
Student Number

2018

TRIAL EXAMINATION

Extension 2 Mathematics

General Instructions

- Reading time - 5 minutes
- Working tine - 3 hours
- Write using blue or black pen Black pen is preferred
- Approved calculators may be used
- A formulae sheet is provided separately
- In Questions 11-16 show relevant mathematical reasoning and/or calculations
- Start a new booklet for each question

Total Marks - 100

Section I - Pages 3-7

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II - Pages 8-16

90 marks

- Attempt Questions 11 - 16
- Allow about 2 hour and 45 minutes for this section

Question	Marks
$\mathbf{1 - 1 0}$	$/ 10$
11	$/ 15$
12	$/ 15$
13	$/ 15$
14	$/ 15$
15	$/ 15$
16	$/ 15$
Total	$/ 100$

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for questions 1 - 10 (Detach from paper)

1. The sum of eccentricities of two different conics is 2.5 . Which pair of conics could this be?
(A) Circle and ellipse
(B) Ellipse and parabola
(C) Parabola and hyperbola
(D) Rectangular hyperbola and circle
2. What value of z satisfies $z^{2}=9-40 i$?
(A) $-5-4 i$
(B) $5-4 i$
(C) $4-5 i$
(D) $-4-5 i$
3. Given α, β, γ are roots of $x^{3}+n x^{2}-p x-k=0$.

Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$
(A) 0
(B) $\frac{p}{k}$
(C) $-\frac{p}{k}$
(D) $-\frac{1}{n}$
4. The graph of the function $y=f(x)$ is shown.

A second graph is obtained from the function $y=f(x)$

Which equation best represents the second graph?
(A) $y^{2}=f(x)$
(B) $y=|f(x)|$
(C) $y=f(|x|)$
(D) $y^{2}=|f(x)|$
5. If $z=-1+\sqrt{3} i$ which expression is equal to z^{5} ?
(A) $32 \operatorname{cis}\left(-\frac{\pi}{3}\right)$
(B) 2 cis $\left(-\frac{2 \pi}{3}\right)$
(C) $32 \operatorname{cis}\left(-\frac{2 \pi}{3}\right)$
(D) $2 \operatorname{cis}\left(-\frac{\pi}{3}\right)$
6. Let $f(x)=\frac{x^{k}+a}{x}$ where k and a are real constants.

If k is an odd integer which is greater than 1 and $a<0$, a possible graph of $f(x)$ could be:

A

B

C

D

7. A particle P of mass 5 kg is subject to forces 12 Newtons and 9 Newtons acting in perpendicular directions. The magnitude of the acceleration of the particle in ms^{-2}, is
(A) 3
(B) 4.2
(C) 15
(D) 75

8. A particle moving in a Simple Harmonic Motion oscillates about a fixed point O in a straight line with a period of 10 seconds. The maximum displacement of P from O is 5 m . Which of the following statement/s is/are true?

If P is at O moving to the right, then 22 seconds later P will be:
I. Moving towards O
II. Moving with a decreasing speed
III. At a distance $5 \sin (2 \pi / 5) m$ to the right of O
(A) I, II and III
(B) I and II only
(C) II and III only
(D) None of the above
9. z is a complex number such that $z=(1-\sqrt{a} \sin t)+i\left(1-\frac{1}{b} \cos t\right)$, where $t \geq 0, a$ and b are positive real numbers.

The locus of z on an Argand diagram will always be a circle if:
(A) $\quad a b^{2}=1$
(B) $\quad a^{2} b=1$
(C) $\quad a b^{2} \neq 1$
(D) $\quad a^{2} b \neq 1$
10. Suppose q, r, s and t are positive real numbers. Which of the following is the correct expression?
(A) $\int \frac{p x+q}{r x+s} d x=\frac{p}{r}\left[x-\left(\frac{q}{p}+\frac{s}{r}\right) \ln (r x+s)\right]+C$
(B) $\int \frac{p x+q}{r x+s} d x=\frac{p}{r}\left[x+\left(\frac{q}{p}+\frac{s}{r}\right) \ln (r x+s)\right]+C$
(C) $\int \frac{p x+q}{r x+s} d x=\frac{p}{r}\left[x+\left(\frac{q}{p}-\frac{s}{r}\right) \ln (r x+s)\right]+C$
(D) $\int \frac{p x+q}{r x+s} d x=\frac{p}{r}\left[x-\left(\frac{q}{p}+\frac{s}{r}\right) \ln (r x+s)\right]+C$

Section II

90 marks

Attempt Questions 11 - 16
Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11(15 marks) Use a SEPARATE writing booklet
a) Express $\frac{2+5 i}{3-i}$ in the form $x+i y$ where x and y are real.
b)

Consider the complex numbers $z=3-2 i, w=-2+i$
(i) Express $z+w$ in modulus argument form
(ii) write down $\bar{z}+\bar{w}$ in modulus argument form
c) Given $z=4$ cis $\frac{\pi}{3}, w=2$ cis $\frac{5 \pi}{6}$
(i) Calculate $z . w$ in modulus argument form
(ii) Convert $z . w$ to cartesian form
d) Express $\frac{3 x+2}{(x+1)(x+2)^{2}}$ in partial fractions
e) Find the value of $\frac{d y}{d x}$ at the point $(5,-3)$ on the curve $x^{2}+4 y x+5 y^{2}=10$
f) Using the substitution $t=\tan \frac{x}{2}$ find $\int \frac{1}{4 \sin x+3 \cos x} d x$, leaving your final answer in 3 terms of t.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet
a) Sketch the region in the Argand diagram where $|z+1+i| \leq 1$ and $-\pi \leq \arg z \leq-\frac{3 \pi}{4}$
b) The points A, B, C, D represent the complex numbers a, b, c and d respectively. The points form a square as shown on the diagram below.

By using vectors or otherwise, show that $b=c(1+i)-i d$

c) Factorise $z^{4}+z^{2}-6$
(i) over the irrational number field 1
(ii) over the complex field and list the complex roots
d) (i) By writing $f(x)=\frac{(x+4)(x+3)}{(x-1)}$ in the form $f(x)=m x+b+\frac{a-1}{x-1}$ find the equation of the oblique asymptote of $f(x)=\frac{(x+4)(x+3)}{(x-1)}$
(ii) Sketch $f(x)=\frac{(x+4)(x+3)}{(x-1)}$ clearly indicating all intercepts and asymptotes
(iii) from your graph of $f(x)$ draw a sketch of $y=\sqrt{f(x)}$
(iv) draw a half to a third of a page sketch of $y^{2}=f(x)$

Question 12 continues on the next page
e) Find the volume of the solid generated by rotating the region bounded by $y^{2}=9 x$ and $y=x$ about the y-axis using the method of cylindrical shells

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet
a) Prove the sums of the focal distances from a point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is equal to $2 a$. You may refer to the diagram below.

b) By referring to the diagram below, taking the coordinates of A as $(a, 0)$, and A^{\prime} as $(-a, 0)$. Using the definition of an ellipse and $\frac{S P}{P M}=e$:

