Student Name: _____

Maths class:

James Ruse Agricultural High School

2020 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions	Total Marks: 100	
	Section I – 10 marks	
 Reading time – 10 minutes 	Attempt Questions 1, 10	
 Working time – 3 hours 	 Answer on the Multiple Choice answer 	
Write using black pen	 sheet provided. Allow about 15 minutes for this section 	
NESA approved calculators may be used		
A reference sheet is provided	Section II – 90 marks	
 In Question 11 – 16, show all relevant mathematical reasoning and/or calcula- tions. 	 Attempt Questions 11–16 Answer on lined paper provided. Start a new page for each new question. 	
 Marks may not be awarded for careless or badly arranged working. 	 Allow about 2 hours & 45 minutes for this section. 	

The answers to all questions are to be returned in separate stapled bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Section I

10 marks Attempt Questions 1 to 10 Allow approximately 15 minutes for this section

Answer on the Multiple Choice sheet provided.

- 1. Let z be a complex number such that $z^2 = i\overline{z}$. Which of the following is a possible value for z?
 - (A) $e^{-\frac{i\pi}{3}}$ (B) $e^{\frac{i\pi}{3}}$ (C) $e^{\frac{i\pi}{6}}$ (D) $e^{-\frac{i\pi}{6}}$
- 2. Consider the following statement, "If you have no treasure, I have no kingdom." Which of the following is logically equivalent to this statement?
 - (A) If I have no kingdom then you have no treasure.
 - (B) If you have treasure then I have a kingdom.
 - (C) If you have no kingdom then I have no treasure.
 - (D) If I have a kingdom then you have treasure.
- 3. Which of the following integrals has the largest value?

(A)
$$\int_{0}^{\frac{\pi}{4}} \tan x \, dx$$

(B)
$$\int_{0}^{\frac{\pi}{4}} \tan^{2} x \, dx$$

(C)
$$\int_{0}^{\frac{\pi}{4}} (1 - \tan x) \, dx$$

(D)
$$\int_{0}^{\frac{\pi}{4}} (1 - \tan^{2} x) \, dx$$

4. The unit vector in the same direction as $\underline{u} = 2\underline{i} + 2\underline{j} - \underline{k}$ is which of the following?

(A)
$$\frac{-1}{36} \begin{bmatrix} -2\\ -2\\ 1 \end{bmatrix}$$

(B) $\frac{1}{3} \begin{bmatrix} 2\\ 2\\ -1 \end{bmatrix}$
(C) $\frac{1}{5} \begin{bmatrix} 2\\ 2\\ -1 \end{bmatrix}$
(D) $\frac{1}{6} \begin{bmatrix} 2\\ 2\\ -1 \end{bmatrix}$

- 5. Which of the following is an expression for $\int \frac{\cos^3 x + \sin^3 x}{\cos x + \sin x} dx$? (A) $x + \frac{1}{2}\cos 2x + c$ (B) $x - \frac{1}{2}\cos 2x + c$ (C) $x + \frac{1}{2}\sin^2 x + c$ (D) $x - \frac{1}{2}\sin^2 x + c$
- 6. ω is a complex cube root of unity and $\omega \neq 1$. What is the value of $\left(1 + \frac{1}{\omega}\right)^{2020} \left(1 + \frac{1}{\omega^2}\right)^{2021}$? (A) $-\frac{1}{\omega}$ (B) ω (C) $-\omega$ (D) 1
- 7. The projection of \overrightarrow{OA} onto \overrightarrow{OB} for A(4,2,-3) and B(-1,1,1) is which of the following?

(A)
$$\frac{5}{3} \begin{bmatrix} 1\\ -1\\ -1 \end{bmatrix}$$

(B) $\frac{5}{3} \begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix}$
(C) $\frac{5}{3} \begin{bmatrix} 4\\ 2\\ -3 \end{bmatrix}$
(D) $-\frac{5}{3} \begin{bmatrix} 4\\ 2\\ -3 \end{bmatrix}$

- 8. If the complex number z satisfies |z| z 4(1 2i) = 0, which of the following is $|z|^2$?
 - (A) 80 (B) 180 (C) 100 (D) 400
- 9. The value of $\frac{d}{dx} \left(\int_{x}^{2x} \frac{1}{1+t^2} dt \right)$ is which of the following? (A) $\frac{1}{1+x^2}$ (B) $\frac{2}{1+4x^2} - \frac{1}{1+x^2}$ (C) $\frac{1}{1+4x^2} - \frac{1}{1+x^2}$ (D) $\frac{1}{1+4x^2} + \frac{1}{1+x^2}$

10. Which of the following is the negation of the statement

" $\forall p \in P(p \text{ is of the form } 4m+1 \implies p \text{ can be written as a sum of two squares})"?$

- (A) $\forall p \in P(p \text{ is of the form } 4m+1 \text{ and } p \text{ cannot be written as a sum of two squares})$
- (B) $\exists p \in P(p \text{ is not of the form } 4m+1 \text{ and } p \text{ can be written as a sum of two squares})$
- (C) $\forall p \in P(p \text{ is not of the form } 4m+1 \text{ or } p \text{ cannot be written as a sum of two squares})$
- (D) $\exists p \in P(p \text{ is of the form } 4m+1 \text{ and } p \text{ can not be written as a sum of two squares})$

End of Section I

Section II

90 marks Attempt Questions 11 to 16 Allow approximately 2 hours and 45 minutes for this section.

Write your answers on the paper supplied.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)

(a) Find
$$\int \cos^3 x \, dx$$
.
(b) Use integration by parts to find $\int x \sec^2 x \, dx$.
(c) i. Express $\sqrt{-24 - 10i}$ in the form $a + ib$.
ii. Hence, solve $z^2 - (1 - i)z + 6 + 2i = 0$.
(d) i. Prove that
 $\int_a^b f(x) \, dx = \frac{1}{2} \int_a^b \{f(x) + f(a + b - x)\} \, dx$
ii. Hence, evaluate
 $\int_3^7 \frac{\ln(x + 2)}{\ln(24 + 10x - x^2)} \, dx$
(e) i. Sketch on the Argand diagram the set of all points satisfying $\arg\left(\frac{z - 1}{z + 1}\right) = \frac{\pi}{4}$. 2
Show all important features.

ii. On your diagram in part (i) shade the region where $\frac{\pi}{4} \le \arg\left(\frac{z-1}{z+1}\right) \le \frac{\pi}{2}$. **1** Show all important features.

