Trial HSC - Task 3
 August 2013

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- Answer questions $1-10$ on the multiple choice answer sheet provided.
- Answer questions $11-16$ in the booklets provided.
Start each question in a new booklet.
- A table of standard integrals is provided at the back of this paper
- In Questions 11 - 16, show relevant mathematical reasoning and/or calculations

Total marks - 100
Section I - Pages 3 - 6
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - Pages 7-14
90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

BLANK PAGE

Section I

10 Marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Let $z=3+2 i$ and $w=2-i$.
What is the value of $\bar{z}+3 w$?
A. $9+i$
B. $9-i$
C. $9-3 i$
D. $9-5 i$

2 The equation $x^{3}+2 x y-y^{3}-2=0$ defines y implicitly as a function of x.
What is the value of $\frac{d y}{d x}$ at the point $(1,1)$?
A. 5
B. 1
C. $\frac{1}{5}$
D. -1

3 The equation $3 x^{3}+2 x^{2}-4 x+1=0$ has roots α, β and γ.
What is the value of $\frac{1}{\alpha^{3} \beta^{3} \gamma^{3}}$?
A. 27
B. -27
C. $\frac{1}{27}$
D. $-\frac{1}{27}$
$4 \quad$ What is the eccentricity of the hyperbola $\frac{x^{2}}{6}-\frac{y^{2}}{10}=1$?
A. $\frac{2 \sqrt{10}}{5}$
B. $\frac{2 \sqrt{6}}{3}$
C. $\frac{2 \sqrt{3}}{3}$
D. $\frac{\sqrt{6}}{3}$

5 The polynomial $P(x)=0$ has real coefficients. Three of the roots of $P(x)$ are $x=4$, $x=2-i$ and $x=1+i$. What is the minimum degree of $P(x)$?
A. 3
B. 4
C. 5
D. 6

6 The complex number z is shown in the Argand diagram below.

Which of the following best represents $-i \bar{z}$?
A.

B.

C.

D.

$7 \quad$ The graph of $y=\sqrt{f(x)}$ is shown below.

A possible graph of the function $y=f(x)$ is:
A.

C.

B.
D.

$8 \quad$ If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ is equal to:
A. $-128 \omega^{2}$
B. $128 \omega^{2}$
C. -128ω
D. 128ω

9 Let $y=\cos ^{-1} e^{x}$. An expression for $\frac{d y}{d x}$ is given by:
A. $-\tan y$
B. $-\cot y$
C. $-\operatorname{cosec} y$
D. $-\sec y$

10 What are all the values of k for which the graph of $y=2 x^{3}-6 x^{2}+k$ will have three distinct x-intercepts?
A. $k>0$
B. $k<8$
C. $k=0,8$
D. $0<k<8$

End of Section I

Section II

60 Marks

Attempt Questions 11-16
Allow about 2 hours $\mathbf{4 5}$ minutes for this section
Answer each question in the booklets provided. Start each question in a new booklet. In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Express $\frac{2 \sqrt{3}+i}{\sqrt{3}-i}$ in the form $x+i y$, where x and y are real.
(b) Shade the region on the Argand diagram where the two inequalities

