

Student Number: _____

Trial HSC - Task 3 August 2013

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- Answer questions 1 10 on the multiple choice answer sheet provided.
- Answer questions 11 16 in the booklets provided.

Start each question in a new booklet.

- A table of standard integrals is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks – 100

Section I – Pages 3 – 6 10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II – Pages 7 – 14 90 marks

- Attempt Questions 11 16
- Allow about 2 hours 45 minutes for this section

Kambala – Mathematics Extension 2 – Trial HSC Task 3 – August 2013

BLANK PAGE

Section I

10 Marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

- 1 Let z = 3 + 2i and w = 2 i. What is the value of $\overline{z} + 3w$?
 - A. 9+i B. 9-i C. 9-3i D. 9-5i
- 2 The equation $x^3 + 2xy y^3 2 = 0$ defines y implicitly as a function of x. What is the value of $\frac{dy}{dx}$ at the point (1, 1)?
 - A. 5 B. 1 C. $\frac{1}{5}$ D. -1

3 The equation $3x^3 + 2x^2 - 4x + 1 = 0$ has roots α , β and γ . What is the value of $\frac{1}{\alpha^3 \beta^3 \gamma^3}$?

A. 27 B. -27 C. $\frac{1}{27}$ D. $-\frac{1}{27}$

4 What is the eccentricity of the hyperbola $\frac{x^2}{6} - \frac{y^2}{10} = 1$?

- A. $\frac{2\sqrt{10}}{5}$ B. $\frac{2\sqrt{6}}{3}$ C. $\frac{2\sqrt{3}}{3}$ D. $\frac{\sqrt{6}}{3}$
- 5 The polynomial P(x) = 0 has real coefficients. Three of the roots of P(x) are x = 4, x = 2 - i and x = 1 + i. What is the minimum degree of P(x)?
 - A. 3 B. 4 C. 5 D. 6

6 The complex number z is shown in the Argand diagram below.

Which of the following best represents $-i\overline{z}$?

D.

7 The graph of $y = \sqrt{f(x)}$ is shown below.

A possible graph of the function y = f(x) is:

8 If ω is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ is equal to:

A.
$$-128\omega^2$$
 B. $128\omega^2$ C. -128ω D. 128ω

9 Let
$$y = \cos^{-1} e^x$$
. An expression for $\frac{dy}{dx}$ is given by:
A. $-\tan y$ B. $-\cot y$ C. $-\csc y$ D. $-\sec y$

10 What are all the values of k for which the graph of $y = 2x^3 - 6x^2 + k$ will have three distinct x-intercepts?

A. k > 0 B. k < 8 C. k = 0, 8 D. 0 < k < 8

End of Section I

Section II

60 Marks Attempt Questions 11 – 16 Allow about 2 hours 45 minutes for this section

Answer each question in the booklets provided. Start each question in a new booklet. In Questions 11 – 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Express
$$\frac{2\sqrt{3}+i}{\sqrt{3}-i}$$
 in the form $x + iy$, where x and y are real. 2

2

Shade the region on the Argand diagram where the two inequalities (b)

$$|z+1| \le 1$$
 and $|z-2i| \ge 2$

2

both hold.

(c) Given
$$z_1 = i\sqrt{2}$$
 and $z_2 = \frac{2}{1-i}$

(i)	Express z_1 and z_2 in modulus-argument form.	2

- (ii) If $z_1 = wz_2$, find w in modulus-argument form. 1
- On an Argand diagram, plot the points P, Q and R, where P represents z_1 , (iii) 2 Q represents z_2 and R represents $(z_1 + z_2)$.

(iv) Show that
$$\operatorname{Arg}(z_1 + z_2) = \frac{3\pi}{8}$$
 and hence find the exact value of $\tan \frac{3\pi}{8}$.

(d) Given that
$$2^{n+4} > (n+4)^2$$
 for all integral $n \ge 1$, show that $2^{3(a+2)} > 9(a+2)^2$. 2

(e) Solve the equation
$$x^3 - 8x^2 - 5x + 84 = 0$$
, given that one of the roots is equal to the sum of the other two roots. 2

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) Find
$$\int \frac{dx}{x^2 - 2x + 5}$$
. 2

(b) Find
$$\int \ln x \, dx$$
. 2

(c) Using the substitution
$$u = e^x$$
 and partial fractions, find $\int \frac{1}{e^x + 1} dx$. 3

- (d) Prove by the process of Mathematical Induction that $(1+x)^n nx 1$ is **3** divisible by x^2 for all integral $n \ge 2$.
- (e) Given that f(x) = |x-2| 2, sketch the graphs of the following showing the x- and y-intercepts. Use separate axes for each graph.
 - (i) y = f(x) 1

(ii)
$$y = [f(x)]^2$$
 2

(iii)
$$y = \ln[f(x)]$$
 2

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) The area between the two curves $y = 2x - x^2$ and y = x is rotated about the line x = 2.

