Student Number:	
-----------------	--

AUGUST 2007 YEAR 12 HSC ASSESSMENT#4 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes.
- Working time 3 hours.
- Write using blue or black pen.
- Board-approved calculators may be used.
- A table of standard integrals is provided.
- All necessary working should be shown in every question.

Total marks - 120

- Attempt Questions 1-8.
- All questions are of equal value.

Total marks – 120 Attempt Questions 1-8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

QUESTION 1 (15 marks) Use a SEPARATE writing booklet.

(a) Find
$$\int \frac{x^2 + 6}{x^2 + 4} dx$$

2

(b) (i) Find real numbers A, B and C such that

3

$$\frac{9}{(2x-1)(x+1)^2} = \frac{A}{2x-1} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$

(ii) Hence evaluate $\int_{1}^{2} \frac{9}{(2x-1)(x+1)^{2}} dx$

2

(c) Use integration by parts to find the exact value of $\int_0^{\frac{\pi}{4}} x \sec^2 x \, dx$.

4

(d) Show that
$$\int \frac{x^n}{e^x} dx = n \int \frac{x^{n-1}}{e^x} dx - \frac{x^n}{e^x}.$$

4

Hence find $\int \frac{x^3}{e^x} dx$.

QUESTION 2 (15 marks) Use a SEPARATE writing booklet.

Marks

(a) (i) Express $z = 1 + \sqrt{3} i$ in modulus-argument form.

2

(ii) Show that $z^7 - 64z = 0$

3

(b) (i) Solve the equation $z^4 = 1$.

1

(ii) Hence find all solutions of the equation $z^4 = (z-1)^4$.

- 3
- (c) In an Argand diagram the points P, Q and R represent the complex numbers z, w and z-w respectively. O is the origin and z-w=iz.
 - (i) Describe the geometric properties of $\triangle POR$, giving full reasons for your answer.
 - (ii) Find the size of $\angle QPR$.

1

(d) Find the Cartesian equation of the locus represented by $|z|^2 = z + \overline{z}$.

3

Sketch this locus on an Argand diagram and describe it geometrically.

QUESTION 3 (15 marks) Use a SEPARATE writing booklet.

- Given the function $f(x) = x\sqrt{4-x^2}$:
 - (i) State the natural domain and show that f(x) is an odd function.

2

Show that on the curve y = f(x), stationary points occur at $x = \pm \sqrt{2}$. Find the co-ordinates of the stationary points and determine their nature.

3

(iii) Draw a neat sketch of the curve y = f(x), indicating the above features, and given that there is a point of inflexion at the origin.

2

(iv) On separate diagrams, sketch the curves

1.
$$y^2 = x^2 (4 - x^2)$$

2

$$2. y = \frac{1}{f(x)}$$

2

(b) The area bounded by the curve $y = x^2 + 1$ and the line y = 3 - x is rotated about the x-axis to form a solid.

By considering slices perpendicular to the x-axis show that the area of one slice (i) is given by $A = \pi(8 - 6x - x^2 - x^4)$.

2

Hence find the volume of the solid formed.

2

3

2

QUESTION 4 (15 marks) Use a SEPARATE writing booklet.

(a) A monic polynomial P(x) of degree 4 with real coefficients has zeros 1+i and -1+i.

Find P(x), expressing your answer in expanded form.

- (b) (i) Show that cos(A B) cos(A + B) = 2 sin A sin B
 - (ii) Hence evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin 5x \sin x \, dx.$ 2

(c)

Not to scale

ABCD is a rhombus whose diagonals intersect at X. The perpendicular CP from C to AB cuts BD at Y.

Prove that B, P, X, C are concyclic points.

3

- (d) Consider the hyperbola $\frac{y^2}{9} \frac{x^2}{4} = 1$. The area bounded by the lines $x = \pm 2$ and the hyperbola is rotated about the y-axis to form a solid.
 - (i) Using the method of cylindrical shells show that the volume of the solid so formed is given by $V = 6\pi \int_0^2 x \sqrt{4 + x^2} dx$.
 - (ii) Hence find the volume of the solid.

2

QUESTION 5 (15 marks) Use a SEPARATE writing booklet.

