

2019
 MATHEMATICS
 EXTENSION 2

Task 4

Date: 25 July 2019

General - Reading time - 5 minutes
 Instructions
 - Working time -3 hours

- Write using blue or black pen
- NESA approved calculators may be used
- Show relevant mathematical reasoning and/or calculations

Total Marks: 100 marks

Multiple Choice - Q1 to 10	$/ 10$
Question 11	$/ 15$
Question 12	$/ 15$
Question 13	$/ 15$
Question 14	$/ 15$
Question 15	$/ 15$
Question 16	$/ 15$
Total	$/ 100$

This question paper must not be removed from the examination room.
This assessment task constitutes 30\% of the course.

Section I

10 marks
Attempt Questions 1 to 10
Allow about 15 minutes for this section

Answer using multiple-choice answer sheet for questions 1 to 10 (Detach from paper)

1. The reciprocal of $4+3 i$ is
(A) $\frac{4}{25}+\frac{3}{25} i$
(B) $\frac{4}{5}+\frac{3}{5} i$
(C) $\frac{4}{25}-\frac{3}{25} i$
(D) $\quad-\frac{4}{25}+\frac{3}{25} i$
2. Z satisfies $\arg \left(\frac{z+1}{z+i}\right)=-\frac{\pi}{3}$, The locus of P representing Z in the Argand diagram is
(A)

(B)

(C)

(D)

3. Given that $P(x)=x^{4}-5 x^{2}+12 x+28$ has an integer that is a double root. $P(x)$ is expressed in terms of real factors as:
(A) $\quad(x+2)^{2}\left(x^{2}-4 x+7\right)$
(B) $(x+2)^{2}\left(x^{2}+4 x+7\right)$
(C) $(x-2)^{2}\left(x^{2}+4 x+7\right)$
(D) $(x-1)^{2}\left(x^{2}+4 x+28\right)$
4. The graph of the function $y=f(x)$ is shown.

Which equation best represents the second graph?
(A) $y^{2}=|f(x)|$
(B) $y^{2}=f(x)$
(C) $y=\sqrt{f(x)}$
(D) $y^{2}=f|x|$
5. What is the eccentricity of the ellipse $16 x^{2}+25 y^{2}=400$
(A) 0.25
(B) 0.36
(C) 0.6
(D) 0.75
6. The equation of a conic with eccentricity $\sqrt{2}$ and asymptotes $y= \pm x$ is:
(A) $x y=2$
(B) $x^{2}-y^{2}=4$
(C) $x y=1$
(D) $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$
7. A 200 g mass is swung in a horizontal circle. It completes 5 revolutions in 3 seconds. The circle has a 2 metre diameter.
Which of the following forces is closest to that required to keep the 200 g mass moving in this circle?
(A) 0.5 N
(B) $\quad 2.5 \mathrm{~N}$
(C) $\quad 10 \mathrm{~N}$
(D) 20 N
8. The volume of the solid generated when the area bounded by $y=2$ and the curve $x^{2}=8 y$ is rotated about the line $y=2$ using the method of slicing (and taking slices perpendicular to the x -axis) is given by:

A) $V=\pi \int_{-4}^{4}\left(4-\frac{x^{4}}{64}\right) d x$
B) $V=\pi \int_{-2}^{2}\left(4-\frac{x^{4}}{64}\right) d x$
C) $V=\pi \int_{-4}^{4}\left(2-\frac{x^{2}}{8}\right)^{2} d x$
D) $V=\pi \int_{-2}^{2}\left(2-\frac{x^{2}}{8}\right)^{2} d x$
9. Using the recurrence relation $I_{n}=\int \tan ^{n} x d x=\frac{\tan ^{n-1} x}{n-1}-I_{n-2}$, $\int \tan ^{6} x d x$ is equivalent to:
A) $\frac{\tan ^{4} x}{4}-\frac{\tan ^{2} x}{2}+x+c$
B) $\frac{\tan ^{4} x}{4}-\frac{\tan ^{2} x}{2}+x+c$
C) $\frac{\tan ^{6} x}{6}-\frac{\tan ^{4} x}{4}+\frac{\tan ^{2} x}{2}+c$
D) $\frac{\tan ^{5} x}{5}-\frac{\tan ^{3} x}{3}+\tan x-x+c$
10. $\frac{\cos 4 \theta+i \sin 4 \theta}{\cos 2 \theta-i \sin 2 \theta} \quad$ simplifies to:
A) $\cos 2 \theta+i \sin 2 \theta$
B) $\cos 6 \theta+i \sin 6 \theta$
C) $\cos 2 \theta-i \sin 2 \theta$
D) $\cos 6 \theta-i \sin 6 \theta$

