{3} + 3(-3)^{2} + 2(-3) - 3$			
= 369			
None are O.	i	showing none	
		are zero.	
$b)i) \qquad At R: T_2 cos \theta = mq \ D$	l 1		
A 0 A+Q:			
vertically: T.COSO-T2COSO=Mg	1		
a r r horizontallu:			
$T_{1} = T_{2} = T_{2} = T_{2} = M \omega^{2} r$			
Mg since sin 0 = J			
$r = dsin\theta$			
T_{1} = T_{2} = T_{2} = $M\omega^{2}d\sin\theta$			
$\frac{K_1}{T_1 + T_2} = M\omega^2 d$	1		
mg sub. D into 2			
$\frac{T_1\cos\theta - mg}{Mg} = Mg$			

MATHEMATICS Extension 2: Question!	⊢	
Suggested Solutions	Marks	Marker's Comments
$T_1 \cos \theta = Mq + mq$		
$- T_1 = (Mq + mq) sec \Theta (4)$		
from (): T2 = masec 9 (5)		
Sub (1) and (5) into (3)		
(Mg+mg) seco + mgseco = Mw2d	1	for working
$\frac{1}{(Mq + mq + mq)} \sec \theta = Mw^2 d$		out. J
$\underline{ii} M = 4m \Theta = \frac{\pi}{3}$		
4mw ² d = (2mg + 4mg) sec =		
	\	must show
$4m\omega^2 d = 12mq$		substitution
$\omega^2 = 12mq$	2	
4md		
<u> </u>		
d		
$\underline{ } \omega = \underline{3q}, \omega > O$		
J &		
·		
(-c)i) z-8 = 2Re(z-2)		
let z=x+iy		
$\frac{ x+iy-8 }{ x+iy-2 } = 2 \operatorname{Re}(x+iy-2)$		
$\frac{1(x-8)^2+y^2=2(x-2)}{2(x-2)}$	1	
$\frac{(x-8)^2 + y^2}{(x-2)^2} = \frac{4(x-2)^2}{(x-2)^2}$		
$\frac{x^{2}-16x+64+y^{2}=4(x^{2}-4x+4)}{x^{2}-16x+64+y^{2}=4(x^{2}-4x+4)}$		
$\frac{x^2 - 16x + 64 + y^2 = 4x^2 - 16x + 16}{x^2 - 16x + 16}$		
$\frac{48 = 3x^{2} - y^{2}}{48 = 3x^{2} - y^{2}}$		
$x^{2} - y^{2} = 1$	1	
16 48		
$\frac{ z-8 > 0 \qquad 2 \operatorname{Re}(z-2) > 0}{ z-8 > 0}$		
$ 2(x-2) \ge 0$		
x-2>0		

MATHEMATICS Extension 2: Question	<u>ң</u>	
Suggested Solutions	Marks	Marker's Comments
$\begin{array}{c} 11 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 $		shape asymptotes
$y = -\sqrt{3}x$		
$a = 4 , b = 4\sqrt{3}$ $asymptotes: y = \pm \frac{b}{2}x$ $= \pm\sqrt{3}x$ $y = \sqrt{3}x$ $m = \sqrt{3}$		if no restriction
$\frac{1}{2} + 8 - z - 8 = 2a$ $= 8$		in part (i) then-Id Argz< Id and Argz for the other branch needed for Iman
·		

MATHEMATICS: Question 15			
Suggested Solutions EX2	Marks	Marker's Comments	
(b)(i) Let a ² = x be solution to culoix polynomial (m/ integer		Reasoned well,	
$coefficients$). The $\alpha = \pm \sqrt{2}i$.)		
We have, by construction,			
$\alpha^3 - 3\alpha^2 + 5 = 3$			
so, $(\pm\sqrt{3}c)^{3} - 3(\pm\sqrt{3}c)^{2} + 5 = 0$			
± x 1 x - 3 x + 5 = 0			
$\Rightarrow \qquad \left(\pm \varkappa(\sqrt{\chi})^2 = (3\chi - 5)^2\right)$			
$1.1.1 = 9_{21}^2 - 30_{11} + 25$			
$x^{3} - \frac{9}{2}x^{2} + \frac{30}{2}x - 25 = 0$	1		
trees solutions a2, 132, x2			
if x, B, & solutions to			
$x^{3} - 3x^{2} + 5 = 0$			

MATHEMATICS: Question 15			
Suggested Solutions	Marks	Marker's Comments	
(ii) We have that		Handled well.	
$(\alpha^{2} + \beta^{2} + \gamma^{2})^{2} = \alpha^{4} + \beta^{4} + \gamma^{4}$			
$+2\left(\alpha^{2}\beta^{2}+\beta^{2}\gamma^{2}+\gamma^{2}\alpha^{2}\right)$	1		
From cubic faud in part (i),			
$Z_{1x^{2}} = 9$ $Z_{0x^{2}}^{1} = 30$,			
$s_0 q^2 = Z_1^1 \alpha^4 + Z(30)$			
$i \cdot e \cdot \omega^{4} + \beta^{4} + \delta^{4} = 81 - 60$			
= 21.	1		