End of Question 11

Question 12 (15 Marks)

- (a) The velocity $v \text{ ms}^{-1}$ of a particle moving in simple harmonic motion along the *x*-axis is given by $v^2 = 8 2x x^2$ where *x* is in metres.
 - i. Find the acceleration of the particle in term of x. 1
 - ii. State the centre and period of the motion. 2
 - iii. What is the maximum speed of the particle?
- (b) A molecule of ammonia ion $[NH_4]^+$ is structured with the four hydrogen atoms at the vertices of a regular tetrahedron and the nitrogen atom at the centroid. The bond angle is the angle formed by the H N H combination. It is the angle between the lines that join the nitrogen atom to two of the hydrogen atoms.

Take the vertices of the tetrahedron to be the points A(1,0,0), B(0,1,0), D(0,0,1) and E(1,1,1) where, A, B, D and E representing the hydrogen atoms as shown in the figure. The nitrogen atom is represented by point N.

i. Given that $\overrightarrow{NA} + \overrightarrow{NB} + \overrightarrow{ND} + \overrightarrow{NE} = 0$, show that the centroid is given by

$$N\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right).$$

ii. Show that the bond angle is approximately 109.5° .

2

2

(c) Consider the points $M = (1, \tan \beta)$ and $N = (1, \tan \alpha)$, where $\alpha = \angle AON$ and $\beta = \angle AOM$ as shown on the diagram below.

i.	Find a point <i>P</i> such that <i>OMPN</i> is a parallelogram.	1
ii.	Show that the area of a parallelogram with adjacent sides \underline{u} and \underline{v} is	3
	$\frac{ \underline{v} \underline{u} ^2 - (\underline{v}.\underline{u})\underline{u} }{ \underline{u} }$	

iii. Hence find the area of *OMPN*.

End of Question 12

Question 13 (15 Marks)

(a) Assume that the tides rise and fall in simple harmonic motion. At low tide, the channel in a harbour is 8m deep and at high tide, it is 12m deep. Low tide is at 9 AM and high tide is at 4 PM.

i.	What is the depth of the channel at 12:30 PM?	1
ii.	What is the amplitude of the motion?	1
iii.	What is the period of the motion?	1
iv.	Show that the depth <i>y</i> m of the water in the channel is given by	2
	$y = 10 - 2\cos\left(\frac{\pi}{7}t\right)$, where t is the number of hours after low tide.	
v.	A ship needs at least 9 m of water to pass through the channel safely. Find the times the ship can navigate safely through the channel.	2

(b) Assuming n > 0, prove using contrapositive that if $4^n - 1$ is prime, then *n* is odd. **2**

i. Let *m* be a positive real number, $m \ge 1$. By integrating f(x) between *m* and m+1, show that

$$\frac{1}{m+1} < \ln(m+1) - \ln m < \frac{1}{m}$$

ii. Let *m* take on successively the values 1, 2, ..., n-1. Hence show that

$$\ln(k+1) < S_k < 1 + \ln k$$

where

$$S_k = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k}$$

End of Question 13

Question 14 (15 Marks)

(a) Complex numbers z_1 , z_2 and z_3 are given on the Argand diagram below. Consider the complex number z_3 such that $(z_3 - z_1)^2 - (z_3 - z_1)(z_2 - z_1) + (z_2 - z_1)^2 = 0$.

- i. Find $\frac{z_3 z_1}{z_2 z_1}$ and express your answer in the form $r(\cos \theta + i \sin \theta)$. 2
- ii. Hence show that z_1, z_2, z_3 are the vertices of an equilateral triangle.

iii. Show that
$$\frac{1}{z_2 - z_1} - \frac{1}{z_1 - z_3} - \frac{1}{z_2 - z_3} = 0.$$
 3

(b) Consider the integral

$$I_n = \int_0^1 \frac{1}{(1+x^2)^n} dx$$
 for $n \ge 1$

i. Use integration by parts to show that

$$I_n = \frac{1}{2^n} + 2n \int_0^1 \frac{x^2}{(1+x^2)^{n+1}} dx$$

ii. Find the values of A and B for which

$$\frac{A}{(1+x^2)^n} + \frac{B}{(1+x^2)^{n+1}} = \frac{x^2}{(1+x^2)^{n+1}}$$

iii. Show that

$$I_{n+1} = \frac{1}{n2^{n+1}} + \frac{2n-1}{2n}I_n$$

iv. Hence obtain the exact value of

$$\int_0^1 \frac{1}{(1+x^2)^3} \, dx$$

End of Question 14

İ

2

2

2

Question 15 (15 Marks)

(a)

i. By using the identity

$$x^{5} + y^{5} = (x + y)^{5} - 5xy(x + y)^{3} + 5xy(x + y)$$

and $z^n + z^{-n} = 2\cos n\theta$, show that

$$\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$$

ii. Hence, show that the equation $16x^5 - 20x^3 + 5x - 1 = 0$ has roots

$$1, \cos\frac{2\pi}{5}, \cos\frac{4\pi}{5}, \cos\frac{6\pi}{5}$$
 and $\cos\frac{8\pi}{5}$

iii. By using division, or otherwise, deduce from (ii) that

$$16x^4 + 16x^3 - 4x^2 - 4x + 1 = 0$$
 has roots

$$x = \cos\frac{2\pi}{5}, \cos\frac{4\pi}{5}, \cos\frac{6\pi}{5}$$
 and $\cos\frac{8\pi}{5}$

iv. By equating coefficients, or otherwise, find the values of b and c for which 2

$$16x^4 + 16x^3 - 4x^2 - 4x + 1 = (4x^2 + bx + c)^2$$

v. Hence find the exact values of
$$\cos \frac{2\pi}{5}$$
 and $\cos \frac{4\pi}{5}$. 2

(b) Given that *a*, *b* and *c* are positive real numbers;

i. Prove that
$$a^3 + b^3 \ge a^2b + ab^2$$
. 2

ii. Hence prove

$$abc \le \left(\frac{a+b+c}{3}\right)^3 \le \frac{a^3+b^3+c^3}{3}$$

You may also assume $a + b + c \ge 3\sqrt[3]{abc}$ and

$$(a+b+c)^{3} = a^{3} + b^{3} + c^{3} + 3(a^{2}b + a^{2}c + b^{2}a + b^{2}c + c^{2}a + c^{2}b) + 6abc.$$