Question 11 (15 marks) Use a NEW Writing Booklet.
(a) (i) Write $2+2 i$ in the form $r(\cos \theta+i \sin \theta)$.
(ii) Hence, or otherwise, find $(2+2 i)^{5}$ in the form $a+i b$, where a and b are integers.
(b) The diagram below shows the graph of $y=f(x)$.

The line $y=-2$ is an asymptote.

Draw separate one-third page sketches of the following.
(i) $y=\frac{1}{f(x)}$
(ii) $\quad|y|=f(|x|)$
(iii) $\quad y=\ln (f(x))$
(c) (i) Express $\frac{3}{(x+1)\left(x^{2}+2\right)}$ in the form $\frac{a}{x+1}+\frac{b x+c}{x^{2}+2}$, where a, b and c are constants.
(ii) Hence find

$$
\int \frac{3}{(x+1)\left(x^{2}+2\right)} d x
$$

END OF Q11

Question 12 (15 marks) Use a NEW Writing Booklet.
(a) $P(a \cos \theta, b \sin \theta)$ and $Q(a \cos \alpha, b \sin \alpha)$ are two points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. PQ is a focal chord passing through the focus $S^{\prime}(-a e, 0)$. The tangents to the ellipse at P and Q meet at T.
M, N and R are the feet of the perpendiculars from T to $S P, S Q$ and $P Q$ respectively.
It is given that $T R=\frac{b(1+e \cos \theta)}{e \sin \theta}$, where e is the eccentricity of the ellipse. (You do NOT need to prove this)

(i) Write down the x -coordinate of T
(ii) Show that the y -coordinate of T is $\frac{b(e+\cos \theta)}{e \sin \theta}$
(iii) Show that the equation of SP is

$$
(b \sin \theta) x+a(e-\cos \theta) y-a b e \sin \theta=0
$$

(iv) Find the length of TM
(v) Hence deduce that SM, PQ and SN are tangents to a circle with its centre at T.
(b) If $z=\cos \theta+i \sin \theta$ then using De Moivre's theorem it can be
shown that: $\quad z^{n}+\frac{1}{z^{n}}=2 \cos (n \theta)$ and $z^{n}-\frac{1}{z^{n}}=2 i \sin (n \theta)$.
Prove that $\cos ^{6} \theta-\sin ^{6} \theta=\frac{1}{16}(\cos 6 \theta+15 \cos 2 \theta)$
(c) (i) Find $\frac{d}{d x}\left(\frac{\ln x}{x}\right)$
(ii) Hence evaluate $\int \frac{1-\ln x}{x \ln x} d x$.

Question 13 (15 marks) Use A NEW Writing Booklet.
(a) (i) Show that $\cos 2 \theta=\frac{1-t^{2}}{1+t^{2}}$ where $t=\tan \theta$
(iii) Hence or otherwise, evaluate

$$
\int_{0}^{\frac{\pi}{4}} \frac{4}{5-3 \cos 2 \theta} d \theta
$$

(b)

The points A and C represent the complex numbers $z_{1}=1+i$ and $z_{3}=7+3 i$.
Find the complex number z_{2} represented by B such that $\triangle A B C$ is isosceles and right angled at B.
(c) A particle P of mass m spins with angular velocity ω in a circle of radius r, and is suspended by two light inextensible strings making angles from the vertical of α and β, where $0<\alpha<\beta<\frac{\pi}{2}$. Let A be the point from which the top string is suspended from, and let B (directly below A) be the point where the bottom string is attached.

The string $A P$ and $B P$ experiences tensions of T_{1} and T_{2} respectively.
a) Draw all the forces acting on P
b) Prove that if $T_{1}>T_{2}$, then $\omega^{2}<\frac{g}{r}\left(\frac{\sin \alpha+\sin \beta}{\cos \alpha-\cos \beta}\right)$
(d) Two circles C_{1} and C_{2} meet at P and S. Point A and R lie on C_{1} and point B and Q lie on C_{2}. $A B$ passes through S and $A R$ produced meets $B Q$ produced at C, as shown in the diagram.