(a) If
$$(x-1)^2$$
 is a factor of $Q(x) = Ax^n + Bx^{n-2} + 6$, show that $A = 3n - 6$ and $B = -3n$.

- (b) The tangent to the hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$ at $P(4\sqrt{2}, 3)$ meets the asymptotes of the hyperbola at A and B.
 - (i) Show that P is the midpoint of AB.
 - (ii) Find the length of AB in exact form.
- (c) In the diagram, A, B and C are collinear and DC is perpendicular to AC. AB, BC and DC are g, a and y units long respectively and $\angle ADB = \theta$.

Not to scale

- (i) Show that $\tan \theta = \frac{gy}{a(g+a)+y^2}$.
- (ii) Find $\frac{d\theta}{dy}$ and hence show that the maximum value of θ is when $y = \sqrt{a(g+a)}$.

QUESTION 6 (15 marks) Use a SEPARATE writing booklet.

- (a) If α , β , γ are the roots of the equation $x^3 + 2x^2 2x + 3 = 0$ form an equation whose roots are α^2 , β^2 , γ^2 .
- 2
- A particle moves in a straight line and its position x at any time t is given by (b)

$$x = \sqrt{3}\cos 3t - \sin 3t$$

Show that the motion is simple harmonic. (i)

2

Determine the period and amplitude of the motion. (ii)

3

(i) In $\triangle ABC$, AD bisects $\angle BAC$. (c)

Prove that $\frac{BD}{DC} = \frac{BA}{AC}$

(ii)

In the diagram AB = BC and AD bisects $\angle BAC$.

Prove that BD = CE.

QUESTION 7 (15 marks) Use a SEPARATE writing booklet.

Use the substitution $t = \tan \frac{x}{2}$ to evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}$.

3

Consider the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with eccentricity e.

- 1
- Write down in terms of a and e the foci and equation of the directrices. (i)
- 2
- Show that the equation of the normal to the ellipse at the point $P(x_1, y_1)$ is given by $\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2$.

(iii) Let Q be the x-intercept of the normal and let M be the foot of the perpendicular from P to the directrix as shown in the diagram.

3

Prove that $QS = e^2 PM$.

Question 7 continues on the next page

QUESTION 7 continued

(c) (i) State why, for x < 1, the sum of n terms of

1

$$1 + x + x^{2} + x^{3} + \ldots + x^{n-1} = \frac{1 - x^{n}}{1 - x}$$

(ii) Show that

2

$$1 + 2x + 3x^{2} + \ldots + (n-1)x^{n-2} = \frac{(n-1)x^{n} - nx^{n-1} + 1}{(1-x)^{2}}$$

(iii) Hence find an expression for $1+1+\frac{3}{4}+\frac{4}{8}+\frac{5}{16}+\ldots+\frac{n-1}{2^{n-2}}$ and show that this sum is always less than 4.

3

QUESTION 8 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Use De Moivre's theorem to show that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$.
 - (ii) Using $\cos 3\theta = \frac{1}{2}$ deduce that $8x^3 6x 1 = 0$ has solutions $x = \cos \theta$.
 - (iii) Use this result to solve the equation $8x^3 6x 1 = 0$ in terms of $\cos \theta$.
 - (iv) Hence prove that $\cos \frac{2\pi}{9} + \cos \frac{4\pi}{9} = \cos \frac{\pi}{9}$.
- (b) (i) If f(x), g(x) and h(x) are distinct non-negative continuous functions of x in the interval $a \le x \le b$ and f(x) < g(x) < h(x), explain why

$$\int_a^b f(x) dx < \int_a^b g(x) dx < \int_a^b h(x) dx$$

(ii) By considering the interval 0 < x < 1 as an inequality, use algebra to show that

$$\frac{1}{2}x(1-x)^{3} < \frac{x(1-x)^{3}}{1+x} < x(1-x)^{3}$$

(iii) Deduce that
$$\frac{1}{2} \int_0^1 x (1-x)^3 dx < \int_0^1 \frac{x (1-x)^3}{1+x} dx < \int_0^1 x (1-x)^3 dx$$

(iv) Given that
$$\int_0^1 \frac{x(1-x)^3}{1+x} dx = \frac{67}{12} - 8 \ln 2$$
, deduce that $\frac{83}{120} < \ln 2 < \frac{667}{960}$

End of Assessment