(i) Prove the positive directrix equation is $x=\frac{a}{e}$
(ii) Prove that the focus S has coordinates $(a e, 0)$
(iii) Hence, prove the equation of an ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
c) A solid has a base in the form of an ellipse with major axis 10 units and minor axis 8 units, as shown in the diagram below. Find the volume of the solid if every section perpendicular to the major axis is an equilateral triangle.
d) A concrete crushing plant turns concrete waste into fine gravel. The gravel pours off a conveyor belt at the rate of $12 \mathrm{~m}^{3} / \mathrm{min}$. The falling gravel forms a pile in the shape of a cone on the ground (Note: you can assume that the plant operator shuts down the
crusher when the top of the cone nears the conveyor belt). The base of the cone is a cone on the ground (Note: you can assume that the plant operator shuts down the
crusher when the top of the cone nears the conveyor belt). The base of the cone is always equal to 1.25 times the height of the cone.
(i) Show that when the height is h metres, the volume $V m^{3}$ of gravel is given by $V=\frac{25 \pi h^{3}}{192}$
(ii) Hence determine how fast the height of the pile is increasing (in $\mathrm{m} / \mathrm{min}$) when the

 gravel pile is 2 metres high.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet
a) (i) Find the exact value of $\int_{0}^{\frac{\pi}{6}} 2 \operatorname{cosec} 4 x \tan 2 x d x$

$$
\int_{0}^{k} \frac{x^{2}}{\sqrt{1-4 x^{2}}} d x=\frac{1}{16}\left[\sin ^{-1} 2 k-2 k \sqrt{1-4 k^{2}}\right]
$$

where k is a real number.
b) If α and β are the roots of $x^{2}+p x+q=0$. If $S_{n}=\alpha^{n}+\beta^{n}$, it can be shown that $S_{2 n}=S_{n}{ }^{2}-2 q^{n}$ and $S_{2 n+1}=S_{n} S_{n+1}+p q^{n}$
(You do NOT need to prove this)
Express S_{7} in terms of p and q.
c) (i) Find real numbers a and b such that

$$
\frac{5-x}{(2 x+3)\left(x^{2}+1\right)}=\frac{a}{2 x+3}-\frac{b x-1}{x^{2}+1}
$$

(ii) Hence find $\int \frac{5-x}{(2 x+3)\left(x^{2}+1\right)} d x$
d) If $I_{n}=\int \frac{\cos (2 n x)}{\cos x} d x$, show that $I_{n}=\frac{2 \sin (2 n-1) x}{(2 n-1)}-I_{n-1}$.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet
a) (i) Differentiate $y=\sin ^{-1}(x)+\cos ^{-1}(x)$, with respect to x.
(ii) Evaluate $\cos ^{-1}(x)+\cos ^{-1}(-x)$.
(iii) Hence solve $\sin ^{-1}(x)+\tan ^{-1}\left(\frac{5 x}{2 x^{2}+2}\right)=\cos ^{-1}(-x)-\frac{\pi}{4}$

2
b) \quad Consider $f(x)=x-\ln \left(1+x+\frac{x^{2}}{2}\right)$
(i) Show that $f(x)$ is an increasing function.
(ii) Hence show that $e^{x}>1+x+\frac{x^{2}}{2}$ for $x>0$.
c) A particle of mass $m \mathrm{~kg}$ is falling from rest, experiences air resistance of $m k v^{2}$ Newtons, where k is a positive constant and $v \mathrm{~ms}^{-1}$ is the velocity of the particle. Acceleration of gravity is $g \mathrm{~ms}^{-2}$.
(i) Draw the force diagram to show that the equation of motion of the particle is $\ddot{x}=g-k v^{2}$, where x metres is the distance the particle fell from its original position.
(ii) Explain how the value of the terminal velocity, Vms^{-1}, of the particle be obtained and state its value in terms of k and g.
(iii) Show that the velocity of the particle, $v \mathrm{~ms}^{-1}$, at t seconds is given by

$$
v=V\left[\frac{e^{2 k V t}-1}{e^{2 k V t}+1}\right]
$$

(iv) Show that the position of the particle, x metres, in terms of v, is given by $x=\frac{1}{2 k} \ln \left[\frac{g}{g-k v^{2}}\right]$

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet
a) In the diagram below, $A C$ is the diameter of circle $A E C F G$ with centre O. $B D$ is the tangent to the circle at C.

H is a point on GC such that $\angle B H C=\frac{\angle G H B}{3}$

(i) Prove that $D F E B$ is a cyclic quadrilateral. Tip: you may wish to add a line (construction).
(ii) Prove that $\angle H B G=\angle H B C$
b) (i) Given that f is a continuous function as shown below, explain, with aid of a sketch, why the value of

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left\{f\left(\frac{1}{n}\right)+f\left(\frac{2}{n}\right)+f\left(\frac{3}{n}\right)+----+f\left(\frac{n}{n}\right)\right\} \text { is } \int_{0}^{1} f(x) d x .
$$

(ii) Tence evaluate $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{1+\sqrt[3]{2}+\sqrt[3]{3}+-\cdots--+\sqrt[3]{n}}{\sqrt[3]{n}}\right)$ Question 16 continues on the next page
c)

A hollow circular cone is fixed with its axis vertical and it vertex V downwards. A particle P, of mass $m \mathrm{~kg}$, is attached to a fixed point A on the axis of the cone by means of a light inextensible string of length equal to $A V$ metres. The particle moves with constant speed $v \mathrm{~m} / \mathrm{s}$ in a horizontal circle on the smooth inner surface of the cone, with the string taut. The radius of the circle is r metres, and angles $A P V$ and $A V P$ are each 30° (see diagram)
i) Find the tension in the string in terms of m, g, v and r.
ii) Deduce that $\frac{v^{2}}{g r}>\sqrt{3}$.

End of Question 16

End of Paper

Extension 2-KHS-20.18
Trial-Solution with feedback.
M/Choice
The sum of eccentricities
QI
(c) Parabola and Hyperbola

$$
\begin{aligned}
& \text { Parabola } e=1 \\
& \text { Hyperbola } e>1
\end{aligned}
$$

Q2 What value of z satisfies $z^{2}=9-400^{\circ}$

$$
\begin{aligned}
&(x+i y)^{2}=9-40 i \\
& x^{2}-y^{2}=9 \\
& 2 i x y=-40 i \Rightarrow x y=-20 \rightarrow y=\frac{-20}{x} \\
& x^{2}+y^{2}=41+ \\
& x^{2}-y^{2}=9 \\
& 2 x^{2}=50 \rightarrow x^{2}=25 \rightarrow x= \pm 5 \\
& x=5 y=-4 \\
& x=-5, y=4 \\
& \therefore \text { (B) } 5-4 i
\end{aligned}
$$

Q3 Given α, β, γ are roots of $x^{3}+n x^{2}-p x-k=0$
find

$$
\begin{aligned}
& \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma} \\
& \frac{\alpha \beta+\alpha \gamma+\beta \gamma}{\alpha \beta \gamma} \\
& \alpha+\beta+\gamma=-\frac{b}{a}=-n \\
& \sum \alpha \beta=\frac{c}{a}=-p \\
& \pi \alpha=-\frac{\alpha}{a}=-k=k \\
& \therefore=\frac{-p}{k} \text { (c) }
\end{aligned}
$$

4 The graph of $y=f(x)$ is shown ...

$$
y=|f(x)| \quad(B)
$$

$$
\text { quickly section below } x \text {-axis }
$$ reflected above x-axis:

