

2019 MATHEMATICS EXTENSION 2

Task 4

Date: 25 July 2019

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- NESA approved calculators may be used
- Show relevant mathematical reasoning and/or calculations

Total Marks: 100 marks

Multiple Choice - Q1 to 10	/10
Question 11	/15
Question 12	/15
Question 13	/15
Question 14	/15
Question 15	/15
Question 16	/15
Total	/100

This question paper must not be removed from the examination room. This assessment task constitutes 30% of the course.

Section I 10 marks Attempt Questions 1 to 10 Allow about 15 minutes for this section

Answer using multiple-choice answer sheet for questions 1 to 10 (Detach from paper)

- 1. The reciprocal of 4 + 3i is
 - (A) $\frac{4}{25} + \frac{3}{25}i$
 - (B) $\frac{4}{5} + \frac{3}{5}i$
 - (C) $\frac{4}{25} \frac{3}{25}i$
 - (D) $-\frac{4}{25} + \frac{3}{25}i$
- 2. Z satisfies $\arg\left(\frac{z+1}{z+i}\right) = -\frac{\pi}{3}$, The locus of P representing Z in the Argand diagram is

(A)

(B)

- 3. Given that $P(x) = x^4 5x^2 + 12x + 28$ has an integer that is a double root. P(x) is expressed in terms of real factors as:
 - (A) $(x+2)^2(x^2-4x+7)$
 - (B) $(x+2)^2(x^2+4x+7)$
 - (C) $(x-2)^2(x^2+4x+7)$
 - (D) $(x-1)^2(x^2+4x+28)$
- 4. The graph of the function y = f(x) is shown.

Which equation best represents the second graph?

- (A) $y^2 = |f(x)|$
- (B) $y^2 = f(x)$
- (C) $y = \sqrt{f(x)}$

(D)
$$y^2 = f|x|$$

- 5. What is the eccentricity of the ellipse $16x^2 + 25y^2 = 400$
 - (A) 0.25
 - (B) 0.36
 - (C) 0.6
 - (D) 0.75
- 6. The equation of a conic with eccentricity $\sqrt{2}$ and asymptotes $y = \pm x$ is:
 - (A) xy = 2(B) $x^2 - y^2 = 4$ (C) xy = 1(D) $\frac{x^2}{4} - \frac{y^2}{1} = 1$
- 7. A 200 g mass is swung in a horizontal circle. It completes 5 revolutions in 3 seconds. The circle has a 2 metre diameter.Which of the following forces is closest to that required to keep the 200g mass moving in this circle?
 - (A) 0.5 N
 - (B) 2.5 N
 - (C) 10 N
 - (D) 20 N

8. The volume of the solid generated when the area bounded by y = 2 and the curve $x^2 = 8y$ is rotated about the line y = 2 using the method of slicing (and taking slices perpendicular to the x-axis) is given by:

9. Using the recurrence relation $I_n = \int tan^n x \, dx = \frac{tan^{n-1}x}{n-1} - I_{n-2}$,

 $\int tan^6 x \, dx$ is equivalent to:

A)
$$\frac{tan^4x}{4} - \frac{tan^2x}{2} + x + c$$

B) $\frac{tan^4x}{4} - \frac{tan^2x}{2} + x + c$
C) $\frac{tan^6x}{6} - \frac{tan^4x}{4} + \frac{tan^2x}{2} + c$
D) $\frac{tan^5x}{5} - \frac{tan^3x}{3} + tan x - x + c$

- 10. $\frac{\cos 4\theta + i\sin 4\theta}{\cos 2\theta i\sin 2\theta}$ simplifies to:
 - A) $cos 2\theta + isin 2\theta$
 - B) $cos 6\theta + isin6\theta$
 - C) $\cos 2\theta i \sin 2\theta$
 - D) $cos 6\theta isin6\theta$

Question 11 (15 marks) Use a NEW Writing Booklet.

(a) (i) Write
$$2 + 2i$$
 in the form $r(\cos\theta + i\sin\theta)$. 2

(ii) Hence, or otherwise, find $(2 + 2i)^5$ in the form a + ib, where a and b are integers.

2

(b) The diagram below shows the graph of y = f(x). The line y = -2 is an asymptote.

Draw separate one-third page sketches of the following.

(i)
$$y = \frac{1}{f(x)}$$
²

(ii)
$$|y| = f(|x|)$$
 2

(iii)
$$y = \ln(f(x))$$
²

(c) (i) Express
$$\frac{3}{(x+1)(x^2+2)}$$
 in the form $\frac{a}{x+1} + \frac{bx+c}{x^2+2}$, where *a*, *b* and *c* are constants.