(i) Prove that $\angle P R A=\angle P Q B$.
(ii) Prove that the points P, R, Q and C are concyclic.

Question 14 (15 marks) Use a NEW Writing Booklet.
(a) Sketch the curve $y=(x-2)(6-x)$ for $x \geq 0$ and find its turning point.
(b) The region bounded by the curve $y=(x-2)(6-x)$ in the first quadrant and the x-axis is rotated about the y-axis to form a solid. When the region is rotated, the horizontal line segment at height y sweeps out an annulus.
(i) Show that the area of the annulus at height y is given by $16 \pi \sqrt{4-\mathrm{y}}$.
(ii) Find the volume of the solid.
(c) (i) Given $I_{n}=\int_{0}^{3} x^{n} \sqrt{9-x^{2}} d x$, where $n>1$, prove that

$$
I_{n}=\frac{9(n-1)}{n+2} I_{n-2}
$$

(ii) Hence evaluate $\int_{0}^{3} x^{5} \sqrt{9-x^{2}} d x$
(d) A hole of radius 1 unit is bored through the centre, parallel to the major axis of the ellipsoid (football shaped) whose cross section is $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. Find the volume of the remaining solid.

Question 15 (15 marks) Use a NEW Writing Booklet.
(a) Consider the function $f(x)=e^{x}-e^{-x}$.
(i) Show that $f(x)$ is increasing for all values of x.
(ii) Show that the inverse function is given by

$$
f^{-1}(x)=\log _{e}\left(\frac{x+\sqrt{x^{2}+4}}{2}\right)
$$

(iii) Hence, or otherwise, solve $e^{x}-e^{-x}=5$. Give your answer correct to 2 decimal places.
(b) $\quad P(x)=2 x^{3}-A x-2=0$ has roots α, β, and γ.
(i) Show that $\alpha^{2}+\beta^{2}+\gamma^{2}=A$
(ii) Show that $\frac{\beta}{\gamma}+\frac{\gamma}{\beta}=A \alpha-\alpha^{3}$
(iii) Find the polynomial with the three roots

$$
\frac{\beta}{\gamma}+\frac{\gamma}{\beta}, \quad \frac{\beta}{\alpha}+\frac{\alpha}{\beta} \quad \text { and } \quad \frac{\gamma}{\alpha}+\frac{\alpha}{\gamma}
$$

(YOU MAY LEAVE YOUR ANSWER IN UNEXPANDED FORM)
(c) A particle of mass $m \mathrm{~kg}$ falls from rest in a medium where the resistance to motion is $m k v$ when the particle has velocity $v m s^{-1}$.
(i) Show that the equation of motion of the particle is $\ddot{x}=k(V-v)$ where $V \mathrm{~ms}^{-1}$ is the terminal velocity of the particle in this medium, and x metres is the distance fallen in t seconds.
(ii) Find the time T seconds taken for the particle to attain 50% of its terminal velocity, and
(iii) Find the distance fallen in terms of t, v and k.

1
. 2

END OF Q15

Question 16 (15 marks) Use a NEW Writing Booklet.
(a) (i) In an Argand diagram points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{U}, \mathrm{V}$ and W represent complex numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{u}, \mathrm{v}$ and w respectively.

Prove that, if the triangles ABC and UVW are directly similar, then

$$
a w+b u+c v=a v+b w+c u .
$$

(Directly similar means that if you go around the triangle in order A, B C and $\mathrm{U}, \mathrm{V}, \mathrm{W}$ then you go around both triangles in the same sense).

(b)
(ii) Show that the triangle ABC is equilateral if and only if

$$
a^{2}+b^{2}+c^{2}=b c+c a+a b
$$

(i) Sketch a third of a page sized graph of $y=\sqrt{x}$ and indicate on your graph, the region represented by the series

$$
\begin{equation*}
\sqrt{1}+\sqrt{2}+\sqrt{3}+---------+\sqrt{n} . \tag{1}
\end{equation*}
$$

(c) (ii) Hence show that $\sqrt{1}+\sqrt{2}+\sqrt{3}+----+\sqrt{n}>\frac{2 n \sqrt{n}}{3}$
(iii) Hence show that $(4 n+3) \sqrt{n}<(4 n+1) \sqrt{n+1}$.