$$
|z+1| \leq 1 \text { and }|z-2 i| \geq 2
$$

both hold.
(c) Given $z_{1}=i \sqrt{2}$ and $z_{2}=\frac{2}{1-i}$
(i) Express z_{1} and z_{2} in modulus-argument form.
(ii) If $z_{1}=w z_{2}$, find w in modulus-argument form.
(iii) On an Argand diagram, plot the points P, Q and R, where P represents z_{1}, Q represents z_{2} and R represents $\left(z_{1}+z_{2}\right)$.
(iv) Show that $\operatorname{Arg}\left(z_{1}+z_{2}\right)=\frac{3 \pi}{8}$ and hence find the exact value of $\tan \frac{3 \pi}{8}$.
(d) Given that $2^{n+4}>(n+4)^{2}$ for all integral $\mathrm{n} \geq 1$, show that $2^{3(a+2)}>9(a+2)^{2}$.
(e) Solve the equation $x^{3}-8 x^{2}-5 x+84=0$, given that one of the roots is equal to the sum of the other two roots.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{d x}{x^{2}-2 x+5}$.
(b) Find $\int \ln x d x$.
(c) Using the substitution $u=e^{x}$ and partial fractions, find $\int \frac{1}{e^{x}+1} d x$.
(d) Prove by the process of Mathematical Induction that $(1+x)^{n}-n x-1$ is divisible by x^{2} for all integral $n \geq 2$.
(e) Given that $f(x)=|x-2|-2$, sketch the graphs of the following showing the x - and y-intercepts. Use separate axes for each graph.
(i) $y=f(x)$
(ii) $y=[f(x)]^{2}$
(iii) $y=\ln [f(x)]$

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The area between the two curves $y=2 x-x^{2}$ and $y=x$ is rotated about the line $x=2$.

Using the method of cylindrical shells, calculate the exact volume of the solid of revolution formed.
(b) (i) Find the centre and radius of the circle $x^{2}+y^{2}+4 x=0$.
(ii) Show that the line $y=m x+b$ will be a tangent to the circle if

$$
4(m b+1)=b^{2}
$$

(iii) $\quad P$ is a point whose coordinates are $(k, 0)$.

If P lies on the line $y=m x+b$ and is exterior to the circle, find possible values for k if the two tangents from P to the circle are perpendicular.
(c) (i) Show that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.
(ii) Hence evaluate $\int_{0}^{1} x^{2} \sqrt{1-x} d x$.

Question 13 (continued)

(d) $\quad A B$ and $M N$ are chords of a circle that intersect at $S . R$ is a point external to the circle such that $R A$ is perpendicular to the chord $A B$ and $R N$ is perpendicular to the chord $M N$.
The line $R S$ is produced to T, a point lying on $M B$.

Copy or trace this diagram into your answer booklet.

Prove that $R T$ is perpendicular to $M B$.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) The base of a certain solid is in the shape of an ellipse with equation $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. Sections parallel to the y-axis are equilateral triangles, with one side sitting in the base of the solid, as shown in the diagram below.

Find the exact volume of the shape.
(b) The diagram shows the graph of $y=\frac{x^{2}-6}{x-2}$. The line l is an asymptote.

(i) Use the above graph to draw a one-third page sketch of the graph $y=\frac{x-2}{x^{2}-6}$.
(ii) By writing $\frac{x^{2}-6}{x-2}$ in the form $m x+b+\frac{a}{x-2}$, find the equation of the line l.

Question 14 (continued)

(c) (i) By considering the expansion of $(\cos \theta+i \sin \theta)^{3}$ and de Moivre's theorem, show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.
(ii) Deduce that $8 x^{3}-6 x-1=0$ has solutions $x=\cos \theta$, where $\cos 3 \theta=\frac{1}{2}$.
(iii) Find the roots of $8 x^{3}-6 x-1=0$ in the form $\cos \theta$.
(iv) Hence evaluate $\cos \left(\frac{\pi}{9}\right) \cos \left(\frac{2 \pi}{9}\right) \cos \left(\frac{4 \pi}{9}\right)$. 2

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) The hyperbola with equation $x^{2}-y^{2}=9$ is shown in the diagram below. The point $P\left(x_{1}, y_{1}\right)$ lies on the hyperbola. The tangent to the hyperbola at P intersects the asymptotes of the hyperbola at points Q and R.

(i) Show that e, the eccentricity of the hyperbola, is equal to $\sqrt{2}$.
(ii) Determine the coordinates of the foci, equations of the directrices and the equations of the asymptotes.
(iii) Show that the equation of the tangent at P is

$$
y y_{1}=x x_{1}-9
$$

(iv) Prove that the area of triangle $Q O R$ is constant, where O is the origin.
(b) The cubic function $y=x^{3}-p x+q$ has two turning points.
(i) Show that $p>0$.
(ii) The line $y=k$ intersects this cubic in three distinct points.