(ii) Hence find
$$\int \frac{3}{(x+1)(x^2+2)} dx$$
 3

END OF Q11

Question 12 (15 marks) Use a NEW Writing Booklet.

(a) $P(a \cos\theta, b\sin\theta)$ and $Q(a \cos\alpha, b\sin\alpha)$ are two points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. PQ is a focal chord passing through the focus S'(-ae, 0). The tangents to the ellipse at P and Q meet at T. M, N and R are the feet of the perpendiculars from T to SP, SQ and PQ

M, N and R are the feet of the perpendiculars from T to SP, SQ and PQ respectively. $h(1+acos \theta)$

It is given that $TR = \frac{b(1+e\cos\theta)}{e\sin\theta}$, where *e* is the eccentricity of the ellipse. (You do **NOT** need to prove this)

(i)	Write down the x-coordinate of T	1
(ii)	Show that the y-coordinate of T is $\frac{b(e+cos\theta)}{esin\theta}$	1
(iii)	Show that the equation of SP is	2
	$(bsin\theta)x + a(e - cos\theta)y - abesin\theta = 0$	Z
(iv)	Find the length of TM	3
(v)	Hence deduce that SM, PQ and SN are tangents to a circle with its centre at T.	2

(b) If $z = cos\theta + isin\theta$ then using De Moivre's theorem it can be

shown that: $z^n + \frac{1}{z^n} = 2\cos(n\theta)$ and $z^n - \frac{1}{z^n} = 2i\sin(n\theta)$. Prove that $\cos^6\theta - \sin^6\theta = \frac{1}{16}(\cos 6\theta + 15\cos 2\theta)$

(c) (i) Find
$$\frac{d}{dx}\left(\frac{\ln x}{x}\right)$$
 1

(ii) Hence evaluate
$$\int \frac{1-\ln x}{x\ln x} dx$$
. 2

3

END OF Q12

Question 13 (15 marks) Use A NEW Writing Booklet.

(a) (i) Show that
$$\cos 2\theta = \frac{1-t^2}{1+t^2}$$
 where $t = \tan \theta$ 2

(iii) Hence or otherwise, evaluate

$$\int_{0}^{\frac{\pi}{4}} \frac{4}{5 - 3\cos 2\theta} \ d\theta$$

(b)

$$Im(z)$$

$$A(z_{1} = 1 + i)$$

$$B(z_{2})$$

$$C(z_{3} = 7 + 3i)$$

$$Re(z)$$

The points A and C represent the complex numbers $z_1 = 1 + i$ and $z_3 = 7 + 3i$.

Find the complex number z_2 represented by *B* such that $\triangle ABC$ is isosceles and right angled at *B*.

3

2

(c) A particle *P* of mass *m* spins with angular velocity ω in a circle of radius *r*, and is suspended by two light inextensible strings making angles from the vertical of α and β , where $0 < \alpha < \beta < \frac{\pi}{2}$. Let A be the point from which the top string is suspended from, and let B (directly below A) be the point where the bottom string is attached.

The string AP and BP experiences tensions of T_1 and T_2 respectively.

- a) Draw all the forces acting on *P*
- b) Prove that if $T_1 > T_2$, then $\omega^2 < \frac{g}{r} \left(\frac{\sin \alpha + \sin \beta}{\cos \alpha \cos \beta} \right)$
- (d) Two circles C_1 and C_2 meet at P and S. Point A and R lie on C_1 and point B and Q lie on C_2 . AB passes through S and AR produced meets BQ produced at C, as shown in the diagram.

- (i) Prove that $\angle PRA = \angle PQB$.
- (ii) Prove that the points *P*, *R*, *Q* and *C* are concyclic.

END OF Q13

2

2

3

Question 14 (15 marks) Use a NEW Writing Booklet.

(a) Sketch the curve
$$y = (x - 2)(6 - x)$$
 for $x \ge 0$ and find its turning point. 2

(b) The region bounded by the curve y = (x - 2)(6 - x) in the first quadrant and the x-axis is rotated about the y-axis to form a solid. When the region is rotated, the horizontal line segment at height **y** sweeps out an annulus.

(i) Show that the area of the annulus at height y is given by
$$16\pi\sqrt{4-y}$$
.

2

2

(ii) Find the volume of the solid.