Find the number of different arrangements of the letters
In the word 'PERSEVERE' if:
(i) No 2 ' E " are together
(ii) Each arrangement must start and end with either ' S ' or ' P ' with none 2 of the E's together.

End of Examination

2019-Mathematics Extension 2 Trial HSC

Q1 C	Q2C	Q3A	Q4A	Q5 C	Q6 A	Q7D	Q8C	Q9	D	Q10 B

Q11 (a)

| (i)$2+2 i$ $=2 \sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \pi / 4\right)$
 (ii)$(2+2 i)^{5}$ $=32 \times 4 \sqrt{2}\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)$ 2-correct modulus \& argument
 2-correct modulus \& argument
 (with working)
 $=128 \sqrt{2}\left(-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)$
 $=-128-128 i$ | |
| :--- | :--- | :--- | :--- |

Q11(b)

$$
\begin{aligned}
\int \frac{3}{(x+1)\left(x^{2}+2\right)} d x & =\int \frac{1}{x+1}-\frac{x-1}{x^{2}+2} d x=\int \frac{1}{x+1}-\frac{x}{x^{2}+2}+\frac{1}{x^{2}+2} d x \\
& =\ln |x+1|-\frac{1}{2} \ln \left(x^{2}+2\right)+\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x}{\sqrt{2}}+C \\
& =\ln \left|\frac{x+1}{\sqrt{x^{2}+2}}\right|+\frac{1}{\sqrt{2}} \tan ^{-1} \frac{x}{\sqrt{2}}+C
\end{aligned}
$$

1-correct integrand

2- Correct integration of all 3 function

Generally well done

Question 12

\therefore Tangent ait P and Q will inteascer an
the directrix $x=-a / \mathrm{s}$.
\therefore The x coordinate of T is $-x / e$
(ii) $T[-x / e, y 0]$ lice on the tangent $P T$,

$$
\begin{aligned}
& \frac{x}{4} \cos \theta+\frac{y}{b} \sin \theta=1 \\
\Rightarrow & -\frac{\cos \theta}{t}+\frac{y \sin \theta}{\frac{1}{2}}=1 \\
\Rightarrow & y_{0}=\frac{b}{\sin \theta}[1+\cos \theta] \\
& =\frac{b}{2}[t+\cos \theta]
\end{aligned}
$$

$$
1 r
$$

answer with reason use the property of an ellipse viz. tangent from the point of conker of a foccalchans meet on the divertrix.

As the answer is Her queilan bogor won incorved.
correstansway is any form
for mersin was given. from ends.
(iii)

$$
\begin{aligned}
& S(a l, \theta), P(a \cos \theta \\
& \text { guadian } \operatorname{if} S f=\frac{b \sin \theta}{a(\cos \theta+\theta)}
\end{aligned}
$$

\therefore Equation if sp H
$(b \sin \theta) x-a(\cos -e) y=a b \sin \theta$
(iv)

$$
\begin{aligned}
T M & =\frac{\left\lvert\,-\frac{a b \sin \theta}{e}+\frac{a \sin \left(e^{2}-\cos ^{2} \theta /-a b \sin \theta\right)}{e \sin \theta}\right.}{\left.\sqrt{b^{2} \sin ^{2} \theta+a^{2}(e-\cos \theta}\right)^{2}} \\
& =\frac{\frac{a b}{e \sin \theta}\left|-\sin ^{2} \theta+\left(e^{2}-\cos \theta\right)-e^{2} \sin ^{2} \theta\right|}{a \sqrt{\left(-e^{2}\right) \sin ^{2} \theta+(e-\cos \theta)^{2}}} \\
& =\frac{\left.\left.\frac{a b}{\sin \theta} \right\rvert\, e^{2} \cos ^{2} \theta-1\right)}{a(1-e \cos \theta)} \\
& =\frac{b(1+e \cos \theta)}{e \sin \theta}
\end{aligned}
$$

Co rrect grandssiot conses worleng
correser $3 n 3.0 \mathrm{mk}$ formula
working fo sumphis
coment answir
unajo nily of the sludincs goo the futt mare for this.