5. If $z=-1+\sqrt{3} i$ which expression equals z^{5}

$$
\begin{aligned}
\therefore z & =2 \operatorname{cis} \frac{2 \pi}{3} \\
z^{5} & =2^{5} \text { cis } \frac{2 \pi}{3} \times 5 \quad \text { By De Moire's }
\end{aligned}
$$

$$
\begin{aligned}
& =32 \operatorname{cis} \frac{10 \pi}{3} \\
& =32 \operatorname{cis}\left(-\frac{2 \pi}{3}\right) \quad(c)
\end{aligned}
$$

$$
\begin{array}{r}
\text { 6. } f(x)=\frac{x^{k}+a}{x} \\
k>1, a<0 \\
V \cdot A \quad x=0
\end{array}
$$

$$
\begin{aligned}
& \text { e.g } \frac{x^{3}-1}{x} \\
& x \sqrt{x^{2}} \\
& \frac{x^{3}-1}{y=x^{2} \frac{-1}{x}}
\end{aligned}
$$

$$
\text { as } x \rightarrow-
$$

$$
g \rightarrow x^{2}
$$

By Pythagoras' $F=\sqrt{9^{2}+12^{2}}$

$$
F=15
$$

$f=m a$

$$
15=5 a
$$

$$
\therefore a=3
$$

(A)
Q_{8}
Period $=10$ seconds

$$
\begin{aligned}
& \therefore \frac{2 \pi}{n}=10 \Rightarrow n=\frac{\pi}{5}
\end{aligned}
$$

Max ${ }^{m}$ displacement $=$ amplitude $=a=5 \mathrm{~m}$

$$
\begin{aligned}
& \text { Max }{ }^{m} \text { displace }\left(\frac{\pi t}{5}\right) \\
& x=0, t=0 \Rightarrow x=5 \sin \left(\frac{2 \pi}{5}\right)
\end{aligned}
$$

when $t=22$

$$
\begin{align*}
x & =5 \sin \left(\frac{2 \pi}{5}\right) \\
& =5 \sin \left(4 \pi+\frac{2 \pi}{5}\right) \\
& =5 \sin \left(\frac{2 \pi}{5}\right) \tag{iII}
\end{align*}
$$

$\ddot{x}=-\frac{\pi}{5} \sin \left(\frac{2 \pi}{5}\right) \Rightarrow \operatorname{decacasin} \operatorname{secm}$ (ii)
moving to the right of $0 \Rightarrow$ (1) x
\therefore The choice is 6

9

$$
\begin{aligned}
& x=1-\sqrt{a} \sin t \\
& \sqrt{a} \sin t=1-x \\
& \sin t=\frac{1-x}{\sqrt{a}} \\
& y=1-\frac{1}{b} \cos t \\
& \frac{1}{b} \cos t=1-y \\
& \cos t=b(1-y) \\
& \sin ^{2} t+\cos ^{2} t=1 \\
& \left(\frac{1-x}{\sqrt{a}}\right)^{2}+[b(1-y)]^{2}=1 \\
& \left\{\frac{(1-x)^{2}}{a}+b^{2}(1-y)^{2}=1\right\} \times a \\
& 1(1-x)^{2}+a b^{2}\left(1-y^{2}\right)=a
\end{aligned}
$$

to be a circle, coefficient of $(1-x)^{2}$ and $\left(1-y^{2}\right)$ must be the same

$$
\therefore a b^{2}=1 \quad(A) .
$$

10

$$
\frac{p x+q}{r x+s}
$$

$$
r x+s \frac{\frac{p}{r}}{\frac{p x+q}{p x+\frac{p s}{r}}} \begin{array}{r}
q-\frac{p s}{r}
\end{array}
$$

$$
\int \frac{p x+q}{r x+s} d x
$$

$$
\begin{aligned}
& =\int\left(\frac{p}{r}+\frac{q-\frac{p s}{r}}{r x+s}\right) d x \\
& =\int\left(\frac{p}{r}+\frac{q r-p s}{r(r x+s)}\right) d x \\
& f\left(\frac{q}{r} \Rightarrow \int \frac{q r-p s}{r(r x+s)} d x\right. \\
& =\frac{p}{r} \int \frac{q r-s}{\frac{r x+s}{r x}} \\
& =\frac{p}{r} \int \frac{q r-s p}{p} \\
& r x+s \\
& =\frac{p}{r} \times \frac{q r-s p}{p r} \cdot \int \frac{r}{r x+s} d x \\
& \therefore(c)
\end{aligned}
$$

/Ia $\frac{2+5 i}{3-i} \times \frac{3+i}{3+i}=\frac{6+15 i+2 i-5}{9-i^{2}} \quad$ [1mara]

$$
\begin{aligned}
& =\frac{1+17 i}{10} \\
& =\frac{1}{10}+\frac{17}{10} i \quad[1 \operatorname{ma} h]
\end{aligned}
$$

$6 \quad i \quad z=3-2 i, w=-2+i$

$$
z+w=1-i
$$

$\sqrt{2}[1$ mark $]$
$-\frac{\pi}{4}[1$ mark $]$

$$
\therefore z+w=\sqrt{2} \text { cis }\left(-\frac{\pi}{4}\right)
$$

$\dot{i} \quad \bar{z}+\bar{\omega} \rightarrow$ from diagram $=\sqrt{2}$ cis $\frac{\pi}{4}[1$ mark] above
$O x$

$$
3+2 i+-2-i=1+i \Rightarrow \sqrt{2} \operatorname{cis}\left(\frac{\pi}{4}\right)
$$

c. $4 \operatorname{cis} \frac{\pi}{3} \times 2 \operatorname{cis} \frac{5 \pi}{6}=8 \operatorname{cis} 7 \pi=8 \operatorname{cis}\left(\frac{-5 \pi}{6}\right)[i \operatorname{marh}]$
$\dot{i} \quad 8\left(\cos \left[\frac{-5 \pi}{6}\right]+i \sin \left[\frac{-5 \pi}{6}\right]\right)$

$$
\begin{aligned}
& =8\left(\frac{-\sqrt{3}}{2}-\frac{i}{2}\right) \\
& =-4 \sqrt{3}-4 i \quad[1 \text { mark }]
\end{aligned}
$$

IId

$$
\begin{aligned}
& \frac{3 x+2}{(x+1)(x+2)^{2}}=\frac{a}{x+1}+\frac{b}{x+2}+\frac{c}{(x+2)^{2}} \\
& \therefore 3 x+2=a(x+2)^{2}+b(x+1)(x+2)+c(x+1) \\
& \operatorname{sub} \cdot x=-1 \rightarrow-1=a \\
& \operatorname{sub} x=-2 \rightarrow \quad-4=-c \rightarrow c=4
\end{aligned}
$$

coeff. of $x^{2} \quad a x^{2}=a x^{2}+b x^{2}$

$$
\begin{aligned}
\Rightarrow \quad 0 & =a+b \\
& \therefore b=1 \\
\therefore \frac{3 x+2}{(x+1)(x+2)^{2}} & =-\frac{1}{x+1}+\frac{1}{x+2}+\frac{4}{(x+2)^{2}}
\end{aligned}
$$