(c) (i) Given
$$I_n = \int_0^3 x^n \sqrt{9 - x^2} dx$$
, where $n > 1$, prove that
$$I_n = \frac{9(n-1)}{n+2} I_{n-2}$$

(ii) Hence evaluate
$$\int_0^3 x^5 \sqrt{9 - x^2} dx$$

(d) A hole of radius 1 unit is bored through the centre, parallel to the major axis of the ellipsoid (football shaped) whose cross section is $\frac{x^2}{25} + \frac{y^2}{16} = 1$. Find the volume of the remaining solid.

END OF Q14

Question 15 (15 marks) Use a NEW Writing Booklet.

- (a) Consider the function f(x) = e^x e^{-x}.
 (i) Show that f(x) is increasing for all values of x.
 - (ii) Show that the inverse function is given by

$$f^{-1}(x) = \log_e\left(\frac{x + \sqrt{x^2 + 4}}{2}\right)$$

(iii) Hence, or otherwise, solve $e^x - e^{-x} = 5$. Give your answer correct to 2 decimal places.

2

1

1

2

2

2

(b)
$$P(x) = 2x^3 - Ax - 2 = 0$$
 has roots α, β , and γ .

(1)

(iii)

- (i) Show that $\alpha^2 + \beta^2 + \gamma^2 = A$
- (ii) Show that $\frac{\beta}{\gamma} + \frac{\gamma}{\beta} = A\alpha \alpha^3$
 - Find the polynomial with the three roots

אן ט	ρια	and	Υ.	α
$\overline{\gamma}^+ \overline{\beta}'$	$\overline{\alpha}^+ \overline{\beta}$	ипи	α^+	γ

(YOU MAY LEAVE YOUR ANSWER IN UNEXPANDED FORM)

- (c) A particle of mass m kg falls from rest in a medium where the resistance to motion is mkv when the particle has velocity $v ms^{-1}$.
 - (i) Show that the equation of motion of the particle is $\ddot{x} = k(V v)$ where $V ms^{-1}$ is the terminal velocity of the particle in this medium, and x metres is the distance fallen in t seconds.
 - (ii) Find the time T seconds taken for the particle to attain 50% of its terminal velocity, and
 - (iii) Find the distance fallen in terms of t, v and k.

END OF Q15

Question 16 (15 marks) Use a NEW Writing Booklet.

(a) (i) In an Argand diagram points A, B, C, U, V and W represent complex numbers 3
 a, b, c, u, v and w respectively.

Prove that, if the triangles ABC and UVW are directly similar, then aw + bu + cv = av + bw + cu.

(Directly similar means that if you go around the triangle in order A, B C and U, V, W then you go around both triangles in the same sense).

(b)

(ii) Show that the triangle ABC is equilateral if and only if

$$a^2 + b^2 + c^2 = bc + ca + ab.$$

(i) Sketch a third of a page sized graph of $y = \sqrt{x}$ and indicate on your graph, the region represented by the series

$$\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \dots + \sqrt{n}$$
.

3

(c)

(ii) Hence show that
$$\sqrt{1} + \sqrt{2} + \sqrt{3} + - - - + \sqrt{n} > \frac{2n\sqrt{n}}{3}$$
 2

(iii) Hence show that
$$(4n+3)\sqrt{n} < (4n+1)\sqrt{n+1}$$
.

Find the number of different arrangements of the letters In the word 'PERSEVERE' if:

- (i) No 2 'E" are together 2
- (ii) Each arrangement must start and end with either 'S' or 'P' with none 2 of the E's together.

End of Examination

2019-Mathematics Extension 2 Trial HSC

Q1 C	Q2 C	Q3 A	Q4 A	Q5 C	Q6 A	Q7 D	Q8 C	Q9 D	Q10 B	

.

K 🔸 🕉 🗣

Q11 (a)

(i)	$2 + 2i = 2\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\pi/4\right)$	2- correct modulus & argument	Well done
(ii)	$(2+2i)^5 = 32 \times 4\sqrt{2} \left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$	2- correct modulus & argument (with working)	
	$= 128\sqrt{2} \left(-\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right) \\= -128 - 128i$		

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 – correct graph with labelling	Well done
		-

۲. ۳. ".»

τ<u>ε</u> 2.≱

,	•	2	•
---	---	---	---

.