MATHEMATICS: Question 15 utions <u>É</u>XTZ M **Suggested Solutions** Marks **Marker's Comments** $= \left[\left(\frac{3p}{2} \right)^2 + \left(-\frac{3}{2} \right)^2 \right]$ One mark $-\left[(3p)^{2} + (3q)^{2} \right]$ for connect conclusion. = 0 $PH^2 = QG^2 \rightarrow PH = QG$ I 50 (PH,QG >0) Could also have argued. UK) this geometrically, but so/~ presented here is that Shich majority of candidature presented.

MATHEMATICS: Question	5	· · · · · · · · · · · · · · · · · · ·
Suggested Solutions EXT2	Marks	Marker's Comments
Now, $\Delta = (-2\pi)^2 - 4(3)(3\pi)$		
$= 4x^2 - 36x$		
Require 4x2-36x 20		
-> ~(x - 9) >> 0		
-> x <0 >r x >9		
But, checking endpoints:		
$ (if x = 0, then \frac{3}{2}(p+2) = 0 $		
so $p = -\frac{q}{2}$.		
Also require constraint		
2pz = 3(p+q)		
be satisfied; then		
$2p(-p) = 0 \implies p = 0$		
$s_{0} q = 0$ also.		
This can't happen since		
then P, Q would be		
$mdefined (e.g. "(0, \infty)")$		

•

MATHEMA	TICS: Question /	<i>'</i> 5	
Suggested Solutions	EXT2	Marks	Marker's Comments
(1) if $x=9$, then	м.		
$9 = \frac{3}{2}(p+2)$,		• •
so = 6 - p	• •		• •
Checking constraint:			. ,
2p(6-p) = 3(p+(6-p)) = 3(p+(6	-p))		• • • • • • •
$\rightarrow p^2 - 6p + 9 = 3$	· · ·		
-> (p-3)2 = 0			
p = 3, implying	g=3, too	•	
But then PQ does not	form		
a line segment a	ol so		
no midport.			
	-		
4 			
	•		

·

MATHEMA	TICS: Que	estion 15	· · · · · · · · · · · · · · · · · · ·
Suggested Solutions	EXIL	Marks	Marker's Comments
Now, if a > 9, then			
$\frac{3p^2}{2p-3} > 9$			
$50 3p^{2}(2p-3) > 9(2p-3)$			
\$ (2p-5)(p-3) ² >9			
-> p>3/2			
But $q = \frac{3p}{2p-3}$ so q if $p > 3/2$ but th	20 2		
P, q are on same bro	unch		
& :. don't generate a			
Chard passing through	(0,2)		
So x>9 not allowed	4		
On the other hand, if ?	(< 0 ,		
then (2p-3) (p-3) 2 < 0			
-> pe 3/2			

C:\Users\sguest12\Desktop\Suggested Mk solns template.doc

MATHEMATICS: Qu	estion 15	
Suggested Solutions	Marks	Marker's Comments
If $0 < P < \frac{3}{2}$, then $\frac{9}{2} = \frac{3p}{2p-3} < 0$, so P, Q on separate branches $- 5K$.		
If $p < 0$, then $g = \frac{3p}{2p-3}$ and, so P, Q again on separate branches.		
$\frac{1}{1}$ No chord Chord through through $(0,2)$ if 260 . (0,2) if 239	/	Fihal mark for correct restriction
Hence, the Locus is y=1 for all real x <0	•	

C:\Users\sguest12\Desktop\Suggested Mk solns template.doc

MATHEMATICS Extension 1 : Question..... **Suggested Solutions** Marks **Marker's Comments** dx -kt ii \cup 0 e at b -ku 9 дŦ du = 2 <u>'</u>d € -kt For Integrating -LU q \bigcirc \mathfrak{X}^{-} C Н -kt X+d = qt 0 k ·О P -14 g-ku $\chi + c$ 0 とい ₽ a ki e r -h.V 9 - þ.t at 4 Х = Ó h2 -kt a 9-kU e 1 γ Ξ pd r k k in hi Substitute d = 0 U = 0 -kt ÷. e s-kt 9

MATHEMATICS Extension 2: Question..... Marks Suggested Solutions Marker's Comments Н $\frac{1}{24^2}$ H(8-27 8-<u>22)h</u> 677H + ົ n $= r^{2}$ 3 3 3 (8-277) 3 (8-271)-1 611-1 2142 = 21-1 3 8 -8-671-2-72 2 19TI 16 2 6 3 19TE + 32 h Some students were awarded they got either the 19Th or 32 term Rec 12 answer. 12 provided it wasn't acquired by accident