End of Question 15

2

2

2

Question 16 (15 Marks)

A sequence of polynomials $T_k(x)$ is defined by the recurrence formula

$$T_0(x) = 1$$
, $T_1(x) = 2x$, $T_2(x) = 8x^2 - 1$

and

$$T_k(x) = 4xT_{k-1}(x) - T_{k-2}(x)$$
 for $k \ge 2$ and $x > 1$.

i. Show that $T_3(x)$ and $T_4(x)$ are

$$T_3(x) = 32x^3 - 6x$$
$$T_4(x) = 128x^4 - 32x^2 + 1$$

To find a formula for $T_k(x)$, let F(Z) be the power series in Z with the coefficient of Z^k being $T_k(x)$; that is, let

$$F(Z) = 1 + 2xZ + (8x^2 - 1)Z^2 + \dots + T_k(x)Z^k + \dots$$

ii. Find $(1 - 4xZ + Z^2)F(Z)$ and hence show that

$$F(Z) = \frac{1 - 2xZ}{1 - 4xZ + Z^2}$$

iii. Given that α and β are the roots of $1 - 4xZ + Z^2 = 0$, find α and β in terms **1** of *x* and explain why α and β are reciprocals of each other.

$$1 - 4xZ + Z^{2} = \left(1 - \frac{Z}{\alpha}\right) \left(1 - \frac{Z}{\beta}\right)$$

v. Using partial fractions to express F(Z) in the form

$$F(Z) = \frac{1 - 2xZ}{1 - 4xZ + Z^2} = \frac{A}{1 - \frac{Z}{\alpha}} + \frac{B}{1 - \frac{Z}{\beta}},$$

find A and B where A and B are real constants.

vi. For Z sufficiently small, explain why
$$\frac{1}{1-\frac{Z}{\alpha}}$$
 is equal to 1

$$1 + \frac{Z}{\alpha} + \left(\frac{Z}{\alpha}\right)^2 + \dots + \left(\frac{Z}{\alpha}\right)^k + \dots$$

vii. Hence show that the coefficient
$$T_k(x)$$
 is $A\left(\frac{1}{\alpha}\right)^k + B\left(\frac{1}{\beta}\right)^k$. 2

viii. Deduce that the formula for $T_k(x)$ is

$$T_k(x) = \frac{1}{2} \left(\frac{1}{2x + \sqrt{4x^2 - 1}} \right)^k + \frac{1}{2} \left(\frac{1}{2x - \sqrt{4x^2 - 1}} \right)^k$$

ix. Find
$$\lim_{n\to\infty} \frac{T_{n+1}(x)}{T_n(x)}$$
. 2

End of paper.

2

3

2

MATHEMATICS Extension 2: Multiple Choice				
	Suggested Solutions	Marks	Marker's Comments	
1. C 2. D 3. D 4. B 5. D 6. A 7. A 8. C 9. B 10. D	MATHEMATICS Extension 2 Suggested Solutions	: Multiple Choice Marks	Marker's Comments	

.

	Suggested Solutions	Marks	Marker's Comments
a) ∫cos³x dx			Most students receive full marks. A few mistake
$= \int \cos x (1 - \sin x)$ $= \int \cos x dx = \sin x$	$\frac{dx}{dx} = \frac{(\cos x - \sin x)}{(\cos x - (\sin x)^2)}$		in the negative signs.
$= Sin \chi - Sin \frac{Sin \chi}{3}$	Z + K.	2	1 mark for sinx 1 mark for - <u>sin³x</u>
b) ∫ x sec² x	d.x		(same as-the question
$= \chi \tan \chi - \int$ $= \chi \tan \chi - \int$	sinx dx.		CUBOVE)
$= x \tan x + \int$ $= x \tan x + l$	$\frac{-\sin x}{\cos x} dx \qquad (-\sin x = (\cos x)')$ $m \cos x + c$	- 2	Imark for XtanX
			1 mark for ln[cosx]
;) let a+ib=S Square both	-24 - 10i (a and b are real numbers) $1 \text{ sidel} \qquad a^2 - b^2 + 2abi = -24 - 10i$		
$\begin{cases} a^2 - b^2 = -2y\\ 2ab = -10 \end{cases}$	(<u>(</u>) (2)		
$from @ b = = \frac{-5}{2}$ Sub @ into D	$\frac{3}{a^2 - \frac{25}{a^2}} = -24$		
	$a^{4} + 24a^{2} - 25 = 0$		Many students make
	$(\alpha^2 + 1)(\alpha^2 + 1) = 0$		
ais a real	$\frac{(a^{2}-1)(a^{2}+25) = 0}{a^{2}=1 \text{ or } a^{2}=-25}$ $\frac{a^{2}=1}{mimber} = \frac{a^{2}=-25}{a^{2}=1} = \frac{a^{2}=1}{a^{2}=1}$		calaulation mistakes for a
\therefore a is a real \therefore when $a = 1$ when $a = -1$.	$(a^{2}-1)(a^{2}+25) = 0$ $a^{2}=1 \text{or} a^{2}=-25$ $\text{mimber} \therefore a^{2}=1 \therefore a=\pm 1$ $a^{2}=1 \therefore a=\pm 1$ $a^{2}=1 \therefore a=\pm 1$ $a^{2}=1 \therefore a=\pm 1$	•••	calaulation mistakes for a . Or have four answers Or have one answer

脱彩""

ţ,

Suggested Solutions	Mark	s Marker's Comments
$\frac{2}{2} ii) \frac{2}{2} = (1 - i) \pm \sqrt{(1 - i)^{2} - 4(6 + 2i)}}{2}$ $= 1 - i \pm \sqrt{-24} - 10i$ $= 1 - i \pm \sqrt{-24} - 10i$ $= 1 - i \pm (1 - 5i) or 1 - i$ $= 1 - 3i or 2i$	- <u>(I-Si)</u> 2	Some students have -(1-i) in the expression Some calculation mister in the last step 1 mark for 1-3i
<u> </u>		1 mark for 20
$u = a + b - x \qquad x = b \qquad , \qquad u$	<u> </u>	Some students conclude
$x = a + b - \mathcal{U} \qquad \chi = a , \ \mathcal{U}$	<u>1=b</u>	Safex)dx= Safeatb>
dx = -du		without necessary
$\frac{1}{a} = \int_{a}^{a} f(a+b-u)(du) = \int_{a}^{b} f(a+b-u)(du) = \int_{a}^{b} f(a+b-x) dx \qquad (dumn)$	<u>a+b-u)du</u> <u>y variable</u>) I	proof steps .
$\int \frac{b}{f(x)} + f(a+b-x)dx$		
$= \int_{a}^{b} f(x) dx + \int_{a}^{b} f(a+b-x) dx$		
= <u>]</u> + <u>]</u> = 2 <u>]</u>		
$= \int_{a}^{b} f(x) dx = \frac{1}{2} \int_{a}^{b} f(x) + f(a+1) dx$	<u>b-x)}dx</u>	
		1