,

(ii)	1-correct integrand	
$\int \frac{3}{(x+1)(x^2+2)} dx = \int \frac{1}{x+1} - \frac{x-1}{x^2+2} dx = \int \frac{1}{x+1} - \frac{x}{x^2+2} + \frac{1}{x^2+2} dx$	2- Correct integration of all 3	Generally well done
$= \ln x+1 - \frac{1}{2}\ln(x^2+2) + \frac{1}{\sqrt{2}}\tan^{-1}\frac{x}{\sqrt{2}} + C$	function	
$= \ln \left \frac{x+1}{\sqrt{x^2+2}} \right + \frac{1}{\sqrt{2}} \tan^{-1} \frac{x}{\sqrt{2}} + C$		

Question 12 . . . (a) P(aGot, Wino) -1 (-112)* 100.01 mong shaden's failed to 14 answer with use the property of on (1) PO is a Fical chard Through the facus (-De.D) ellipse with viz. tangunts reason ... Tanget b out & and Q mill intersuct box from the point of can hait The direction of = - a/e. of a focial chand meet . The x-co-prolingle of I is - ofe on the divertise. (i) T[-4/e, Jo] lies on the tongood PT, As the answer in Kur 2 GS0+2 Sm0=1 queiton pop vonincoines 4 and mark was goven = - Gost + ysme =) for versionable worksing correctanswar $\Rightarrow y_{0} = \frac{1}{5m} \left[1 + \frac{1}{2} \right]$ in any form porrands. if esing

S (alp), P(aloopLine) concert gradont of $(\mathbf{i}\mathbf{i})$ gradiant of $SP = \frac{LSin B}{a(Casp-e)}$: Equation if SP = 4majority of the students gos m full man for Concess morten Mi (6smo) x - a (av-e)y = aebsino Full anothe analyter Reasonable working Jowards. correct 342. ma (iv) TM= 1 - CT6SIMD + CAG (= Costo /- abesimo / formula N. 63104 + 92(2-630) 1 working h simplify = enno/-sino+(e-600)-esmon/ a ~ (-e') 510 - 1 (- C) 0)ab sin @ (easte-1) convert answin rd d (1-ecos0) $\frac{b(1+e\cos\theta)}{-e\sin\theta}$

6(1-12 6010 Correctly Finding The equivility TM=TK= (\mathcal{V}) enno TN=TR = 6[1+easy Similarly Form O and D convert readoning TM=TK=TN T is the centre of the circle that touches spot SM, SNow APQ at M, Nand K reipchuch.

.

÷

Que Z=GJO+iJmo => z"= 62 (00)+13m (no) and Z"= Goino)-1'sin (10) $z^{n} + \frac{1}{2n} : 2 \cos(n\theta) \text{ and } z^{n} = 245mn\theta$ 1 month $(\omega)\theta = \frac{1}{4}(z+\frac{1}{2}) = 0 \quad (\omega)\theta = \frac{1}{64}(z+\frac{1}{2})^{\frac{1}{2}}$ a number of shatens <u>n=1</u> $Sing = \frac{1}{24} (z - \frac{1}{2}) = Sin^6 g = -\frac{1}{64} (z - \frac{1}{2})^6$ Fouled to use this technoque with De moiver's Reven. · (a) 0+510 0= 1 [(2+2) + (2-2)] 1 mouth $= \frac{1}{64} \left[2 \frac{1}{2} \frac{1}{2} + \frac{30}{2} + \frac{30}{2} + \frac{2}{2} \frac{1}{2} \right]$ $= \frac{1}{64} \left[2 \left(z + \frac{1}{26} \right) + 30 \left(z + \frac{1}{22} \right) \right]^{2}$ 1 month $= \frac{1}{64} \left[4 6560 + 60.56520 \right]$ = 16[6360+156320]

x. 1 - lm) $\frac{d}{d\pi}\left(\frac{l_{12}\pi}{\pi}\right)$ (0) correct an sur N2 majority got this 1- lm 7) 2 2 , **,** - loga da =) toga (- loga) da 1 mars * J = j g. dy. dn $= \frac{4}{2} \ln (\frac{1}{2} + 1)$ 1 mont