Using the method of cylindrical shells, calculate the exact volume of the solid of revolution formed.

(b) (i) Find the centre and radius of the	ircle $x^2 + y^2 + 4x = 0$. 1
---	--------------------------------

(ii) Show that the line y = mx + b will be a tangent to the circle if 2

$$4(mb+1) = b^2$$

(iii) *P* is a point whose coordinates are (k, 0). If *P* lies on the line y = mx + b and is exterior to the circle, find possible values for *k* if the two tangents from *P* to the circle are perpendicular.

2

(c) (i) Show that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
. 1

(ii) Hence evaluate
$$\int_0^1 x^2 \sqrt{1-x} \, dx$$
. 3

Question 13 continues on page 10

Question 13 (continued)

(d) *AB* and *MN* are chords of a circle that intersect at *S*. *R* is a point external to the circle such that *RA* is perpendicular to the chord *AB* and *RN* is perpendicular to the chord *MN*. The line *RS* is produced to *T*, a point lying on *MB*.

3

Copy or trace this diagram into your answer booklet.

Prove that *RT* is perpendicular to *MB*.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) The base of a certain solid is in the shape of an ellipse with equation $\frac{x^2}{16} + \frac{y^2}{9} = 1$.

Sections parallel to the *y*-axis are equilateral triangles, with one side sitting in the base of the solid, as shown in the diagram below.

Find the exact volume of the shape.

(b)

(i) Use the above graph to draw a one-third page sketch of the graph $y = \frac{x-2}{x^2-6}$. 2

(ii) By writing $\frac{x^2-6}{x-2}$ in the form $mx+b+\frac{a}{x-2}$, find the equation 2 of the line *l*.

Question 14 continues on page 12

Question 14 (continued)

(c) (i) By considering the expansion of $(\cos\theta + i\sin\theta)^3$ and de Moivre's theorem, **1** show that $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$.

(ii) Deduce that
$$8x^3 - 6x - 1 = 0$$
 has solutions $x = \cos\theta$, where $\cos 3\theta = \frac{1}{2}$. 2

(iii) Find the roots of
$$8x^3 - 6x - 1 = 0$$
 in the form $\cos\theta$. 2

(iv) Hence evaluate
$$\cos\left(\frac{\pi}{9}\right)\cos\left(\frac{2\pi}{9}\right)\cos\left(\frac{4\pi}{9}\right)$$
. 2

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) The hyperbola with equation $x^2 - y^2 = 9$ is shown in the diagram below. The point $P(x_1, y_1)$ lies on the hyperbola. The tangent to the hyperbola at *P* intersects the asymptotes

of the hyperbola at points Q and R.

(b)

(i)	Show that e, the eccentricity of the hyperbola, is equal to $\sqrt{2}$.	1
(ii)	Determine the coordinates of the foci, equations of the directrices and the equations of the asymptotes.	3
(iii)	Show that the equation of the tangent at <i>P</i> is	2
	$yy_1 = xx_1 - 9$	
(iv)	Prove that the area of triangle QOR is constant, where O is the origin.	3
	2	
The cu	abic function $y = x^3 - px + q$ has two turning points.	
(i)	Show that $p > 0$.	1
(ii)	The line $y = k$ intersects this cubic in three distinct points.	3
	Show that $q - \frac{2p}{3}\sqrt{\frac{p}{3}} < k < q + \frac{2p}{3}\sqrt{\frac{p}{3}}$.	
The ec	nuation $x^3 - x^2 - 3x + 5 = 0$ has roots α , β and γ . Find the equation whose	2

(c) The equation $x^3 - x^2 - 3x + 5 = 0$ has roots α , β and γ . Find the equation whose 2 roots are $(2\alpha + \beta + \gamma)$, $(\alpha + 2\beta + \gamma)$ and $(\alpha + \beta + 2\gamma)$.

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) $T_1, T_2, T_3, ...$ are terms of an arithmetic sequence with common difference *d*. All terms in the sequence are positive.