ŧ

Nd lo	Mankowla Commonto
Marks	Marker's Comments
	Some students do not
	recognise the connection
	between (i) and (ii)
	Many Students do not
	find the correct expression
	for f(a+b-x).
1	
	Some students don't use
	wy un very were.
	Marks

λ.

1

R.,	

- is get the

MATHEMATICS Extension 2: Question. 1.2... Marks **Marker's** Comments **Suggested Solutions** a) i v2=8-2x-x 2v= 4- x- x2 $\frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = -1 - 3l$ 1 $\alpha = -(1+x)$ ii centre at x=-1 - \bigcirc n=1, :. T= 271 = 271 seconds T in Max v at x=-1, $(-V^2 = 8 - 2(-1) - (-1)^2$ = 9 :. |v]=3 : Max speed at V= 3ms" b) i) NA + NB + ND + NE =0 $(\overline{03} - \overline{03}) + (\overline{03} - \overline{03}) + (\overline{00} - \overline{03}) + (\overline{02} - \overline{03}) = 0$: (OA + OB + OD + OE) = 4 ON $(40N = \binom{1}{0} + \binom{0}{1} + \binom{0}{1} + \binom{1}{1} + \binom{1}{1}$ 2' 2 $(.0N) = (\frac{1}{2}) (.N) = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ -(1)

MATHEMATICS Extension 2: Question..... Marks **Suggested Solutions Marker's** Comments ii) NA = 0 0 NR = 0 0 NB Caso NA·NB NA = NA · NB Coso= INALINB (1 - - -) 2 + 「(1)+(1)+(1)* (1)*(1)+(1)*(1) -1 4 3(七) 4 3 4 (as O $1.0 = (ps^{-1}) \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ ()1295 Note: Those who uses the dot product wrong and got TO.5° and said that the angle is obtase on diagram DUES NOT get marks. based Dot formula is incorrect when it is used head. to tail!

MATHEMATICS Extension 2: Question... Marks **Suggested Solutions Marker's Comments** iii) M = (tanp $\frac{|y|^2}{|y|^2} = 1 + \tan^2 \beta$ = Sec^2 \beta V= and N.V = 1 + tend ton B 1) Expressions of (1 + tond ton B) (ton B u, v, u.v. and [v]. : Area = Sec²B tand Secpl D Eliminating the Seip 1 1 + tord top 1 magnitude sign by Cosp ser B tond tang + tand tang Wing the magnitude formula [(Sec°B-1-tandtanB) 2 Cosp (Seiptond-tonp-tondton's) $\left(i.e\left|\binom{a_{i}}{a_{i}}\right|=\sqrt{a_{i}^{1}+a_{i}^{2}}\right)$ tan's -tond tan B = 605B 1) Final answer tand (sec"p - tan"p) - tanp tang (tang-tand) Cos B 2 tand - tanp (OSB tand top ton B 1 Cosp Itan's + 1 tand-tang 2 Seep tond - tank Cosp 2 tand - tang (d>B) 2

MATHEMATICS Extension 2, Question 13			
	Suggested Solutions	Marks	Marker's Comments
y (n 10 10 10 10 10 10 10 10 10 10	n) 11: 20 AM 8: 40 PM T = 14 h 2 4 6 6 70 12 14 16 16 20 22 54 26 t		
(i) We 12:30 PM expect the (ii)	e're told low tide is at 9 AM, high tide is at 4 PM. Given is the midpoint in time between low tide and high tide, we depth to be the centre line of the motion: $\frac{(8+12)}{2} = 10 \text{ m}$ Amplitude is half the distance between peak and trough, hence amplitude is $\frac{12-8}{2} = 2 \text{ m}$	1	Single-mark questions, one mark only available for each of (i) to (iii), so correct answer necessary irrespective of any working.
(iii)	Period of the motion is the time taken to complete one cycle. If it takes 7 hours to move from low tide to high tide, it takes another 7 hours to complete the cycle. Hence the period is 14 hours.	1	
(iv)	The general equation for displacement y for an entity moving in simple harmonic motion is $y = a \cos(nt + \alpha) + c$		This is a 'show that' question, meaning the candidate must demonstrate every step entirely. Here, you needed to start with a general
	Now, from parts (i) and (ii), we have		start with a general

1	trigonometric function, and then justify each of the components: a, n, α, c . All but α had been dealt with in (i) to (iii). It was necessary to explain away the phase shift. This could have been done with verbal reasoning, but it really couldn't be ignored.
1	
1	First mark for identifying the correct arguments of cosine.
	1

The tide maximises, then retreats, hitting 9 m again at $t = \frac{35}{3}$ hours after 9 AM; i.e. at 8:40 PM This block of time where the ship may pass safely repeats every 14 hours ($k = 1, 2,$), but explicit calculation of these times is not necessary for the question (such a list would comprise of 12 pairs).	1	Second mark for identifying the correct times in the first period . There are many additional times if we're to be accurate, but this is a 2-mark question, and the next round of times would be beyond the first 24 hours.
 (b) Original statement (taking as a premise that n > 0 (i.e. it's not part of the intended contraposition)): "If 4ⁿ - 1 is prime, then n is odd." Contrapositive: 		
"If not (<i>n</i> is odd), then not $(4^n - 1$ is prime)." \equiv "If <i>n</i> is even, then $4^n - 1$ is composite." So, suppose $n > 0$ is even. Then $n = 2k$ for $k \in \mathbb{Z}^+$. Hence $4^{2k} - 1 = (4^k)^2 - 1$ $= (4^k - 1)(4^k + 1)$ Since $k > 0$, neither factor is trivial (i.e. neither is equal to 1). Hence $4^{2k} - 1$ is composite. Hence the contraposition is true, hence the original statement is true.	1	First mark awarded for correctly identifying contrapositive, either explicitly (sentence) or implicitly through the mathematics (question did not ask for a statement of the contrapositive). Many students used proofs that were incomplete, such as justifying by example that 4^{2k} will always give a number with last digit 6, hence $4^{2k} - 1$ will always end in a 5, hence divisible by 5 (or similar). There is nothing wrong with this line of reasoning, but it doesn't reach the threshold of a proof. An induction of some sort would be needed. Many also made this far more difficult than necessary; if you're reaching for an induction in a 2-mark question, something's been missed