Full arooth a candund for Peasenalle wortiong towands.
(v)

$$
\begin{aligned}
& T M=T R=\frac{b(1+e \cos \theta}{e \sin \theta} \\
& \text { simitasly } \\
& T N=T R=\frac{b[1+e \cos \alpha]}{c \sin \alpha}
\end{aligned}
$$

Frum (1) and(2)
$\therefore T$ is the centre of the circle that toushes S SM, $S N$ an $A P Q$ at M, N and \mathbb{C} rejeforketh.
correxty findim the eqwiliz
coveres 200 somen

(c)

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{\log x}{x}\right)=\frac{x \cdot \frac{1}{x}-\ln x}{x^{2}} \\
& =\frac{1-\frac{\ln x}{x^{2}}}{} \\
& \therefore \quad \int \frac{1-\log x}{x-\log x} d x=\int \frac{x}{\log x}\left(\frac{1-\log x}{x}\right. \\
& =\int \frac{1}{y} \cdot \frac{d y}{d x} \cdot d x \\
& \begin{aligned}
& \\
= & \ln y+c \\
= & \ln (\ln x)+c \longrightarrow \text { monse }
\end{aligned}
\end{aligned}
$$

Q13 (a)

(i) $\begin{aligned} \cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\ & =\frac{1}{1+t^{2}}-\frac{t^{2}}{1+t^{2}}=\frac{1-t}{1+t^{2}} \end{aligned}$ (ii) $\begin{aligned} & \int_{0}^{\frac{\pi}{4}} \frac{4}{5-3 \cos 2 \theta} d \theta \\ & =\int_{0}^{1} \frac{4}{5-\frac{3\left(1-t^{2}\right)}{1+t^{2}}} \times \frac{1}{1+t^{2}} d t \\ & \quad=\int_{0}^{1} \frac{4}{5+5 t^{2}-3+3 t^{2}} d t \\ & =\int_{0}^{1} \frac{4}{2+8 t^{2}} d t=2 \int_{0}^{1} \frac{2}{1+4 t^{2}} d t \\ & =\left[\tan ^{-1} 2 x\right]_{0}^{1} \\ & =\tan ^{-1} 2 \end{aligned}$ (b) $\begin{aligned} & \overrightarrow{B A}=i \overrightarrow{B C} \\ & \begin{aligned} \overrightarrow{O A}-\overrightarrow{O B} & =i(\overrightarrow{O C}-\overrightarrow{O B}) \\ \overrightarrow{O B}(i-1) & =-\overrightarrow{O A}+i \overrightarrow{O C}=-1-i+7 i-3 \\ & =6 i-4 \end{aligned} \end{aligned}$	1- Using correct formulae with diagram 1- Correct working 1- Correct substitution 1- Correct integrand 1- Correct answer 1- Correct rotation expression of vectors	Generally well done Generally well done Some students did not use correct direction of vector.

$\therefore \overrightarrow{O B}=\frac{6 i-4}{i-1}=\frac{6 i-6-4 i-4}{-2}=5-i$
1- Correct answer
(c)

Resolve forces vertically \& horizontally:
$T_{1} \cos \alpha-T_{2} \cos \beta=m g$
$T_{1} \sin \alpha+T_{2} \sin \beta=m r \omega^{2}$
Applying the inequality $T_{1}>T_{2}$ to both expressions (1) \& (2)
$T_{1} \cos \alpha-T_{2} \cos \beta=m g>T_{1} \cos \alpha-T_{1} \cos \beta$
$T_{1} \sin \alpha+T_{2} \sin \beta=m r \omega^{2}<T_{1} \sin \alpha+T_{1} \sin \beta$
Taking reciprocal of (3) $\rightarrow \frac{1}{m g}<T_{1}(\cos \alpha-\cos \beta$) (5)
(5) $\times(4) \rightarrow \frac{m r \omega^{2}}{m g}<\frac{\sin \alpha+\sin \beta}{\cos \alpha-\cos \beta}$

Since $0<\alpha<\beta<\frac{\pi}{2} \rightarrow \cos \alpha<\cos \beta$ and $\cos \alpha-\cos \beta>0$