(i) Show that
$$\frac{1}{\sqrt{T_{n-1}} + \sqrt{T_n}} = \frac{\sqrt{T_n} - \sqrt{T_{n-1}}}{d}$$
 for $n = 2, 3, 4, ...$ 2

(ii) Hence or otherwise, show that

$$\frac{1}{\sqrt{T_1} + \sqrt{T_2}} + \frac{1}{\sqrt{T_2} + \sqrt{T_3}} + \dots + \frac{1}{\sqrt{T_{n-1}} + \sqrt{T_n}} = \frac{n-1}{\sqrt{T_1} + \sqrt{T_n}}$$
for $n = 2, 3, 4, \dots$

(b) The equations of two conics are
$$3x^2 + 4y^2 = 48$$
 and $3x^2 - y^2 = 3$

- (i) Show that these two conics have the same pair of foci. 1
- (ii) The point $(4\cos\theta, 2\sqrt{3}\sin\theta)$ lies on the ellipse for **all** values of θ . **2** Find the four values of θ for which this point also lies on the other conic.

(c) (i) Show that
$$(1-x^2)^{\frac{n-3}{2}} - (1-x^2)^{\frac{n-1}{2}} = x^2(1-x^2)^{\frac{n-3}{2}}$$
 1

(ii) Let
$$I_n = \int_0^1 (1-x^2)^{\frac{n-1}{2}} dx$$
 where $n = 1, 2, 3, ...$ 3

Show that $nI_n = (n-1)I_{n-2}$ for n = 2, 3, 4, ...

(iii) Evaluate I_5 . 1

End of Paper

2

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - a^{2}}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}}\right)$$

NOTE: $\ln x = \log_e x, x > 0$

.....

:

Qn	Solutions	Marks	Comments & Criteria
L I	2=3+2i w=2-i		
	z = 3 - 2i $3w = 6 - 3i$		
	= = + 3w = 3-2i + 6-3i = 9-5i		· ·
	27-31	D	
۲.	x3 + 2xy - y3 - 2 =0		
	3xi + 2y + 2xdy - zyzdy =0 dx dx dx =0		
	(zx-lye) dy 3xe-ly		
	$\frac{dy}{dx} = \frac{-3x^2 - 2y}{(2x - 3y^2)}$		
	AE (1,1)	-	
	$\frac{dy}{dx} = \frac{3-2}{2-3}$		
	· · · · · · · · · · · · · · · · · · ·		
	~ 5	A	
3.	$3x^{3}+2x^{4}-4x+1=0$		
	d/18 = -1 3		
	$(d/30)^{1} = \frac{-1}{27}$		
		ß	
	2',4'0'		
4.	$\frac{x^{2}}{6} - \frac{y^{2}}{10} = 1$ a ² =6 b ² =10		
	$b^{2} = a^{2}(e^{2} - 1)^{2}$		
	$10 = 6(e^{1} - 1)$		
L	10=6e-6 or er= 8/3 er= 16/6 e= 2.	Tr/ = ?	Л
and k the and			
	J6	ß	

Qn	Solutions	Marks	Comments & Criteria
5.	Roots x=4, x=2-i, x=1+i		
	As P(n) has real coefficients,		
	Complex roots occur in conjugate,		
	. Other roots are x = l+i, x=		
	Min degree of Ma) is 5.		C .
6.	.2		
- (.	ž iž iž na rotu	choi	
	through is in	a cloch	wire direction
		· ·	
٦.	Both A and Cone possible,	• • •	
	but A is not a function (f	u,1s ve	head had sent
	i f(x) must be c	C	
0	cule		
8	evis a root of unity		•
	10 a sola to z ³ =1 i-e.z ³ -1=0		
	Oker rook are I and we		
	1+w+w==0 (Sum y roots)		
	1+w =-w2		
	$(1+w-w^{2})^{7} = (-7w^{2})^{7}$		
	= -128 w14		
	= - 128 w? w?		/++
	$= -128 w^{2}$	- cro	$w^{2} = 1 \times 1$

Qn	Solutions	Marks	Comments & Criteria
9.	$y = \cos^{-1} e^{x}$ $e^{x} = \cos y$ $\frac{d_{y}}{d_{x}} (-x - y) = e^{x}$ $= \cos y$ $\frac{d_{y}}{d_{x}} = \frac{\cos y}{-x - y}$ $= -\cot y$	B j.	
10.	$y = 2x^{3} - 6x^{4} + k$ $y' = 6x^{2} - 12x$ $= 6x(x-2) \therefore x = 0, 2$ $\therefore 6xg/k$ $= max a + x = 0$ $\frac{1}{2}$ $= max a + x = 0$	ane sker	<i>4</i> рЬ
	At $n=0$ k=0 $A \in n=2$ 0 = 16 - 24 + k k = 8 \therefore $2f$ k lier defineen 6 k where we $3 - 1000 \leq 10 \leq 8$	ond & B D	