(c)		
y l		
$f(x) = \frac{1}{2}$		
		First mark for setting up the
	1	area argument.
m m+1 x		
(i) Comparing areas:		
$\frac{1}{m+1} < \int_m^{m+1} \frac{dx}{x} < \frac{1}{m}$		
So		
$\frac{1}{m+1} < \ln(m+1) - \ln m < \frac{1}{m}$	1	Second mark for deriving the required expression.
(ii) Let m successively take on the values $1, 2, \dots, k-1$ and		
form the sum from $m = 1$ to $m = k - 1$:		
$\sum_{k=1}^{k-1} \frac{1}{1} < \sum_{k=1}^{k-1} (\ln(m+1) - \ln m) < \sum_{k=1}^{k-1} \frac{1}{1}$		
$\sum_{m=1}^{n} m + 1 \qquad \sum_{m=1}^{n} (m(m+1) - m(m)) < \sum_{m=1}^{n} m$		
1, 1 , 1 , 2 , 2 , 1 , 1	1	First mark for appropriate
$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} < \ln k - \ln 1 < 1 + \frac{1}{2} + \dots + \frac{1}{k-1}$		pattern search.
That is, for $S_k = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k}$,		
$S_{k} - 1 < \ln k < S_{k-1}$	1	Second mark for reaching this conclusion (or similar) after
	-	identifying the pattern.
From the left inequality: $S_k - 1 < \ln k$		
so $S_k < 1 + \ln k \dots (1)$	1	Third mark for one part of the inequality proved
From the right inequality		inequality proved.
$\ln k < S_{k-1}$		
Replace k with $k + 1$ (since statement is true for any $k \in \mathbb{Z}$ where $k \ge k$		
2), then		
$\ln(k+1) < S_{k} \dots (2)$	1	Fourth mark for second part of
Hence by (1) and (2):	-	inequality proved.
$\ln(k+1) < S_k < 1 + \ln k$		

Many students again made this question more difficult than necessary.

Working was haphazard and cogent arguments were left to be made for the student by the marker. It's not enough to leave 'bits and pieces' of relevant parts of your proof on your paper and fail to tie things together adequately.

If you prove results and wish to use them later, you need to identify them and refer to them explicitly. It's your job to prove your results.

General remarks:

- students writing facts and hoping for relevancy = doesn't work.
- setting out was, overall, awful. Yes, you're in exam conditions, but you're trying to communicate your thoughts to someone else. Would you attempt to speak to someone in a broken and warped version of English and expect success? Why do it with your mathematics?
- Pause before answering. Sketch out a solution (on spare paper), then write something cogent. You think you're wasting time, but a waste of time is writing a bunch of unconnected passages in the hope that someone will see something of value and award you marks. That just implies you don't really know what you're doing, so why would an examiner just hand over points in the HSC when you're in competition with thousands of others?

Q14 a) TR4HS TRIAL zone 4u
Ar Given that
$$(2_3-2_1)^2 - (2_3-2_1)(2_2-2_1) + (2_2-2_1)^2 = 0$$

(7) Find $\frac{1}{2_2}-\frac{2}{2_1}$ and express answer in the firm of
 $r(\cos\theta + 7\sin\theta)$.
The find $\frac{1}{2_1}-\frac{2}{2_1}$ and $\exp(\sin\theta - \sin(\sin\theta) + 1) = 0$
 $r(\cos\theta + 7\sin\theta)$.
The find $\frac{1}{2_1}-\frac{2}{2_1} = \frac{1}{2_1} \frac{1}{2_2-2_1} - \frac{1}{2_1-2_1} + 1 = 0$
 $\frac{2_3-2_1}{2_1-2_1} = \frac{1}{2_1} \frac{1}{2_2} - \frac{1}{2_1} - \frac{1}{2_1} + 1 = 0$
 $\frac{2_3-2_1}{2_1-2_1} = \frac{1}{2_1} \frac{1}{2_2} - \frac{1}{2_1} - \frac{1}{2_1} - \frac{1}{2_1} + 1 = 0$
 $r = \frac{1}{2} + \frac{1}{2_2} \frac{3}{2_1} - \frac{1}{2_1} - \frac{1}{2_1} - \frac{1}{2_1} + \frac{1}{2_1} = 0$
From the diagram $\operatorname{Arg}\left(\frac{1}{2_1-2_1}\right) > 0$
 $r = \frac{1}{2_1-2_1} = 1 - \operatorname{con}\left(\frac{\pi}{3} + \cos\frac{\pi}{3}\right)$ $\operatorname{Im}\left(\operatorname{Dat}\operatorname{recept}\left(\frac{1}{2_3}-\frac{1}{2_1}\right) + \frac{1}{2_1}\right)$
(ii) $\left(\operatorname{Sim}(x+1), \left(\frac{1}{2_1-2_1}\right) + \frac{1}{3}\right)$
 $r = \operatorname{corple}\left(\operatorname{brtheen}\left(\operatorname{tr}\left(\frac{1}{2_1-2_1}\right) + \frac{1}{3}\right)$
 $r = \operatorname{corple}\left(\operatorname{tr}\left(\frac{1}{2_1-2_1}\right)^2 - \frac{1}{2_1-2_1}\right)$
 $r = \operatorname{corple}\left(\operatorname{tr}\left(\frac{1}{2_1-2_1}\right)^2 - \frac{1}{2_1-2_1}\right)$
 $r = \operatorname{corple}\left(\operatorname{tr}\left(\frac{1}{2_1-2_1}\right)^2 - \frac{1}{2_1-2_1}\right)^2 - \frac{1}{2_1-2_1}\left(\operatorname{tr}\left(\frac{1}{2_1-2_1}\right)^2 - \frac{1}{2_1-2_1}\left(\operatorname{tr}\left($