Show that $\quad q-\frac{2 p}{3} \sqrt{\frac{p}{3}}<k<q+\frac{2 p}{3} \sqrt{\frac{p}{3}}$.
(c) The equation $x^{3}-x^{2}-3 x+5=0$ has roots α, β and γ. Find the equation whose roots are $(2 \alpha+\beta+\gamma),(\alpha+2 \beta+\gamma)$ and $(\alpha+\beta+2 \gamma)$.

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) $\quad T_{1}, T_{2}, T_{3}, \ldots$ are terms of an arithmetic sequence with common difference d. All terms in the sequence are positive.
(i) Show that $\frac{1}{\sqrt{T_{n-1}}+\sqrt{T_{n}}}=\frac{\sqrt{T_{n}}-\sqrt{T_{n-1}}}{d}$ for $n=2,3,4, \ldots$
(ii) Hence or otherwise, show that

$$
\frac{1}{\sqrt{T_{1}}+\sqrt{T_{2}}}+\frac{1}{\sqrt{T_{2}}+\sqrt{T_{3}}}+\ldots+\frac{1}{\sqrt{T_{n-1}}+\sqrt{T_{n}}}=\frac{n-1}{\sqrt{T_{1}}+\sqrt{T_{n}}}
$$

for $n=2,3,4, \ldots$
(b) The equations of two conics are $3 x^{2}+4 y^{2}=48$ and $3 x^{2}-y^{2}=3$.
(i) Show that these two conics have the same pair of foci.
(ii) The point $(4 \cos \theta, 2 \sqrt{3} \sin \theta)$ lies on the ellipse for all values of θ.

Find the four values of θ for which this point also lies on the other conic.
(iii) Show that the two conics intersect at right angles.
(c) (i) Show that $\left(1-x^{2}\right)^{\frac{n-3}{2}}-\left(1-x^{2}\right)^{\frac{n-1}{2}}=x^{2}\left(1-x^{2}\right)^{\frac{n-3}{2}}$
(ii) Let $I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{\frac{n-1}{2}} d x$ where $n=1,2,3, \ldots$

Show that $n I_{n}=(n-1) I_{n-2}$ for $n=2,3,4, \ldots$
(iii) Evaluate I_{5}.

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Kambala - 2013-Year 12-Ext 2 Trial HSC Examination
SOLUTIONS
Qn

On	Solutions
	$\therefore \int \frac{1}{u(u+1)} d u$
	$=\int \frac{1}{u} d u-\int \frac{1}{u+1} d u$
	$=\ln (u)-(n(u+1)+c$

But $u=e^{x}$

$$
\begin{aligned}
\therefore I & =\ln e^{x}-\ln \left(e^{x}+1\right)+c \\
& =x-\ln \left(e^{x}+1\right)+c
\end{aligned}
$$

1 for answer
(d) To Cove $(1+x)^{\wedge}-1 x-1$ is dir for x^{2} for $\geqslant 2$ Show tue for $1=2$

$$
\begin{aligned}
& (1+x)^{2}-2 x-1 \\
= & 1+2 x+x^{2}-2 x-1 \\
= & x^{2} \\
= & 1 \cdot x^{2} \quad \therefore \text { Div by } x^{2}
\end{aligned}
$$

True for $1=2$.
Assume true for $1=k$
i.e. $(1+x)^{\prime \prime}-k x-1=P(x) \cdot x^{2}$ for some roly-aniait $P(x$,

$$
\text { eire. }(1+x)^{k}=n(x) \cdot x^{2}+1 c x+1
$$

Prove true for $1=k+1$
i.e. Show $(1+x)^{k+1}-(k+1) x-1$ is dir $4 y x^{c}$

$$
\begin{aligned}
& (1+x)^{k+1}-(k+1) x-1 \\
& =(1+x)(1+x)^{k}-k x-x-1 \\
& =(1+x)\left[P(x) \cdot x^{2}+k x+1\right]-k x \rightarrow p-1 \\
& =P(x) \cdot x^{2}+k x+y+P(x) \cdot x^{3}+k x^{2}+x-k x- \\
& =P(x) x^{2}+N(x) \cdot x^{3}+k x^{2} \\
& =x^{2}[P(x)+P(x) x+k] \text { wick is dir } 4 y x^{2} .
\end{aligned}
$$