Qn	Solutions	Marks	Comments & Criteria
1 L	$(\alpha) \frac{2J_{\overline{1}}+i}{J_{\overline{1}}-i} \times \frac{J_{\overline{1}}+i}{J_{\overline{1}}+i}$		I connect conjugate
	$\frac{(253+i)(53+i)}{3+1}$		
	$\frac{6 + 7Ji + Ji - 1}{4}$		1 signified annuel
	$= \frac{5 + 355i}{4}i$ = $\frac{5}{4} + \frac{355}{4}i$		1 mg////ecc
(را)	2+1 21 2-21		dicgrams
	z-(-1+0i)) E1 z-(0 (incle ctr (-1,0), (incle Audins 1 unit	+ 2i) 7 (+ 1 (Naelis	1 dicgrams (c) 1 regions (c) 2 varb correct
		2	

(y)

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

J

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

(d)

Qn	Solutions	Marks	Comments & Criteria
11	(d) 2"" 7 (1+4) ~ 171		
	To Show		
	2 ^{3(a+1)} > 9(9+2) ²		
	i.e. 2" > 3"(a+2)"		for rogers
	2 Jurb > (Ja+2)2		
	Using remult siven		
	n+4= Ja+6 n= Ja+6	9(a+1) = 3 ^{4(a+1}	$\begin{bmatrix} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{bmatrix}$ \mathbf{r}
	. Il you let n = Jar 2	=] (Urt = (3ur	() I for substitution
	Ken 23(4+2)	en Te	
	$(e) = X^{3} - 8x^{2} - 5x + 84 = 0$		
	(et 10013 he a, s, (a+s)		
	Sum of 100ts: 2+1+(++5)=	-(-8) 1	
	7d + 7A = 8 $A + A = 4$		2-(4-1)
			1 for som foroden
	Product \$\$ (\$ - 1) \$ - 84 (4 - 1) \$ (4 - 1 + 1) = -84		or proper
	$(4 - 1) \times (+ c) \times (+ c)$ $(4 - 1) \times (+ c) \times (+ c)$		
	108 12-41=21		
	12-4A-21=0		
	(1-7)(1+3)=0		
	: A: 703		

.: Not x = -3, 7, -3+7 c.e. x = -3, 4, 7

I correct some

Qn	Solutions	Marks	Comments & Criteria
12	$(\alpha) \int \frac{dx}{x^2 - 2x + 5}$		1
	$= \int \frac{dx}{x^2 - ix + 1 + 4}$		
	$\int \frac{dx}{(x-1)^2 + 2^2}$		(ogleting square
-	$= \int \frac{dx}{2^{2} + (x - 1)^{2}}$ = $\frac{1}{2} \tan^{-1} \left(\frac{x - 1}{2} \right) + C$		
			1 correct in theyal
	(b) flande uiter (b) flande uiter		= I for puts set-in
	$= \int \int \int dx dx dx$ $= \chi \int \int dx - \int \frac{1}{x} \int dx dx$		
	$= \sum_{n=1}^{\infty} \int dx$		
	ixlax -x +c		1 for correct ansare
	$ \begin{array}{c} (c, \int \frac{1}{e^{x} r_{1}} dx & (et u \cdot e^{u}) \\ = 0 & du & du \\ = 0 & dx & e^{x} \end{array} $		
	$\int \frac{du}{u+1} \frac{du}{u} = \frac{du}{du} \frac{du}{du} = \frac{du}{du}$		1 correct substitution
	$= \int \frac{1}{u(u+1)} du$	C	set y
	Now $\frac{1}{\alpha(n+1)} = \frac{A}{\alpha} + \frac{B}{\alpha+1}$ $1 = A(\alpha+1) + A\alpha$		
	Let u=0 =7 A=1		
	u=-1=7 1=-B B=-1		1 Cor rubar pruchais

Qn	Solutions	Marks	Comments & Criteria
	$\int \frac{1}{u(u+i)} du$		
	$= \int \frac{1}{\alpha} d\alpha - \int \frac{1}{\alpha + 1} d\alpha$		
	: (n(u) - (n(u+1) + C)		
	But u e ex		
	$I = lne^{x} - (n(e^{x}+i)+i)$		
	$= x - (-(e^{x} + 1) + c)$		l for answer
(d)	To Bove (1+x) - nx - 1 is	dir	Por x 2 /0- 172
	Show the for n=2		
	$(1+x)^{2} - 2n - 1$		
	- (+ Zx + x - Zx - /	·	
	· x ²		
	= l.x ² .: Div by x ²		
	True los n=2.		1 for n=2
	Assume true for n=k		
	i.e. $(1+x)^{n} - kx - 1 = P(x)$. t ¹	for some polynamical Ma,
	ei.e. $(1+x)^{k} = P(x).x^{2} + k$	x + 1	(ϵ)
	Prove the for n= k+1		
	i.e. Show (1+x)" - (1c+1)x-	1 is	dir by x
	$(1+x)^{(k+1)} - (k+1)x - 1$		
	$= (1+x)(1+x)^{k} - kx - x - 1$		
	$= (1+x) [P(x).x^{2}+kx+1]-k;$	c ->F	-1 from () 10/
L	= $P(x).x^{2} + f(x + f + P(x).x^{3} + f(x))$	tx · A	e -Kx -x =1
	= P(x)x2+ R(x).x3+ kx2		Mark Induction,
	· x · [/ (x) + / (x) x + 1 () which	Lis di	v 4y x2. Mis is poven for Mis is poven for