1- Correct diagram with all labelling

1- Correct expressions of forces

1- Correct expression of inequalities

1- Correct answer with reasoning

Generally well done

Generally well done

Many had difficulty with inequality

Question 14

$$
\begin{aligned}
14(a) \quad y & =(x-2)(6-\pi) \\
& =-1+x)
\end{aligned}
$$

$$
x=\frac{-1}{-2} x
$$

\qquad

woyjority got this covert
in

Annulus formed when the gif shades

Arat of the annulus $\overline{\delta A}=\pi\left(x_{x}^{2}-x_{t}^{2}\right) \longrightarrow 1 \mathrm{~m}$

$$
\begin{aligned}
& \left.y=-x^{2}+8 x-1271 \mathrm{~m}=\pi(x+x)\left(\frac{x}{2}+1\right)\right\} \\
& \left.\begin{array}{rl}
\left.\left.\begin{array}{l}
x^{2}+8 x+(y+2) \\
y_{2}=4+\sqrt{4-y} \\
x_{1}=4-\sqrt{4-y}
\end{array}\right\} \begin{array}{l}
=\pi(8)(2 \sqrt{4-y})
\end{array}\right\} 1 \mathrm{~m} \\
=16 \sqrt{4} \sqrt{4-y}
\end{array}\right\}
\end{aligned}
$$

Corveat in inem (im)
(C) 3
(i) $I_{n}=\int_{0}^{3} x^{4} \sqrt{9-x^{2}} d x$

$\left(1+\frac{n-1}{3}\right) I_{n}=3(n-1) I_{n-2}$

Shkents weed) draw the annulss with measureonuats and shar wovtsing
majurth gat thas combet

$$
\begin{aligned}
& 14 \subset \text { (ii) } \quad I_{n}=\frac{9(n-1)}{(n+2)} I_{n-2} \\
& \begin{aligned}
\int_{0}^{3} x^{5} \sqrt{9-x^{2}} d x & =I_{5} \\
& \left.=\frac{36}{7} I_{3} \quad I_{I}=\int_{0}^{3} x \sqrt{1-\pi^{2}} \ln \right]_{2,3 / 2} 2 \text { mors. }
\end{aligned} \\
& =\frac{36}{7} \cdot \frac{18}{5} I_{l} \\
& =\frac{36}{7} \times \frac{18}{3} 99^{\circ} \\
& =\frac{5832}{35} \\
& \text { (d) } \\
& =5 \pi y \sqrt{16-y^{2}} \sqrt{y} \\
& \therefore \text { vol.of solion formed }=\sum \delta \dot{v}
\end{aligned}
$$

> 1 m the calc.
> of the wolof the shald
> Studessts need to show ths shell ans caterrsosbar if δV.
> Many shidesh sunggeled with tri gheib and catondalsi地 colcons of unang satids

Question 15

$$
\therefore-x+\alpha^{3}-2=0 \rightarrow x=\alpha^{3}-2 \quad \text { or } \quad \alpha^{3}=x+2
$$

\therefore the cubic is

$$
\begin{aligned}
& P(x)=2(x+2)-A(x+2)^{\frac{1}{3}}-2=0 \\
& 2(x+1)=A(x+2)^{\frac{1}{3}} \rightarrow 8(x+1)^{3}-A^{3}(x+2)=0
\end{aligned}
$$

(c)

Resultant force acting on the body:
$m g-m k v=m \ddot{x}$
$\ddot{x}=k\left(\frac{g}{k}-v\right) \quad$ when $m k v=m g \quad \ddot{x} \rightarrow 0 \quad v \rightarrow \frac{g}{k}$
Hence the terminal velocity is $V=\frac{g}{k}$

$$
\therefore \ddot{x}=k(V-v)
$$

(ii) $\frac{d v}{d t}=k(V-v)$

$$
-k \frac{d t}{d v}=\frac{-1}{V-v} \quad \rightarrow \quad-k t=\ln \{A(V-v)\}, \quad A \text { constant }
$$

$t=0, v=0 \quad \rightarrow \quad A=\frac{1}{v}$

2-correct answer with working.

Only 2 students found the correct

1-correct formula for \ddot{x} with reasoning.