from (*) 1 for

Kambala - 2013 - Year 12 - Ext 2 Trial HSC Examination
SOLUTIONS
Qi

Two possible values of M if thyshts are perpendicula i.e. $\mu_{1} m_{2}=-1 \Rightarrow$ Poduct of ropt $=-1$

$$
\begin{aligned}
\therefore \quad \frac{-4}{k^{2}+4 k} & =-1 \\
k^{2}+4 k & =4 \\
k^{2}+4 k+4 & =4+4 \\
(k+2)^{2} & =8 \\
k+2 & =4+2 \sqrt{2} \\
1 & =1,1,-2 \sqrt{7}
\end{aligned}
$$

1 fon, Ir valiso.

SOLUTIONS

SOLUTIONS

| Qn | Solutions | Marks | Comments \& Criteria |
| :---: | :---: | :---: | :---: | :---: |
| 13 | (d) | | |

To Prove RT h mB
 ($) ~ \angle A N S=\angle A B M$ (ayles at cirqu-aference stumely on scme are (s) $\angle R S A=\angle T S B$ (vertically DPposite angles eqeacl)
$\therefore \triangle R A S\|\| S T B$ (Eqniayectar)
$\therefore \angle S T A=$ CRAS $=90^{\circ}$ (Cormpponelify ayler in sinicur

| Qn | Solutions | |
| :---: | :---: | :---: | :---: |
| 14 | (a) | |

Tiangle is equilateral with side leysk $2 y$

$$
\text { Aren of } \begin{aligned}
\Delta & =\frac{1}{2} a b \sin c \\
& =\frac{1}{2} \times \pi y+2 y+\sin 60 \\
& =2 y^{2} \times \frac{\sqrt{3}}{2} \\
& =\sqrt{3} y^{2}
\end{aligned}
$$

$$
=18 \sqrt{3}\left[x-\frac{x^{3}}{48}\right]_{0}^{4}
$$

$$
=18 \sqrt{3} \times \frac{8}{3}
$$

$$
=48 \sqrt{3} u^{3}
$$

$$
\begin{aligned}
V & =\int_{-4}^{4} \sqrt{3} y^{2} d x \\
& =2 \sqrt{3} \int_{0}^{4} 9\left(1-\frac{x^{2}}{16}\right) d x
\end{aligned}
$$

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
$$

$$
\begin{aligned}
& =2 \sqrt{3} \int_{0}^{4} 9\left(1-\frac{x^{2}}{16}\right) d x \\
& =18 \sqrt{3} \int_{0}^{4}\left(1-\frac{x^{2}}{16}\right) d x
\end{aligned}
$$

$$
=18 \sqrt{3}\left[\left(4-\frac{64}{48}\right)-(0-0)\right]
$$

16 (a)

$$
\text { (i) } \begin{aligned}
& T_{n}=T_{n-1}+d \\
\sqrt{T_{n-1}}+\sqrt{T_{n}} & \frac{1}{\sqrt{T_{n-1}-\sqrt{T_{n}}}} \\
= & \frac{\sqrt{T_{n-1}}-\sqrt{T_{n}}}{T_{n-1}-T_{n}} \\
= & \frac{\sqrt{T_{n-1}}-\sqrt{T_{n}}}{T_{n-1}-\left(T_{n-1}+d\right)} \\
= & \frac{\sqrt{T_{n-1}}-\sqrt{T_{n}}}{-d} \\
= & \frac{\sqrt{T_{n}}-\sqrt{T_{n-1}}}{d} \text { an req'd }
\end{aligned}
$$

Rationalisiry Denom.