Kambala - 2013 - Year 12 - Ext 2 Trial HSC Examination

SOLUTIONS

(9)

10

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
	(b)(ii) y=mx+b (x+2) ² +y ²	: 4	
	i.e. (x+2)" + (mx+6)" = 4		
	x2+4x+++ m2x2+2mbx+b	2-14-	σ
	(m2+1)x2+(2m6+4)x+b2	=0	for guilder
	Tangent if \$ =0		
	i.e. b2-4ac=0		
	(2m6+4)2-4(m2+1)(62)	-0	
	4 mibi + 16 mb + 16 - 4 mibi	-46 ²	-0
	$16mb + 16 = 46^2$		
	4-16+4:62		
	4(mb+1)=b2	un 1	ezice for discr.
	(iii) P(k, 0)		0 - Sim.
	y=mx+b		
	AEP = 0 = mk + b $b = -mk$		
	Sub into recult from (ii)		
	$4 \left[m(-mk) + 1 \right] = (-mk)^2$		
	-4m k +4 = m2k2		
	$m^{2}k^{2} + 4m^{2}k - 4 = 0$		
	(1c2+4k) m2 -4 =0		for progress
	Two possible values of mit tange		
	i.e. M. m. = -1 => Procluc	E of 106	# =-1
	$\frac{-4}{16^{1}+4k} = -1$		
	k"+4K =4		
	12+42+4 =4+4		
	$(k+2)^{2} = s$ k+2 = 25 = 252		
	$U = U = U = 1 + T_{T} = 1 - 1 - 1 = 1 - 1 = 1 = 1 = 1 = 1 = 1$	2 57	1 Cor le valu

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

SOLUTIONS

Qn	Solutions	Marks	Comments & Criteria
13	(c) (i) j ^a p(x) doc Leta u= x:	а-х Киа а-и	du 1 => du = - d
	o when x	-	n = 0
	$= \int_{0}^{q} f(a-u) du$		for showing
	= $\int_{0}^{0} f(a-x) dx$ as integr	al is	independent of visial (e
	(ii) $\int_{0}^{1} \pi^{2} \int_{1-re}^{1-re} dre$		
	$: \int_0^1 (1-x)^2 \sqrt{1-(1-x)} dx$		
	$= \int_0^1 (1-x)^2 \int dx$		
	$= \int_{0}^{1} (1 - (x + x^{2}) \cdot x^{2}) dx$ = $\int_{0}^{1} (x^{2} - 7x^{2} + x^{2}) dx$		1 for rearraying integral
	$= \left[\frac{x'^{2}}{\frac{3}{2}} - \frac{2x'^{2}}{\frac{5}{2}} + \frac{x''^{2}}{\frac{7}{2}} \right]_{0}^{1}$		
	$\begin{bmatrix} \frac{1}{2} - \frac{1}{2} + \frac{1}{2} \end{bmatrix} - \begin{bmatrix} 0 - \frac{1}{2} \end{bmatrix}$	0+0]	
	- 16/105		1 for annue

íz

13

(14)

Qn	Solutions	Marks	Comments & Criteria
	2 = ciio = 5		
	z' = (cis C)		
	Q[i, j'] =		
	$2^3 = (0)30 + (1) = 30$		
	Equating he parts		
	Cos 3 G : 4 cos 3 G - 3 cos G		1 for thousing
	(ii) $8x^3 - 6x - 1 = 0$		
	let x = coso		
	$i = \frac{1}{2} (\frac{1}{2} \cos^2 \theta - \frac{1}{2} \cos^2 \theta -$	0	1
	$2 \cos 30 - 1 = 0$		E .
			20.~1
	2×2-1=0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
		0/-1.	
	(iii) cos 30 = 2		
	$30 = \cos^{-1}(\frac{1}{2})$		
	30 = = + 217 for	1=0), ± 1, ± 2 ek
	$= \frac{\pi + 6n\pi}{3}$		
	$30 = \frac{\pi(6n+1)}{3}$		l
	$C = \frac{TI(6-1)}{9}$		
	$Q = \frac{77}{9}, \frac{577}{9}, \frac{777}{9}$		l
	.: John are costy cost	= =),coj((pm ~)