•

Trials 2020

MATHEMATICS Extension 2: Question	n_15	1/5
Suggested Solutions	Marks	Marker's Comments
a)i) using identity $x^{5} + y^{5} = (x + y)^{5} - 5xy(x + y)^{3} + 5xy(x + y)$		i
$z^{h} + z^{-n} = 2\cos n\theta$ $show \cos 5\theta = 16\cos^{5}\theta - 20\cos^{3}\theta + 5\cos\theta$ $Let x = z y = z^{-1}$ $\xi = x^{5} - z^{5} + z^{-5} xy = z \cdot z^{-1}$	- /	mark to show LHS using ' given identity.
$x + y = 2\cos 5\theta$ = 1 = 2\cos 5\theta = 5xy = 5 (x+y) = (2+2-1) = 5xy = 5	1	mark to show RHS using given identity.
$ (x+y)^{5} = (2\cos\theta)^{5} + (x+y)^{3} = (2\cos\theta)^{5} = 32\cos^{5}\theta = 8\cos^{3}\theta = 8\cos^{$	2	* Ao marks awarded of us DMT or
$from i:$ $2\cos 5\theta = 32\cos^{5}\theta - 5(8\cos^{3}\theta) + 5(2)$ $2\cos 5\theta = 16\cos^{5}\theta - 20\cos^{3}\theta + 5\cos^{6}\theta$	(sh	own.)
ii) Let $\chi = \cos \theta$ (must show this) $\cos 5\theta = 16x^5 - 20x^3 + 5x$; consider $\cos 5\theta = -1 = 0$	16 x 5-	$20x^3 + 5x - 1 = 0$
$S = 0, 2\pi, 4\pi, 6\pi, 8\pi \\ \theta = 0, 2\pi, 4\pi, 6\pi, 8\pi \\ x = 1, \cos 2\pi, \cos 4\pi, \cos 6\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 4\pi, \cos 5\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 4\pi, \cos 5\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 4\pi, \cos 5\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 4\pi, \cos 5\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 4\pi, \cos 5\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 4\pi, \cos 5\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 4\pi, \cos 5\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 4\pi, \cos 5\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 3\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 3\pi, \cos 3\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 3\pi, \cos 3\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 3\pi, \cos 3\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \cos 3\pi, \cos 3\pi, \cos 3\pi, \cos 3\pi \\ x = \frac{1}{5}, \cos 3\pi, \sin 3\pi,$		\bigcirc
Roots are	-	

C:\Users\ssamypullay\Downloads\Suggested Mk solns template_V2_no Ls.doc

$$\frac{MATHEMATICS Extension 2: Question 15}{Suggested Solutions} \frac{Marks}{Marks} \frac{Marks''s Comments}{Marks''s Comments}$$

$$a)bii) Can do any method, in spectron, symthetic ie
my preferred method long division
from ii, we know one of the root is l
$$\frac{16x^{4} + 16x^{3} - 4x^{2} - 4x + 1}{1 - (16x^{5} + 0x^{4} - 20x^{3} + 0x^{2} + 5x - 1)} - \frac{(16x^{5} - 16x^{6})}{1 - (16x^{5} - 16x^{2})} + \frac{1}{1 - (16x^{5} - 16x^{2})} + \frac{1}{1 - (16x^{5} + 0x^{4} - 20x^{3} + 0x^{2} + 5x - 1)} - \frac{(16x^{5} - 16x^{6})}{1 - (16x^{5} + 16x^{2} + 4x^{2})} + \frac{1}{1 - (16x^{5} - 16x^{6})} + \frac{1}{1 - (16x^{5} + 16x^{2} - 4x^{2} + 5x)} + \frac{1}{1 - (16x^{5} - 16x^{6})} + \frac{1}{1 - (16x^{5} + 16x^{2} - 4x^{2} + 4x)} + \frac{1}{1 - (16x^{5} - 16x^{2})} + \frac{1}{1 - (16x^{5} - 16x^{2} + 6x^{2} + 2x^{2} + 1)} + \frac{1}{1 - (16x^{5} - 16x^{2} + 6x^{2} + 6x^{2} + 4x^{2})} + \frac{1}{1 - (16x^{5} - 16x^{5})} + \frac{1}{1 - (16x^{5} -$$$$

C:\Users\ssamypullay\Downloads\Suggested Mk solns template_V2_no Ls.doc

MATHEMATICS Extension 2: Question	15	3/5
Suggested Solutions	Marks	Marker's Comments
$\left v \right\rangle p(x) has 2 repeated roots \cos \frac{8\pi}{5} = \cos \frac{2\pi}{5}$		
and $\cos \frac{6\pi}{5} = \cos \frac{4\pi}{5}$ from pt iii) $(4x^2 + 3x - r)^2 = 16x^4 + 1$	6x ³ -	4x - 4x +/
$x = \frac{2}{2(4)}$	() 	show correct
$= -3 \pm \sqrt{20}$ $= -1 \pm \sqrt{5}$	ro	ofs
$\cos \frac{2\pi}{5} \text{ is in guad 1 i. } \cos \frac{2\pi}{5} = -\frac{1+\sqrt{5}}{4}$	5-2	Depression for show corresponding roots to cos 24.
$\cos 4\frac{H}{5}$ is in grad 2 : $\cos 4\frac{H}{5} = -\frac{1}{4}$		and cos 4m
$b(1) (a-b) \ge 0$ $a^{2} + b^{2} - 2ab \ge 0$ $a^{2} + b^{2} \ge 2ab = *$		if no explained of any sort but just 2 lines:
$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $a, b \ge 0$		only a handful students got I ma
$a^{3} \neq 0$, $b^{3} \neq 0$: $a^{3} \neq b^{3} \neq 0$		

.