[2 manks a, b, c correct] [imaok 2 pronumerals correct]
or correct procers wilk minor error.
abo paid $\frac{-1}{x+1}+\frac{x+6}{(x+2)^{2}}$
lle $\quad x^{2}+4 y x+5 y^{2}=10$

$$
\begin{aligned}
& 2 x+4 \cdot \frac{d y}{d x} \cdot x+4 y-1+10 y-\frac{d y}{d x}=0 \quad \text { [imark] } \\
& \frac{d y}{d x}(10 y+4 x)=-2 x-4 y \\
& \frac{d y}{d x}=\frac{-(2 x+4 y)}{10 y+4 x} \\
& =\frac{-x(x+2 y)}{x(5 y+2 x)} \\
& \therefore \frac{d y}{d x}=\frac{-(x+2 y)}{5 y+2 x} \quad[1 \text { maik }]
\end{aligned}
$$

\therefore at $(5,-3)$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-(5+2 x-3)}{5 x-3+2 \times 5} \\
& =\frac{1}{-5} \\
& =\frac{-1}{5} \quad[\text { mark }]
\end{aligned}
$$

$11 f$

$$
\begin{aligned}
& t=\tan \left(\frac{x}{2}\right) \\
& \frac{d t}{d x}=\frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right) \\
& =\frac{1}{2}\left[1+\tan ^{2}\left(\frac{x}{2}\right)\right]=\frac{1+t^{2}}{2} \\
& \therefore d x=d t-\frac{2}{1+t^{2}} \\
& \therefore \int \frac{1}{4-\sin x+3 \cos x} d x . \quad \cos x=\frac{1-t^{2}}{1+t^{2}} \\
& \therefore \int \frac{1}{4-\sin x+3 \cos x} d x \quad \quad \cos x=\frac{1-t^{2}}{1+t^{2}} \\
& =\int \frac{1}{4 \times \frac{2 t}{1+t^{2}}+\frac{3\left(1-t^{2}\right)}{1+t^{2}}} \cdot \frac{2}{1+t^{2}} d t \quad[1 \text { mark] } \\
& =\int \frac{1}{\frac{8 t+3-3 t^{2}}{1+t^{2}}} \cdot \frac{2}{1+t^{2}} d t \\
& =\int \frac{\left(1+t^{2}\right)}{-3 t^{2}+8 t+3} \cdot \frac{2}{\left(1+t^{2}\right)} \cdot d t \\
& =2 \int \frac{-1}{(3 t+1)(t-3)} d t \quad[1 \text { mask }] \\
& \text { Note }-\sin x=\frac{2 t}{1+t^{2}}
\end{aligned}
$$

By Partial fractions

$$
\begin{aligned}
& \frac{-1}{(3 t+1)(t-3)}=\frac{a}{3 t+1}+\frac{b}{t-3} \\
& -1=a(t-3)+b(3 t+1) \\
& \operatorname{sub} t=3 \Rightarrow-1=10 b \rightarrow b=\frac{-1}{10} \\
& \operatorname{sub} t=\frac{-1}{3} \rightarrow-1=\frac{-10}{3} a \rightarrow a=\frac{3}{10}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left[\frac{3}{x_{9}(3 t+1)}-\frac{1}{x_{5}(t-3)}\right] d t \\
& =\frac{1}{5} \int \frac{3}{3 t+1} d t-\frac{1}{5} \int \frac{1}{t-3} d t \\
& =\frac{1}{5}\{\ln |3 t+1|-\ln |t-3|\}+c \\
& =\frac{1}{5} \ln \left|\frac{3 t+1}{t-3}\right|+c \quad[1 \text { mark }]
\end{aligned}
$$

$\times 2$
QII- Feedback
a. very well done, a few made simple arithmetic errors
b) mostly well done, some didst sketch argand diagram i and got angle incorrect.
ii some wasted time and could have worked out quickly from Argand diagram

Ci many didn't convert final answer so angle. was between $\frac{\pi N}{\pi N} 0$ and missed out on the mark.
ii very well done
d mostly well done - a few students got into a mess or didn't use the correct fractions...
e well done, some made errors rushing and forgot terms or forgot to differentiate expressions.

If mostly well done, those who lost a lot of mark es incorrectly worked out $\frac{d t}{d x}$. This is a common $\times 2$ question and students should be proficient in doing it quickly a correctly.

Overall - well done, but all students should be aiming for Fulc'marks in this question.

Q12
a

$$
|z+1+i|=|z-(-1-i)|
$$

\therefore circle centre -1-i' radius 1
for $|z+1+i| \leq 1$
[Imarle, for circle poling] [imak, correct shading]

6

via vectors

$$
\begin{aligned}
& C B=b-c \\
& C D=d-c
\end{aligned}
$$

$$
C B=(d-c) \times-i \quad[1 \text { mark }]
$$

$$
\left.\begin{array}{rl}
\therefore b-c & =-d i+c i \\
b & =c+c i-i d \\
\therefore b & =c(1+i)-i d
\end{array}\right\}[1 \mathrm{mar} k]
$$

$12 c$

$$
\begin{aligned}
i \quad & z^{4}+z^{2}-6 \\
& =\left(z^{2}+3\right)\left(z^{2}-2\right) \\
& =\left(z^{2}+3\right)(z-\sqrt{2})(z+\sqrt{2}) \\
\text { i} \quad & (z-\sqrt{3} i)(z+\sqrt{3} i)(z-\sqrt{2})(z+\sqrt{2})
\end{aligned}
$$

[imark]
\therefore roots are $\pm \sqrt{3} i, \pm \sqrt{2} \quad[1$ mank $]$

12d $\frac{(x+4)(x+3)}{x-1}=\frac{x^{2}+7 x+12}{x-1}$

$$
\begin{aligned}
& \frac{x+8}{x-1) x^{2}+7 x+12} \\
& \frac{x^{2}-x}{8 x} \\
& \frac{8 x-8}{20} \\
& \therefore \frac{(x+4)(x+3)}{(x-1)}=x+8+\frac{20}{x-1}
\end{aligned}
$$

Iimark for correct working]

$$
\text { as } x \rightarrow \infty \frac{20}{x-1} \rightarrow 0
$$

\therefore equation of oblique asymptot is $y=x+8 \quad$ [imark]
is when $y=0 \rightarrow x$-intexcepts $x=-4,-3$

iii $\quad y=\sqrt{f(x)}$

Limarls, show $y=\sqrt{x+5}]$ [imaik, curve]
iv $\quad y^{2}=f(x)$

Note: $y^{2}=9 x$
and $y=x$

$$
\begin{aligned}
\therefore & x^{2}=9 x \\
& x^{2}-9 x=0 \\
& x(x-9)=0 \\
\therefore & x=0,9, \text { terminals }
\end{aligned}
$$

$$
V=2 \pi \int_{0}^{9} x(\sqrt{9 x}-x) d x
$$

$$
=2 \pi \int_{0}^{9}\left(3 x^{3 / 2}-x^{2}\right) d x
$$

$$
=2 \pi\left[\frac{2}{5} \times 3 x^{5 / 2} \frac{-x^{3}}{3}\right]_{0}^{9}
$$

$$
=2 \pi\left[\frac{6}{5} x^{5 / 2} \frac{-x^{3}}{3}\right]_{0}^{9}
$$

$$
=2 \pi\left(\frac{1458}{5}-243\right)
$$

$$
=\frac{486 \pi}{5} \text { units }^{3} \quad[1 \text { mark }]
$$

Q12 feedback
a mostly well done, some drew the circle with the incorrect centre, some did incomplete shading