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
	$(iv) \cos \frac{5\pi}{9} = -\cos \frac{4\pi}{9}$ $(o) \frac{7\pi}{9} = -\cos \frac{2\pi}{9}$		
	$(o) \frac{\pi}{9} \cdot cos \frac{5\pi}{9} \cdot cos \frac{7\pi}{9}$ $= \cos \frac{\pi}{9} \left(-\cos \frac{5\pi}{9}\right) \left(e - \cos \frac{2\pi}{9}\right)$		for equating
	= Cost cost of root.		
	$\frac{1}{8} = -(-1)$		1 valute
	$\frac{1}{8} = \frac{1}{9} \cos \frac{2\pi}{9} \cos \frac{4\pi}{9} = \frac{1}{8}$		
12 (a, (i) $x^{2} - y^{2} = 9$ $\frac{x^{2}}{9} - \frac{y^{2}}{9} = 1$ 0/	As a	
	$b^{2}=a^{2}(e^{2}-1)$ $9=9(e^{2}-1)$		a=b A rectangular hyperb. i= l= 52
	$l = e^{2} - l$ $e^{2} = 2$, ,	
	e = Jz : A rectangalen h (ii) q = 3, b = 3	yserbold	
	Foc: : $(\pm \alpha e, 0)$: $(\pm 3 \sqrt{2}, 0)$		
	Directrites : $x = \frac{t}{2} \frac{a}{4t} = \frac{t}{2}$		
	Argapstoter y = tx (us or y = t bx G	e = Jz)
	= ± <u>1x</u> 3		1

Qn	Solutions	Marks	Comments & Criteria
15	(iii) $x^2 - y^2 = 9$		
	la - ly dy =0		
	dy in dx ig		
	$At P, M_7 = \frac{x_1}{y_1}$		l
	31		
	E_{q} , $y - y_i = m(x - x_i)$		
	$y - y_1 = \frac{x_1}{y_1}(x - x_1)$		
	y,y-y,2=x,x-x,2		
	44, = xx, - 6x, +y, +		
	$xx_{1} - (x_{1}^{2} - y_{2}^{2})^{6}$		
	yy. = xx 9		$x_{-y_{-}}^{2} = 9$
	(iv) AEQ y=x AER y	x	
	$\int xy_1 = xx_1 = 7 \qquad -xy_1 = $	х., - 9	9
	$x = \frac{q}{x_1 - y_1}$ $x \neq z$	<u> </u>	
	- y <u>y</u> - y - <u>y</u> - <u>y</u> - <u>y</u> - <u>x</u>	9 • + 7 ,	l
	Area QOL : thh = 12.0		
	$OQ^{1} = \left(\frac{q}{r(r-y)}\right)^{1} + \left(\frac{q}{(x,-y)}\right)^{1}$	0/	$e^{\lambda} = \left(\frac{q}{(x, +y_{1})}\right)^{L} + \left(\frac{-q}{(x, +y_{2})}\right)^{L}$
	$= \frac{162}{(x_1 - y_1)^2}$		$= \frac{16z}{(x,+y)^2}$
	OQ = 95z	0.	$\mathcal{R} = 9\sqrt{z}$ $(x, + y,)$
	x,-y,		(x, +y,)

ı

Qn	Solutions	Marks	Comments & Criteria
	$\therefore A_{i}e_{i} \triangle QOL$ $= \frac{1}{\chi} \times \frac{9\sqrt{\chi}}{\chi_{i} - y_{i}} \times \frac{9\sqrt{\chi}}{\chi_{i} + y_{i}}$ $= \frac{81}{\chi_{i}^{2} - y_{i}^{2}}$ $= \frac{81}{9}$		
	$= 9u^{2} \therefore constant v$ (b) $y = x^{2} - px + q$	she,	
	(i) $y' : \exists x^2 - p$ = 0 when $\exists x^2 - p$ $x = t \int \frac{p}{t}$		
		x	when $p > 0$ $\int_{\overline{3}}^{\overline{p}} \int_{\overline{3}}^{3} + c \int_{\overline{3}}^{\overline{p}} + 2$
	$= \frac{c}{3}\int_{-\frac{1}{3}}^{\frac{1}{2}} - \rho\int_{-\frac{1}{3}}^{\frac{1}{2}} + \frac{2}{3}$ $= -\frac{2\rho}{3}\int_{-\frac{1}{3}}^{\frac{1}{2}} + \frac{2}{3}$	-	$\frac{c}{3}\int_{-\frac{1}{3}}^{\frac{1}{2}} + c\int_{-\frac{1}{3}}^{\frac{1}{2}} + 2$ $\frac{c}{3}\int_{-\frac{1}{3}}^{\frac{1}{2}} \frac{F_{-\frac{1}{3}}}{F_{-\frac{1}{3}}} + 2$
	$= 2 - \frac{2r}{3} \sqrt{\frac{r}{3}}$:	$2 + \frac{2p}{3} \sqrt{\frac{p}{3}}$
	Min at (J= Max at (-,	17,2+	$\frac{2r}{3}\int_{\overline{3}}^{r}$
-	For 3 intercepts, k $\frac{2}{3} - \frac{2\pi}{3} \int_{-3}^{2\pi} \zeta dc$		