C:\Users\ssamypullay\Downloads\Suggested Mk solns template_V2_no Ls.doc

$$\frac{MATHEMATICS Extension 2: Question 15}{Suggested Solutions} \qquad Marks \qquad Marker's Comments} \\ (a+b)(a^2 - ab + b^2) \ge (a+b)(2ab - ab from # nort of ordering (a+b)(a^2 - ab + b^2) \ge (a+b)(ab ab a^2 + b^3 \ge a^2b + ab^2 - (a+b)(ab - a^2 + b^3 \ge a^2b + ab^2 - (a+b)(ab - a^2 + b^3 = ab^2 + a^2c + b^3 = b^2c + c^2a + c^2) + babe \\ (a+b+c)^3 \ge a^3 + b^3 + c^3 + 3(a^2b + a^2c + b^3a + b^2c + c^2a + c^2) + babe \\ (a+b+c)^3 \ge a^3 + b^3 + c^3 + 3(a^2b + a^2c + b^3a + b^2c + c^2a + c^2) + babe \\ (a+b+c)^3 \ge a^3 + b^3 + c^3 + 3(a^2b + a^2c + b^3a + b^2c + c^2a + c^2) + babe \\ (a+b+c)^3 \ge a^3 + b^3 + c^3 + 3(a^2b + a^2c + b^3a + b^2c + c^2a + c^2) + babe \\ (a+b+c)^3 \ge (a^3 + b^3 + c^3) + 3(a^2 + a^2) + babe \\ (a+b+c)^3 \le (a^3 + b^3 + c^3) + 3(a^3 + a^2) + babe \\ (a+b+c)^3 \le (a^3 + b^3 + c^3) + babc \\ bat using A + b+c \ge 3 \sqrt{abc} \\ a^3 + b^3 + c^3 = 3abc \\ (a+b+c)^3 \le q(a^3 + b^3 + c^3) \\ (a+b+c)^3 \le q(a^3 + b^3 + c^3) \\ + 2 \qquad (a+b+c)^3 \le q(a^3 + b^3 + c^3) \\ + 2 \qquad (a+b+c)^3 \le q(a^3 + b^3 + c^3) \\ (a+b+c)^3 \le (a+b+c)^3 \le a^3 + b^3 + c^3 \\ (a+b+c)^3 \le q(a+b+c)^3 \le a^3 + b^3 + c^3 \\ + 2 \qquad (a+b+c)^3 \le q(a+b+c)^3 \le a^3 + b^3 + c^3 \\ (a+b+c)^3 \le q(a+b+c)^3 \le a^3 + b^3 + c^3 \\ + 2 \qquad (a+b+c)^3 \le q(a+b+c)^3 \le a^3 + b^3 + c^3 \\ + 2 \qquad (a+b+c)^3 \le a^3 + b^3 +$$

MATHEMATICS Extension 2:	Question	5/5
Suggested Solutions	IVIBERS	warker's comments
METHOD 2		
bii) a+b+c ≥ 3 3/abc (given)		
$\left(\frac{a+b+c}{3}\right)^3 \ge abc$	(1)	
RHS $9a^{3} + 9b^{3} + 9c^{3}$		
3	3, 2, 3) 4 3	$a^{3} + b^{3} + c^{3}$
$\geq (2a^3 + 3b^3) + (3a^2 + 3c^2) + (3b^2)$	730	
33	$(1^2, c^2b)$	$+(a^{3}+b^{3}+c^{2})+2(a^{3}+b^{2}+c^{2})$
$2(a^{2}b+b^{2}a)+3(a^{2}c+c^{2}a)+3$	(6 C + C 0)	11.
3 (00700) 33		
hid $a^{3} + 6^{3} + C^{3} \ge 3 \frac{3}{\sqrt{9^{3} 6^{3} C^{3}}}$ from	(i)	
$a^3 + 6^3 + c^3 \ge 3abc$	$^{2}a \neq 6^{2}c \neq c^{2}c$	a+c2b)+2(a3+b3+c3
$pHS > a^3 + b^3 + c^3 + 3(a^2b + a^2c + b)$	u/ -	
3	$6^2 C \neq C^2 \alpha \neq C$	·6)+ 6abc -(1)
$= a^{3} + b^{3} + c^{3} + 3(a^{3} + a^{3} + a^{3})^{3}$		
> $\frac{(a+b+c)^3}{3^3}$ from given		
$\geq \left(\frac{\alpha+6+c}{3}\right)^3$	$3 \neq 6^3 \neq C^3$	
s. abc $\leq \left(\frac{a+b+c}{3}\right)^{2} \leq \frac{a}{3}$	3	

C:\Users\ssamypullay\Downloads\Suggested Mk solns template_V2_no Ls.doc

.

.

MATHEMATICS Extension 2: Question	n 16	
Suggested Solutions	Marks	Marker's Comments
(i) $T_3 = 4x T_2 - T_1$ $= 4x (8x^2 - 1) - 2x$ $= 32x^3 - 6x$ $T_4 = 4x T_3 - T_2$ $= 4x (32x^3 - 6x) - (8x^2 - 1)$ $= 128x^4 - 211x^2 - 8x^2 - 1$	I	Well done by nearly all students, Make sure to include the first line for T_3 and T_4 to show the recursive result.
$= \frac{128x^4 - 32x^2 + 1}{(11)}$ $= \frac{128x^4 - 32x^2 + 1}{(12)}$	I	
$-4xZF(Z) = -4xZ - 8x^{2}Z^{2} - 4xT_{2}Z^{3} + \dots - 4xT_{k-1}Z^{k} + \dots$ $Z^{2}F(Z) = Z^{2} + T_{1}Z^{3} + \dots + T_{k-2}Z^{k} + \dots$ $(1 - 4xZ + Z^{2})F(Z) = 1 + 2xZ - 4xZ + (8x^{2} - 1 - 8x^{2} + 1)Z^{2}$ $+ (T_{3} - 4xT_{2} + T_{1})Z^{3} + \dots + (T_{k} - 4xT_{k-1} + T_{k-2})T^{k}$	4 I	For systematically finding an expression for (1-4xz+z²)F(z)
+ = $1 - 2x^{2} + 0z^{2} + (T_{3} - T_{3})z^{3} + \cdots$ + $(T_{k} - T_{k})z^{k} + \cdots$ (Since $T_{k} = 4xT_{k-1} - T_{k-2}$) = $1 - 2x^{2}$	K -	For showing at least the term in Z ² has coefficient of D.
$F(z) = \frac{1 - 2\pi Z}{1 - 4\pi Z + Z^2}$	L. L.	velationship to show all 0 terms.
		Most students struggled to explain why the terms after the 2 term cancel out.