6 student either left this blank (a feer who need to revise vector n) or did very well. Most got full marks with a variety of methods being used.
"i mostly well done \rightarrow some didit factorize $z^{2}-2$!"
ii many didn't read the Q'n, or farted to realise
that $\pm \sqrt{2}$ are also complex roots.
Some did a great amount of work and misread the Q'n.
di very well done
$\ddot{\mu}$ most did well, some did multiple graphs on the one axes with very poor labeling...
iii about half of the students didit show or didn't alter the asymptote to $y=\sqrt{x+8}$
iv was in the main very well done.
e some didn't realize it was $d x$ (anew, who must revise cylindrical shell e.). Anumber lost a mark for not showing Σ as $\delta x \rightarrow 0$, then \int

- this was mostly well done.
overall - most student y should have been able to achieve Fullmarlo, these were pretty standard use question.

13
a

$$
\frac{P S}{P M}=e
$$

$P S=e P M$
similarly $P s^{\prime}=e P M^{\prime}$

$$
\therefore \quad P S+P S^{\prime}=e\left(P M+P M^{\prime}\right) \quad[1 \text { ma, } h]
$$

we know $P M+P M^{\prime}=\frac{2 a}{e}$

$$
\begin{aligned}
& \therefore P S+P S^{\prime}=e \times \frac{2 a}{e} \\
& \therefore P S+P S^{\prime}=2 a \quad\left[1 \mathrm{mar}^{4}\right]
\end{aligned}
$$

b $-\quad \frac{S P}{P M}=e$
as A and A^{\prime} belong to the ellipse

$$
\left.\begin{array}{l}
\frac{S A}{A N}=e, \frac{S A^{\prime}}{A^{\prime} N}=e \\
\therefore S A=e_{x} A N \text { (1) } \\
S A^{\prime}=e_{x} A^{\prime} N \text { (2) }
\end{array}\right\} \text { mark }
$$

(1) $+(2)$

$$
S A+S A^{\prime}=e\left(A N+A^{\prime} N\right)
$$

$$
\text { (} A A^{\prime}=S A+5 A^{\prime} \text { from diagram). }
$$

$$
A A^{\prime}=e\left(A N+A^{\prime} N\right)
$$

$$
2 a=e\left(A A^{\prime}+2 A N\right)
$$

$$
2 a=e(2 A 0+2 A N)
$$

$$
2 a=2 e(A O+A N)
$$

$$
\left.\begin{array}{l}
2 a=2 e(A O+A N) \\
a=e(A O+A N) \\
a=e(O N) \\
\therefore O N=a
\end{array}\right\} 1 \text { main }
$$

$$
\therefore O N=\frac{a}{e}
$$

\therefore positive directrix is $x=\frac{a}{e}$
$\dot{i} \quad(2)-(1)$

$$
\begin{aligned}
& S A^{\prime}-S A=e A^{\prime} N-e A N \\
& 2 \times O S=e\left(A^{\prime} N-A N\right) \\
& 2 \times O S=e\left(A^{\prime}\right) \\
& 2 \times O S=e \times 2 a . \\
& \therefore O S=a e \quad \therefore \text { focus } S \text { is }(a e, 0)
\end{aligned} \quad \quad \begin{aligned}
& \text { fork }
\end{aligned}
$$

for correct working]
iii $\quad \frac{S p}{p M}=e \quad S(a, 0), p(x, y), M\left(\frac{a}{e}, y\right)$

$$
\begin{aligned}
G S P^{2} & =e^{2 P M^{2}} \\
y^{2}+(x-a e)^{2} & =e^{2}\left(\frac{a}{e}-x\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-2 a e x+a^{2} e^{2}+y^{2}=e^{2}\left(\frac{a^{2}}{e^{2}}-\frac{2 a x}{e}+x^{2}\right) \\
& x^{2}-2 a e x+a^{2} e^{2}+y^{2}=a^{2}-2 a e x+e^{2} x^{2}
\end{aligned}
$$

$$
x^{2}-e^{2} x^{2}+y^{2}=a^{2}-a^{2} e^{2}
$$

[1mark]

$$
\left.\begin{array}{l}
{\left[x^{2}\left(1-e^{2}\right)+y^{2}=a^{2}\left(1-e^{2}\right)\right] \div\left(1-e^{2}\right)} \\
{\left[x^{2}+\frac{y^{2}}{1-e^{2}}=a^{2}\right] \div a^{2}} \\
\Rightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1 \\
\Rightarrow \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { where } b^{2}=a^{2}\left(1-e^{2}\right)
\end{array}\right\} \text { Imark }
$$

c

Note: ellipse equation

$$
\begin{aligned}
& \frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \\
& \frac{y^{2}}{16}=1-\frac{x^{2}}{25} \\
& \frac{y^{2}}{16}=\frac{1}{25}\left(25-x^{2}\right) \\
& y^{2}=\frac{16}{25}\left(25-x^{2}\right) \quad[\text { main }]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\delta v & =\frac{1}{2} a b \cdot \sin c \cdot \delta x \\
& =\frac{1}{2} \cdot 2 y \cdot 2 y \cdot \sin \frac{\pi}{3} \cdot \delta x \\
& =2 y^{2} \cdot \frac{\sqrt{3}}{2} \cdot \delta x \\
\delta v & =\sqrt{3} y^{2} \delta x
\end{array}\right\} \text { mark. }
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
V=\sum_{x=-5}^{5} \sqrt{3} \cdot \frac{16}{25}\left(25-x^{2}\right) \delta x \\
\text { as } f x \rightarrow 0 \\
\therefore V=2 \times \frac{16 \sqrt{3}}{25} \int_{0}^{5} \cdot\left(25-x^{2}\right) d x
\end{array}\right\} \begin{array}{c}
\leftarrow \text { mare deducted for NO } \Sigma \text { notation } \\
\text { amaru. }
\end{array} \\
& =\frac{32 \sqrt{3}}{25}\left[25 x-\frac{x^{3}}{3}\right]_{0}^{5}
\end{aligned}
$$

d
4

$$
\therefore \quad r=\frac{1}{3} \pi r^{2} h
$$

$$
r=\frac{5}{4} h \div 2=\frac{5}{8} h
$$

$$
v=\frac{1}{3} \times \pi \times\left(\frac{5}{8} 4\right)^{2} \times 4
$$

$$
v=\frac{25 \pi h^{3}}{192}
$$

[imask, correct working]
$\ddot{\mu}$

$$
\begin{aligned}
& \frac{d v}{d x}=\frac{d v}{d t} \times \frac{d t}{d x} \\
& \frac{25 \pi h^{2}}{64}=12 \times \frac{d t}{d h} \quad[1 \operatorname{man} 4] \\
& \therefore \frac{d t}{d h}=\frac{25 \pi h^{2}}{768} \\
& \therefore \frac{d h}{d t}=\frac{768}{25 \pi h^{2}} \quad[1 \mathrm{mark}] \\
& \text { sub } h=2 \\
& \frac{d h}{d t}=\frac{768}{25 \times \pi \times 2^{2}}=\frac{192}{25 \pi} \mathrm{~m} / \mathrm{min} \text { [1manh] }
\end{aligned}
$$

decimal answers not accepted

Feedback
Q13 a most got this out, sadly some didn't try and hadn't revised conics. This is a proof that was in ow class notes.
bi about half the class struggled with this, many successful students leveraged pat $a /$.