1-correct integration for t
answer

Well done
$\therefore \quad-k t=\ln \left(\frac{V-v}{V}\right) \quad$ (1)

$$
t=\frac{1}{k} \ln \left(\frac{V}{V-v}\right)
$$

The particle obtain 50% of terminal velocity when $v=\frac{1}{2} V$, Sub. into t

$$
\rightarrow T=\frac{1}{k} \ln \left(\frac{V-\frac{1}{2} V}{V}\right) \quad \rightarrow \quad T=\frac{1}{k} \ln 2
$$

Alternately:

$$
\begin{gathered}
\int-k d t=\int_{0}^{\frac{V}{2}} \frac{d v}{V-v} \rightarrow-k t=\left[\ln \left(V-\frac{V}{2}\right]_{0}^{\frac{V}{2}}\right. \\
\therefore-k t=\ln \left(\frac{V}{2}\right)-\ln V \quad \rightarrow \quad-k t=\ln \left(\frac{1}{2}\right) \quad \rightarrow \quad T=\frac{1}{k} \ln 2
\end{gathered}
$$

(iii) For the distance fallen:

$$
\begin{aligned}
& -k t=\ln \left(\frac{V-v}{V}\right) \quad \text { from (1) } \\
& \quad \mathrm{V} e^{-k t}=V-v \\
& \rightarrow \quad v=V-V e^{-k t} \\
& \frac{d x}{d t}=V-V e^{-k t}
\end{aligned}
$$

1-correct formula for t

1-correct answer for t

1-Correct formula for $\frac{d x}{d t}$
Many students use the formula $\ddot{x}=k\left(\frac{g}{k}-v\right)$, so could not find answer in terms of $k, V \& t$

$$
\begin{aligned}
x= & V t+\frac{v}{k} e^{-k t}+C \quad \text { when } t=0, x=0 \quad \rightarrow \quad C=-\frac{V}{k} \\
& \therefore \quad x=V t+\frac{v}{k} e^{-k t}-\frac{v}{k^{2}}
\end{aligned}
$$

Queshonld

$$
\begin{aligned}
(9 /(i) K \overrightarrow{B A} & =\overrightarrow{B C} \operatorname{cis} \theta \\
k \overrightarrow{V u} & =\overrightarrow{V W} \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& K V U=V W \\
\overrightarrow{B A} & \overrightarrow{B C}
\end{aligned} \text { wherk is istant }
$$ constant

$$
\frac{a-b}{u-v}=\frac{c-b}{w-v}
$$

$$
\begin{aligned}
& u-v \\
\Rightarrow & (a-b)(w-v)=(c-b)(u-v) \\
\Rightarrow & (a v-b w+b=c u-c u
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow(a-b)(w-v)=b(=c u-c v-b u \\
& \Rightarrow a w-a v-b w+c v=a v+b w+c u
\end{aligned}
$$

$$
\Rightarrow a w+b u+c v=a v t
$$

数 (ii) when $\triangle A B C$ is equilatesed

$$
\begin{aligned}
|a-b| & =|c-b| \\
\therefore(a-b) & =(c-b) a ; D)_{3} \\
\therefore(c-a \mid & =(b-a)(\sin 1)_{3}
\end{aligned}
$$

Similary $(c-a)<(b-a)(a i a)_{3}$

$$
\begin{align*}
& \therefore \frac{a-b}{c-a}=\frac{c-b}{b-a} \tag{1}\\
& \Rightarrow-(a-b)^{2}=(c-a)(c-b) \\
& \Rightarrow-a^{2}+2 a b-b^{2}=c^{2}-a c-b c+a b \\
& \Rightarrow a^{2}+b^{2}+c^{2}=a b+b c+c a
\end{align*}
$$

Mang shestenst, han the wisconception

$$
\frac{\text { isconception }_{\left|z_{1}\right|}^{\left|z_{2}\right|}\left|=\frac{\left|z_{3}\right|}{\left|z_{4}\right|}\right|}{z_{1}}=\frac{z_{3}}{z_{2}}
$$

/4 b

$$
\begin{aligned}
& \left.\begin{array}{l}
=\left[\frac{2 x}{3}\right]_{0}^{6} \\
=\frac{2 \pi \sqrt{6}}{3}
\end{array}\right\}
\end{aligned}
$$

Part [i, undes not eleory on swered

14 pl pagevere

$$
-P-A-s-v-R-
$$

\therefore The vepmed ow of a mergitisub

$$
\begin{aligned}
& =6 \mathrm{c}_{2} \times \frac{51}{37} \longrightarrow 1 \mathrm{~m} \\
& =909
\end{aligned}
$$

$$
S_{-} R_{-} V_{-} A_{-} p
$$

4 plow ferses $\Rightarrow 4 C_{4}=1$ wan \mid - 才7n
 $\$$ and P can $5 m y$

$$
\therefore \pi / \frac{52 m x}{6 u m} \longrightarrow 1 \mathrm{~m}
$$