MATHEMATICS Extension 2: Question 16			
Suggested Solutions	Marks	Marker's Comments	
(iii) $1-4x2+Z^2=0$ $Z = 4x \pm \sqrt{16x^2-4} = 4x \pm 2\sqrt{4x^2-1}$ $Z = 2x \pm \sqrt{4x^2-1}$, $\beta = 2x - \sqrt{4x^2-1}$ Product of roots: $\alpha\beta = \frac{c}{a} = 1$ \therefore roots are reciprocals of each other.	•	Many students showed dB=1 but did not find d, b in terms of X as required.	
(iv) If α , β are the roots of $1-4xZ+Z^2$ then $1-4xZ+Z^2 = (Z-\alpha)(Z-\beta)$ (dividing by $\alpha\beta=1$) = $(\frac{2}{\alpha}-1)(\frac{2}{\beta}-1)$ $= (1-\frac{2}{\alpha})(1-\frac{2}{\beta})$	1		
(V) From partial fractions, numerator is $A(1-\vec{\beta}) + B(1-\vec{z})$ Equating numerators: $A(1-\vec{\beta}) + B(1-\vec{z}) = 1-2xZ$ $A+B - (\frac{A}{\beta} + \frac{B}{2})Z = 1-2xZ$ Equating coefficients:			

MATHEMATICS Extension 2: Question		
Suggested Solutions	Marks	Marker's Comments
$A+B=1, A=B=2x$ $Aa+BB=2x$ $A(2x+\sqrt{4x^{2}-1})+B(2x-\sqrt{4x^{2}-1})=2x$ $(A+B)2x + (A-B)\sqrt{4x^{2}-1}=2x$ $A+B=1, A-B=0$ $A=B=\frac{1}{2}$	1	Most students Could find AtB=1. Most struggled to find an other relationship for A and B.
vi) Now for the infinite geometric $1+\frac{2}{\alpha}+(\frac{2}{\alpha})^2+\dots+(\frac{2}{\alpha})^k+\dots$ $a=1, r=\frac{2}{\alpha}$, and if $ z < \alpha$ then $ \frac{2}{\alpha} < 1$ and so the series has a limiting sum $\frac{a}{1-r}$ $\therefore 1+\frac{2}{\alpha}+(\frac{2}{\alpha})^2+\dots=\frac{1}{1-\frac{2}{\alpha}}$	1	Many students used $ = \le $ or $= \le < $ or left out the condition for a limiting sum altogether
$V(1) F(2) = \frac{A}{1 - \frac{2}{\alpha}} + \frac{B}{1 - \frac{2}{\beta}} \text{ from } V$		

MATHEMATICS Extension 2: Question 16		
Suggested Solutions	Marks	Marker's Comments
vii) " coefficient of Z^{k} being $T_{k}(x)^{n}$. $F(2) = A_{x} \left(1 + \frac{2}{\alpha} + (\frac{2}{\alpha})^{2} + \dots + (\frac{2}{\alpha})^{k} + \dots\right)$ $+ B_{x} \left(1 + \frac{2}{\beta} + (\frac{2}{\beta})^{2} + \dots + (\frac{2}{\beta})^{k} + \dots\right)$ Coefficient of Z^{k} is $A(\frac{1}{\alpha})^{k} + B(\frac{1}{\beta})^{k}$ Equating coefficients of Z^{k} : $T_{k}(x) = A(\frac{1}{\alpha})^{k} + B(\frac{1}{\beta})^{k}$	1	Many students did not acknowledge where the T _k (x) came from.
viii) $T_{k}(x) = A\left(\frac{1}{\alpha}\right)^{k} + B\left(\frac{1}{\beta}\right)^{k}$ $A = B = \frac{1}{2}$ from (v) $\alpha = 2x + \sqrt{4x^{2}-1}$, $\beta = 2x - \sqrt{4x^{2}-1}$ from (iii) $\therefore T_{k}(x) = \frac{1}{2}\left(\frac{1}{2x + \sqrt{4x^{2}-1}}\right)^{k} + \frac{1}{2}\left(\frac{1}{2x - \sqrt{4x^{2}-1}}\right)^{k}$		Students needed ko State where $\frac{1}{2}$ and $2x \pm \sqrt{4x^2-1}$ came from This was a gift — the opportunity to go back and fix Mistakes in (iii) and (v)

Suggested Solutions	Marks	Marker's Comments
$\begin{array}{c} (ix) \lim_{n \to \infty} \frac{T_{n+1}(x)}{T_n(x)} \\ = \lim_{n \to \infty} \frac{1}{2} \left(\frac{1}{2x + \sqrt{4x^2 - 1}} \right)^{n+1} + \frac{1}{2} \left(\frac{1}{2x - \sqrt{4x^2 - 1}} \right)^{n+1} \\ \frac{1}{2} \left(\frac{1}{2x + \sqrt{4x^2 - 1}} \right)^n + \frac{1}{2} \left(\frac{1}{2x - \sqrt{4x^2 - 1}} \right)^n \\ = \lim_{n \to \infty} (2x - \sqrt{4x^2 - 1})^{n+1} + (2x + \sqrt{4x^2 - 1})^{n+1} \end{array}$	1	Correct expression with lim n->0
$ \frac{n > \infty}{(2x - \sqrt{4x^{2}-1})^{n} + (2x + \sqrt{4x^{2}-1})^{n}} \\ \frac{(2x - \sqrt{4x^{2}-1})^{n} + (2x + \sqrt{4x^{2}-1})^{n}}{(2x + \sqrt{4x^{2}-1})^{n} + \sqrt{4x^{2}-1})^{n} + \sqrt{4x^{2}-1}} \\ = (2x + \sqrt{4x^{2}-1}) \lim_{n \to \infty} \left\{ \frac{(2x - \sqrt{4x^{2}-1})^{n} + \sqrt{4x^{2}-1}}{(2x + \sqrt{4x^{2}-1})^{n} + \sqrt{4x^{2}-1})^{n} + \sqrt{4x^{2}-1}} \right\} \\ = (2x + \sqrt{4x^{2}-1}) \times 1 \\ = (2x + \sqrt{4x^{2}-1}) \times 1 \\ = (2x - \sqrt$		Some students Successfully Substituted $\alpha = 2x + \sqrt{4x^2} - 1$ and $\beta = 2x - \sqrt{4x^2} - 1$
since 2x+ 14x2-1		Correct limit expression from Correct working.