Again, a proof that was in ow notes.
some didn't try...
ii most got this out, by leveraging b,
again some didn't try...-it was in our notes.
ii) this is a very standard proof, many got it out. some didn't attempt!' or didn't stat correctly even though a clear diagram was in front of them.
\rightarrow again it was in our notes...
c some got the equation of the ellipse incorrect (most got it oik) some didn't draw the $A I_{1 x}$, again some didn't show Inotation with $f x \rightarrow 0$ leading to f even though we expressly told students to show this in class...
d i most did correctly, sadly some didn't know volume of a cone or made arithmetic errors.
ii many got full marks
those who didn't had poor working, shipped steps, found reciprocals incorrectly and had poor setting out.
Some didn't give exact answers. In $2 u, x,+2$ mules specifically astied for decimal answers please give EXACT answers.

Overall - some students clearly reed to spend a lot more time on conics, students need to take more care with their working, especially when they make

- $Q_{14}(a)(1)$

$$
\begin{aligned}
& \int_{0}^{\pi / 6} 2 \operatorname{cosec} 4 x \cdot \tan 2 x d x \\
= & \int_{0}^{\pi / 6} \frac{2}{2 \sin 2 x \cdot \cos 2 \pi} \cdot \frac{\sin 2 x}{\cos 2} \\
= & \int_{0}^{\pi / 6} \sec ^{3} 2 x d x \\
= & \frac{1}{2}[\tan 2 \pi]_{0}^{\pi / 6} \\
= & \frac{\sqrt{3}}{2}
\end{aligned}
$$

soure shidensts didnor have the $\frac{1}{2}$ when integrat $\sec ^{2} 27$.
(ii)

$$
\int_{0}^{k} \frac{x^{2}}{\sqrt{1-4 x^{2}}} d x
$$

$$
=\int_{0}^{\alpha} \frac{1}{4} \sin ^{2} \theta \frac{\cos \theta d \theta}{2}
$$

$$
\left.\begin{array}{rl}
2 x & =\sin \theta \\
2 d x & =\cos \theta d \theta \\
a & =0
\end{array}\right\}
$$

$$
\begin{aligned}
& 2 d x= \\
& x=0, \quad \theta=0 \\
& x=k=\alpha
\end{aligned}
$$

$$
\left.\begin{array}{l}
x=0, \theta=0 \\
x=\alpha=\alpha, \\
\Delta
\end{array}\right)
$$

$$
=\frac{1}{8} \int_{0}^{\alpha} \sin ^{2} \theta d \theta
$$

i work

$$
=\frac{1}{16} \int_{0}^{\alpha}-\cos 2 \theta d D
$$

1 man

$$
=\frac{1}{16}\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{0}^{\alpha}
$$

$$
=\frac{1}{16}\left[\alpha-\frac{1}{2} \sin 2 \alpha\right]
$$

1 worrh

$$
\begin{aligned}
& =\frac{16}{16}[\alpha-\sin \alpha \cos \alpha] \\
& =\frac{1}{16}\left[c^{-1} 2 k-2 k .\right.
\end{aligned}
$$

Many studinb got tós cower
Q_{14} (b) $x^{2}+p x+q=0$ roots α and β

$$
\text { b) } \left.\begin{array}{c}
x^{2}+p x+q=0 \text { roots } \alpha \text { and } \beta \\
S_{n}=\alpha^{n}+\beta^{n}, S_{2 n}=S_{n}^{2}-2 q^{n}, S_{2 n+1}=S_{n} \cdot s_{n+1}+p q^{n} \\
S_{2 n+1}=S_{n} \cdot S_{n+1}+p q^{n} \\
\begin{array}{l}
n=3 \\
S_{7}
\end{array}=S_{3} \cdot S_{4}+p q^{3} \\
S_{3}=S_{1} S_{2}+p q \\
=-p\left(p^{2}-2 q\right)+p q \\
S_{3}=-p^{3}+3 p q \\
S_{2 n}=S_{n}^{2}-2 q^{n} \tag{array}\\
n=2 S_{4}=S_{2}^{2}-2 q^{2} \\
=\left(p^{2}-2\right)^{2}-2 q^{2} \\
S_{4}=p^{4}-4 p^{2} q+2 q^{2} \text { (2) (3) (1) }
\end{array}\right\}
$$

Sub in (2) amd (3) for 5_{3} and Sat into 2 (1)

$$
\begin{aligned}
S_{7} & =\left(-p^{3}+3 p q\right) \cdot\left(p^{4}-4 p^{2} q+2 q^{2}\right)+p q^{3} \\
& =-p^{7}+7 p^{5} q-14 p^{3} q^{2}+7 p q^{3}
\end{aligned}
$$

Many Students identified $S_{7}=S_{3} S_{4}+p q^{3}$, bus had difficulties is using tie other given information and simplifying.
$Q_{14}(c)$
(i)

$$
\text { (i) } \frac{5-x}{(2 x+3)\left(x^{2}+1\right)} \equiv \frac{a}{2 x+3}-\frac{b x-1}{x^{2}+1} \quad(x \neq-3 / c)
$$

multiplying both sides by $(2 x+3)\left(x^{2}+1\right)$

$$
\begin{aligned}
& \text { Ifiplying bon } \begin{aligned}
5-x & \equiv a\left(x^{2}+1\right)-(b x-1)(2 x+3) \\
& \equiv(a-2 b) x^{2}+(2-3 b) x+(a+3)
\end{aligned}
\end{aligned}
$$

Matching the constant term,

$$
\begin{aligned}
& \text { afoot terms, } a+3=2 \\
& 5=a+3 \Longrightarrow 2
\end{aligned}
$$

Matching the coetifient of x^{2};

$$
\therefore \frac{5-x}{(2 x+3)\left(x^{2}+1\right)} \equiv \frac{2}{2 x+3}-\frac{x-1}{x^{2}+1}
$$

(ii)

$$
\left.\begin{array}{rl}
(2 x+3)\left(x^{2}+1\right) & 2 x+3 \\
\int \frac{5-x}{(2 x+3)\left(x^{2}+1\right)} d x & =\int \frac{2}{2 x+3}-\frac{x-1}{x^{2}+1} d x \\
& =\int \frac{2}{2 x+3}-\frac{\frac{1}{2}(2 x)}{x^{2}+1}+\frac{1}{x^{2}+1} d x
\end{array}\right\} 1 \text { worm }
$$

Many shidests got Ans' cowes.