5

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
15	(c) $x^{7} - x^{2} - 3x + 5 = 0$		
	Roots 2. 1. 8		
	fun of 100ts d+3+8=-(-1) =1		
	Roots of 03- 2x+p+8, x+2,5+	8,d+	1.28
	Now la+15+8 = d+15+8 = 1+2	+2	
	. Rook of new egn one I to	, 1+1	9 1 + 0
	x = 1 + d $= 7 d = x - 1 = 4 d$		
	: Egn (x-1) ³ - (x-1) ² - 3		
	$x^{7} - Jx^{2} + Jx - 1 - x^{2} + 1$		$J_{x} + J + J = 0$
	x ³ - 4x + 2x + 6	= = 0	-
16	(*) Tn = Tn -, + d		
	(i) $\frac{1}{\int \overline{T_{n,1}} + \int \overline{T_n}} \times \frac{\int \overline{T_{n,2}} - \int \overline{T_n}}{\int \overline{T_{n,2}} + \int \overline{T_n}}$	No	chonalising Denom
	= JT, - JT_		
	T., - T.		
	$= \underbrace{\sqrt{T_{n-1}} - \sqrt{T_n}}_{T_{n-1}} - \left(\frac{T_{n-1} + ol}{T_{n-1}} \right)$		
	= JT, -JT_ -d		
	= JT_n - JT_n-1 an regid	<u>+</u>	l
	d as regid		

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
16	$\frac{(a)(ii)}{\frac{1}{\sqrt{T_1}} + \sqrt{T_2}} = \frac{\sqrt{T_2} - \sqrt{T_1}}{\sqrt{T_1}}$		
	eti		
	$\int \overline{f_1} + \int \overline{f_2} + \int \overline{f_3} + \dots + \int \overline{f_{n-1}}$		
	= JT_1 - JT_1 + JT_3 - JT_1 + - ~ + JT_5 d + d	- JF., d	I
	$= \frac{1}{d} \left[\sqrt{T_2} - \sqrt{T}, + \sqrt{T_3} - \sqrt{T_2} + \pi + \frac{1}{2} + $	JF	5元.,]
	$= \frac{\int \overline{T_{1}} - \int \overline{T_{1}}}{d} \times \frac{\int \overline{T_{1}} + \int \overline{T_{1}}}{\int \overline{T_{2}} + \int \overline{T_{1}}},$		
	$= \overline{T_{K14}} \frac{T_n - T_n}{d(\overline{JT_n + JT_n})} $ Non	Tn = i.e. R	$T_{1} + (n-1)d$ $U_{n} = a + (n-1)d$
-	- Cn-i)d el(JT_n+JT_i)	-	$T_n - T_i = (n-i)d$
	$= \frac{n-1}{\sqrt{T_{n} + \sqrt{T_{n}}}}$		
1	$= \frac{n-1}{\sqrt{T_{r}} + \sqrt{T_{n}}} $ as regive		
		1	

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

nbala – 2013 – Year 12 – Ext 2 Trial HSC Examination		SOLUTION	C A
n Solutions	Marks	Comments & Criteria	
(6) Jx1+ 4y2: 48 Jz2-y2: 3			
$\frac{x^{2}}{16} + \frac{y^{2}}{12} = 1 \qquad x^{2} - \frac{y^{2}}{2} = 1$			
16 12 3			
(ir Foci: Hyperbol	6		
Ellipse break	(e - 1)	· · ·	
b:a:(1-e)]:1(
$12 = 16(1-e^*)$ $3 = e^2 = e^2$			
12 = 16 - 16e ² e = 2			
-4 = -16e2 ; pae			
e ² : ¹ / ₄ Foci	(tae, q))	
e = - 1/2	= (+ z.o)	×	
(+ae) ae	4 × 1/2	-2	
i.e. (±-2,0) *		1	
June Poci		1	
(ii) (40010, 253 since) set is	f.e.		
3x - y 2 - 3			
3(1600,0) - 121,-20 -3			
1600120 - 45in 20 = 1			
1600,0 - 4(1-00,0)-1			
16 LOS 6 - 4 + 4 LOS 6 : 5			
20 201 00 = 5			
$Co_1 \circ co_2 = \frac{1}{4}$			
$\cos \varphi = \pm \frac{1}{2}$.		
	2		
$A \in O = \frac{\pi}{3} \left(\frac{4}{2} \times \frac{1}{2} \times \frac{1}{2} \right)$,3)	
by symmetry : It's of :-		(7,3) (8	
		(-1.i) (·	