14(d)

$$
\left.\begin{array}{rl}
\cos (2 n x) & =\cos [(2 n-2) x+2 \pi] \\
& =\cos (2 n-2) x \cos 2 x-\sin [2 n-2) x \sin 2 x \\
& =\cos (2 n-2) x\left[2 \cos ^{2} x-1\right]-2 \sin (2 n-2) x \sin x \cos n \\
& =2[\cos (2 n-2) x \cos n-\sin (2 n-2) x \sin \pi] \cos x \\
& =2 \cos (2 n-1) n \cos (2 n-2) x] \\
\therefore \frac{\cos 2 n 1}{\cos \pi}(2 n-2) x & =2 \cos (2 n-1) n-\frac{\cos 2(n-1] 1}{\cos \pi}
\end{array}\right]
$$

alternate mothod

$$
\begin{aligned}
& I_{n}+I_{\infty-1}=\int \frac{\cos 2 n x}{\cos x}+\frac{\cos \frac{2(n-1) \theta}{\cos 1} d n}{d} \\
& =\int \frac{2 \cos (2 n-1) \pi \cos \mu}{\cos \pi} d n \\
& =\int 2 \cos (2 n-1)^{n} d x \\
& =\frac{2}{(2 n-1)} \sin \cdot(2 n-1) a \\
& \Rightarrow I_{n}=\frac{2 \operatorname{Sin} \cdot(2 n-1) n}{(2 n-2)}-I_{n-1} \text {. }
\end{aligned}
$$

* A Few strderts used tem alternate melmos cand gor the corret resust
F Many shrdints split kn $\cos (2 n x)$ into $\cos ((2 n-1) x+1)$ and $\operatorname{could} n^{\prime} t$ go Anithen (exupr 2 stixeders)

Q15 (a)
(i)

$$
\begin{aligned}
y & =\sin ^{-1} x+\cos ^{-1} x \\
\frac{d y}{d x} & =\frac{1}{\sqrt{1 \cdot x^{2}}}+\frac{-1}{\sqrt{1-x^{2}}} \\
& =0
\end{aligned}
$$

(ii) eet $A=\cos ^{-1}(-x)$

$$
\Longrightarrow-x=\cos A
$$

$$
x=-\cos A
$$

Could ust the

$$
\begin{aligned}
& x=-\cos \pi \\
& x=-\cos (\pi-1) \\
& =-10)^{-1} 1
\end{aligned}
$$

grayn

$$
\begin{aligned}
& A \quad \pi-A=\cos ^{-1} 1 \\
& \Rightarrow \cos ^{-1}(x) \in \\
& \Rightarrow \cos ^{-1}(-1)=\cos (x)+\cos ^{-1}(-1)=\pi \\
& \Rightarrow
\end{aligned}
$$

(III)

$$
\begin{aligned}
& 2 x 72 \\
& \Rightarrow 2 x^{2}-5 n+2=0 \\
& \Rightarrow(x-2)=
\end{aligned}
$$

many did not
see zen's veshithoin $(2 x-1)(x-2)=0$.
mindos or $x=2$ is not acceptibls as for reat uolwe of $\cos ^{-1} x$ and $\sin ^{-1} x$,

$$
-1 \leq x \leq 1
$$

$$
\Rightarrow x=\frac{1}{2}
$$

1 nuart
wowh with er arm

$$
x+2
$$

$$
\begin{aligned}
& \sin ^{-1}(x)+\tan ^{-1}\left(\frac{5 x}{2 x^{2}+2}=\cos ^{-1}(-x)-\frac{\pi}{4}\right. \\
& =\pi-\operatorname{Cos}^{-1}(x)-\theta / 4 . \\
& \text { (from luy) } \\
& \left.\tan ^{-1}\left(\frac{5 \pi}{2 n^{2}+2}\right)=\pi-\pi\right)_{4}-\left(\sin ^{-1} \pi+\cos ^{-1} A\right) \\
& =\overline{0}-\theta_{4}-\bar{D} \\
& =4 / 4 \\
& \Longrightarrow \frac{5 x}{2 x^{2}+2}=1
\end{aligned}
$$

Q_{15} (b)
(i)

$$
\begin{aligned}
f(x) & =x-\ln \left(1+x+\frac{x^{2}}{2}\right) \\
f^{\prime}(x) & =1-\frac{2(1+x)}{x^{2}+2 x+2} \\
& =\frac{x^{2}}{x^{2}+2 x+2} \\
& =\frac{x^{2}}{(x+1)^{2}+1}
\end{aligned}
$$

>0 for all $x \neq 0$
$\Rightarrow f(x)$ is an in areanion funchar.
(ii)
whin $x=0 \quad f(x)=0$ functor

$$
\begin{aligned}
& \operatorname{lon} x=0 \quad f(x)=0 \\
& \Rightarrow \quad F(x)>0 \text { For } a N x>0 \\
& \Rightarrow \quad x-\ln \left(1+x+\frac{x^{2}}{2}\right)>0 \\
& \Rightarrow e^{x}>1+x+\frac{x^{2}}{2}
\end{aligned}
$$

In part (ill it is important do slow Mar $f(0)=0$ and since $f(x)$ is an increasing function $F(x)>0$ for all $x>0$
Some shaderts misted this wi their veasoni?
$Q_{15}(c)$
IFis important to slow me Force diaynam x and A ral davestion
imark
opplyig Applying Newbon's seeond Law,
It is imporlant
It is imporint

$$
\left\{\begin{array}{l}
m g-m k v^{2}=m \ddot{x} \\
\Rightarrow \ddot{x}=g-k v^{2}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { 7 to son whes fram, } \\
& \text { ed oomention: }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { ondentan: } \\
\text { Shat come. } \\
2 \text { nd }
\end{array}\right.
$$

(ii) When the particle reaphrs its

$$
\text { slad }_{2^{n}}
$$ terminat velocity $V m s^{-1}, \ddot{x}=0$ (or the re is no net forie alling on the porticls)

$$
\begin{aligned}
& \text { ponkiess } \\
& \dot{x}=g-k v^{2} \\
& \ddot{x}=0 . v=V
\end{aligned}
$$

uhen $\ddot{x}=0, v=V$

$$
\begin{aligned}
& 0=9-k V^{2} \\
& V=\sqrt{9 / k} \mathrm{~ms}^{-1}
\end{aligned}
$$

1 loowh
\square

1 naom
lunark

1 moosh

$$
\begin{aligned}
& \text { (III) } \\
& \frac{d t}{d v}=\frac{1}{k\left(v-v^{2}\right) d t} \\
& \text { Integuating both side, } w \cdot r \cdot t v \text {, } \\
& \begin{array}{l}
\text { Integuating bor } \\
t \int_{0}^{v} \frac{d t}{d v} d v=\frac{1}{k} \int_{0}^{v} \frac{1}{v^{2}-v^{2}} d v
\end{array} \\
& \left.\begin{array}{rl}
\int_{0}^{n} \frac{d t}{d v} d v & =\frac{1}{k} \int_{0}^{v} \frac{1}{v^{2}-v^{2}} d v \\
t & =\frac{1}{2 k v} \int_{0}^{v} \frac{1}{v-v}+\frac{1}{v+v} d v \\
& =\frac{1}{2 k v} \ln \left[\frac{v+v}{v-v}\right]
\end{array}\right\} \\
& =\frac{1}{2 k V} \ln \left[\frac{v+v}{v-v}\right] \\
& \left.\Rightarrow \quad \frac{V+v}{v-v}=e^{2 k v t} \quad v=v\left[\frac{e^{2 k v t}-1}{e^{2 u v t}+1}\right]_{/ r}\right\} \\
& \left.\Rightarrow \quad \frac{V+v}{V-v}=e^{2 k v t} \quad\left[\frac{e^{2 k v t} 1}{\theta^{2 u v t}+1}\right]_{/ r}\right\}^{2 k V} \\
& =k\left(\frac{g}{k}-v^{2}\right) \\
& =k\left[v^{2}-\nu^{2}\right] \\
& \frac{d v}{d t}=g-k v^{2} \\
& =\frac{1}{2 k V} \ln \left[\frac{V+v}{v-v}\right]
\end{aligned}
$$

(IV)

$$
\begin{aligned}
& \ddot{x}=g-k v^{2} \\
& v \frac{d v}{d x}=g-k v^{2} \\
& \frac{1}{v} \frac{d x}{d v}=\frac{1}{g-k v^{2}} \\
& \frac{d x}{d v}=\frac{v}{g-k v^{2}}
\end{aligned}
$$

Integrating w.r.t v

$$
\begin{aligned}
\int_{0}^{\text {Integrating }} \frac{w \cdot v \cdot v}{v} \frac{d y}{d v} d v & =\int_{0}^{v} \frac{v}{g-1 c v^{2}} d v \\
x & \left.=-\frac{1}{2 k}\left[\ln \left|g-k v^{2}\right|\right]_{0}^{v}\right] \\
& =-\frac{1}{2 k}\left[\ln \left|g-k v^{2}\right\rangle-\ln g\right] \\
& =\frac{1}{2 k} \ln \left|\frac{g}{g-k v^{2}}\right|
\end{aligned}
$$

Many slusders goot thim coweet
$16(9)$

This queshino was

(1)

Join $F C$ and $F E$

$$
\operatorname{Let} \angle F C A=\theta
$$

$$
\Rightarrow \quad \angle C D F=\angle A F F
$$

\therefore DFEB is a Cyclic quadriblam
QS $\angle C D F$

$$
\begin{aligned}
& \angle C D F E \angle A E F \Rightarrow \\
& \text { exterin } y=\text { intense op } \alpha)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \left.\angle B H C+\angle C H B=180^{\circ} \quad \text { (S) } \text {. Angh }\right) \\
& \angle B H+C+3 \angle B H=10 \\
& \angle B+C=45^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\angle B H O+3 \angle B H=1 N \\
\Rightarrow \angle B 1+C=45^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow \angle B H C C=45^{\circ} \\
& \text { Let } \angle C G B=\beta \quad \therefore \angle B H=\Delta 5^{\circ}-\beta \\
&(E x T \angle=\operatorname{snm} i f
\end{aligned}
$$

$$
\angle O C G=\beta \quad(O G=O C \text { modii) }
$$

$$
\therefore \angle H C B=90+\beta
$$

In \triangle HEB, $\angle C B B=180^{\circ}-\angle B D C-\angle A C C B$

$$
\left.\Rightarrow \quad \angle G B D=\angle C B O \simeq A)^{\circ}=B\right)^{2}
$$

$$
\begin{aligned}
& =180^{\circ}-40^{\circ} \\
& =(45-\beta)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \angle C A F=90-\theta \quad\binom{\text { Sina } A C \text { is a diamch }}{\angle A F C=90^{\circ}} \\
& B u t \angle C D F+\angle C A F=90^{\circ}(A C \perp C \text { as } \\
& D C \text { is attand } \\
& \Rightarrow \angle C D F=\theta \\
& \angle A E F=\angle F C A=\theta\binom{\text { ang li, susbin } A)}{\text { by some chaod } A F}
\end{aligned}
$$

$Q 16$ (b)
(i)

The diagrom and The releviant spatt muns

Let A_{n} be the snon of the aveas of thin reatagh approximating the acce noides the curve $y=f(x)$

$$
\begin{aligned}
& \text { fow on } x=0 \text { noal } \\
& \text { Nok } f\left(\frac{1}{n}\right)+\frac{1}{n} f\left(\frac{2}{n}\right)+\cdots+\frac{1}{n} f\left(\frac{n}{n}\right) \\
& A_{n}=\frac{1}{n} f\left(\frac{1}{n}\right)+\frac{n}{n}\left(f f\left(\frac{2}{n}\right)+\cdots+f\left(\frac{n}{n}\right)\right\}
\end{aligned}
$$

fow on $x=$
Note Roal.

$$
\begin{aligned}
& \text { Thenefore } \lim _{n \rightarrow \infty} \\
& \text { (ic) } \\
& \lim _{n \rightarrow \infty} \frac{1}{n}\left\{f\left(l_{n}, r f\left(\frac{2}{n}\right)+\cdots+f\left(\frac{n}{n}\right)\right\}=\int_{0}^{1} f(n)\right. \text { on. }
\end{aligned}
$$

(ii) setting $f(x)=\sqrt[3]{n}$, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n}\left\{\frac{\sqrt[3]{1}+\sqrt[3]{2}+\cdots+\sqrt[3]{n}}{\sqrt[3]{n}}\right] \\
& =\lim _{n \rightarrow \alpha} \frac{1}{n}\left\{\sqrt[3]{\frac{1}{n}}+\sqrt[3]{\frac{2}{n}} t \cdot+\sqrt[3]{\frac{n}{n}}\right] \\
& =\int_{0}^{1} \sqrt[3]{x} d x \\
& =\frac{3}{4}\left[x^{4 / b}\right]_{0}^{1} \\
& =\frac{3}{4} \text { units }^{2}
\end{aligned}
$$

$Q_{16}(5)$

- Normal rpachar N was uor consident ió soose singoness warleiag
- Shiducts cunat difficichis vioinn las sgans of Taman is un equanhms
(i) Applying Nation's $2^{n 9}$ Cow

$$
\begin{gather*}
\text { Applying Newn } \tag{1}\\
\nleftarrow T \cdot \cos 30^{\circ}+N \cos 30^{\circ}=\frac{m v^{2}}{v} \\
\Rightarrow \sqrt{3} T+\sqrt{3} N=2 \frac{m v^{2}}{v}-
\end{gather*}
$$

Cowereqn

$$
\begin{aligned}
& \Rightarrow \quad N \sin 30^{\circ}-T \cos 60^{\circ}-m g=0 \\
& \Rightarrow \quad N-T=2 m g
\end{aligned}
$$

$$
\Rightarrow \quad N-T=2 m g
$$

$$
\begin{aligned}
& 1 \Rightarrow N \\
&(1)-\sqrt{3} \times(2) \Rightarrow 2 \sqrt{3} T=2 \frac{v^{2}}{r}-2 \sqrt{3} m g \\
& m\left.\frac{v^{2}}{r}-\sqrt{3} g\right] r
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 2 \sqrt{3} T=\frac{2 m}{r} \\
& \left.\Rightarrow T=\frac{m}{\sqrt{3}}\left[\frac{v^{2}}{r}-\sqrt{3} g\right] \cos ^{2}\right)
\end{aligned}
$$

(ii)

$$
\text { For the string to } \left.\begin{array}{rl}
\text { be taut } T>0 \\
\Rightarrow & \frac{m}{\sqrt{3}}\left[\frac{v^{2}}{r}-\sqrt{3} g\right]>0 \\
\Rightarrow \frac{v^{2}}{v}-\sqrt{3} 9>0
\end{array}\right\}
$$

 give the agy