Kambala - 2013 - Year 12 - Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
@16	(b)(iii) Show intersect at right-angle,		
	i.e. show tangents interdect		ht myles
	$M, M_2 = -1$		
	Inc + Ky2: KS		
	$6x + 8y \frac{dy}{dx} = 0$		
	$\frac{dg}{dx} = -\frac{bx}{8y}$. 1
	3× (m.) 44		
	$3x^{2}-y^{2}=3$		
	bar - Zy dy :0		
	dy bx dx ig j		
	$At(2.3)$ $m_1 = \frac{-b}{12} = -\frac{1}{2}$	~~, ~ ₂ =	~)
	$A \in (2, -1) m_{1} = \frac{-6}{-12} \frac{1}{2}$ $m_{2} = \frac{-6}{-12} \frac{1}{2}$	M, M2	· · · /
-		er, an	
	$A((-1,-3)) = m_{1} = \frac{6}{2} \frac{6}{-1} = \frac{1}{2}$ $m_{1} = \frac{-6}{-3} = 2$	<i>}</i> ~	m2 = - 1

(2'3)

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria	
16	$(L)(i)(1-x^{L})^{\frac{n-1}{2}} - (1-x^{L})^{\frac{n-1}{2}} =$	12/	$(-x^{l})^{\frac{n-3}{2}}$	
	$6M1: (1-x^2)^{\frac{n-3}{2}} - (1-x^2)^{\frac{n-3}{2}}$			
	$= \left(1-\chi^{2}\right)^{\frac{\gamma-3}{2}}\left[1-\left(1-\chi^{2}\right)^{\frac{\gamma-3}{2}}\right]$)]		
	$= \left(1-x^{2}\right)^{\frac{n-3}{2}} \left(1-1+x^{2}\right)$			
	$\frac{1}{2} \times \frac{1}{2} \left(1 - x^2 \right)^{\frac{n-3}{2}}$			
	~ R 45			
	(ii) $I_n = \int_0^1 (1-x^2)^{\frac{n-1}{2}} dx$			
	$= \int_0^1 \left(\left(1 - x^2 \right)^{-\frac{1}{2}} dx \right)$		$u:(1-x^{2})^{\frac{n}{2}}$	
	$\begin{bmatrix} & & & \\ $	л. ж. с	$u': \frac{n-1}{2}(1-x^{2})^{\frac{n-3}{2}}.$	(1) ²
	$= \left[\left[(1-1)^{\frac{1}{2}} \cdot 1 \right] - \left[(1-0)^{\frac{1}{2}} \cdot 0 \right] \right] + (n-1) \int_{0}^{1} \cdot 0$	x:(1-	$(x^{2})^{\frac{n-3}{2}} clac v' > 1$	·
	$= (n-1) \int_{-1}^{1} \left[(1-x^{2})^{\frac{n-3}{2}} - (1-x^{2})^{\frac{n-3}{2}} \right]_{-1}^{1}$			
	$= (n-1) \int_{0}^{1} (1-\mu^{2})^{\frac{n-3}{2}} = (n-1)^{\frac{n-3}{2}}$) [($-x^{2})^{\frac{1-1}{2}}dx$	• •
	$i = \frac{1}{2} = (n-1) \int_{0}^{1} (1-x^{2})^{\frac{n-2}{2}} - (1-x^{2})^{\frac{n-2}{2}}$		fn)	
		requ		

Kambala – 2013 – Year 12 – Ext 2 Trial HSC Examination

Qn	Solutions	Marks	Comments & Criteria
16	(c) (:::) $n I_n : (n-1) I_{n-2}$		
	i.e. $I_n = \left(\frac{n-1}{n}\right) I_{n-2}$		
	$I_5 = \frac{4}{5} \times I_3$		
	$I_3 \sim \frac{2}{3} I_1$		
	$I_{i} = \int_{0}^{1} (1 - \kappa^{2})^{i} d\kappa$ $= \int_{0}^{1} (1 - \kappa^{2})^{\circ} d\kappa$		
	$= \int_0^1 (1-\kappa^2)^\circ d\kappa$		
	= [1. dx		
	- [x],'		
	÷ 1		
	$\overline{J}_3 = \frac{2}{3}$		
	25 = 4 × 23		
	: 8		1