1- Using correct formulae with $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ diagram (i) $=\frac{1}{1+t^2}-\frac{t^2}{1+t^2}=\frac{1-t}{1+t^2}$ Generally well done $\sqrt{1+t^2}$ 1- Correct working (ii) $\frac{\pi}{4}$ $\int \frac{4}{5-3\cos 2\theta} \ d\theta$ $dt = \sec^2 \theta d\theta$ $= \int_{0}^{1} \frac{4}{5 - \frac{3(1 - t^2)}{1 + t^2}} \times \frac{1}{1 + t^2} dt \qquad \qquad \theta = \frac{\pi}{4} \to t = 1 \\ \theta = 0 \to t = 0$ $=1+t^2 d\theta$ 1- Correct substitution Generally well done $\cdot = \int_{0}^{1} \frac{4}{5+5t^2-3+3t^2} dt$ $= \int_{0}^{1} \frac{4}{2+8t^{2}} dt = 2 \int_{0}^{1} \frac{2}{1+4t^{2}} dt$ 1- Correct integrand $= [\tan^{-1} 2x]_0^1$ $= \tan^{-1} 2$ 1- Correct answer (b) Some students did not use correct $\overrightarrow{BA} = i\overrightarrow{BC}$ 1- Correct rotation expression direction of vector. of vectors $\overrightarrow{OA} - \overrightarrow{OB} = i(\overrightarrow{OC} - \overrightarrow{OB})$ $\overrightarrow{OB}(i-1) = -\overrightarrow{OA} + \overrightarrow{iOC} = -1 - i + 7i - 3$ = 6i - 4

Q13 (a)

$\overrightarrow{OP} = 6i - 4 = 6i - 6 - 4i - 4 = - 4i - 4i$	1 0	
$\therefore OB = \frac{1}{i-1} = \frac{1}{-2} = 5 - i$	1- Correct answer	
(c)		
T_{I}^{*}		
T ₂ mg	1- Correct diagram with all labelling	Generally well done
Resolve forces vertically & horizontally:		
$T_1 \cos \alpha - T_2 \cos \beta = mg \qquad (1)$	1- Correct expressions of	Generally well done
$T_1 \sin \alpha + T_2 \sin \beta = mr\omega^2 (2)$	Torces	
Applying the inequality $T_1 > T_2$ to both expressions (1) & (2)		
$T_1 \cos \alpha - T_2 \cos \beta = mg > T_1 \cos \alpha - T_1 \cos \beta $ (3)	1- Correct expression of inequalities	
$T_1 \sin \alpha + T_2 \sin \beta = mr\omega^2 < T_1 \sin \alpha + T_1 \sin \beta \qquad (4)$	noquines	
Taking reciprocal of (3) $\rightarrow \frac{1}{mg} < T_1(\cos \alpha - \cos \beta)$ (5)		
$(5) \times (4) \rightarrow \frac{mr\omega^2}{mg} < \frac{\sin\alpha + \sin\beta}{\cos\alpha - \cos\beta}$		Many had difficulty with inequality
Since $0 < \alpha < \beta < \frac{\pi}{2} \rightarrow \cos \alpha < \cos \beta$ and $\cos \alpha - \cos \beta > 0$	1- Correct answer with reasoning	

· ·

· · · · ·

.

.

.

. . . .

	•	•

$\therefore \omega^2 < \frac{g}{r} \left(\frac{\sin \alpha + \sin \beta}{\cos \alpha - \cos \beta} \right).$		
(d)		
C_{1}		
< PRA = < PSA (Angles at circumference subtended by same arc) (1)		
< PSA = < PQB (Exterior angle is equal to interior opposite angle in cyclic quadrilateral)	1- with reasoning	Generally well done
$\therefore < PRA = < PQB$	1- with reasoning	
(ii) $< PRC = 180^{\circ} - < PRA$ (Straight angle) $< PSB = 180^{\circ} - < PSA$ $\therefore < PRC = < PSB$ (using (1))	1- with reasoning	
But $< PSB = < PQC$ (Exterior angle is equal to interior opposite angle in cyclic quadrilateral)		
$\therefore < PRC = < PQC$		Most students did not get full mark because they did not write the
 ∴ PRQC is cyclic quadrilateral (Two points lie on the same sides of an interval, and the angles subtended at these points by the interval are equal) 	1- with reasoning	correct theorem. This is the reverse theorem of angles in the alternate segment.

Shitems used to draw Area of the annulus SA = TT (22-2) -> 1 M The annulus with 4=-x7+84-12]1m = = 「なまむほうか」) messmements and 7-81+19421=1 · T (8) (2. Fy) 1 m show working N2=4+14-4 = 16 5 14-9 X1= 4- 14-9 Valume of the appulses & S.A. S.A. S.A. = 16 17 fary . SA *(ú)* Correct inter volume of the solud borned V= Zov = Stoo Jaing do www (-2(4-4)4) + IT UNIDS omsn $(C) i) I_n = \int \mathcal{X}^n \sqrt{9 - n^2} dn$ $= \int_{-2}^{2} \frac{\chi^{n-1}}{2} (-2\pi) \int_{-2}^{2} \int_{-2}^{2} d\eta$ IM majorih got this court $= \left[\frac{\chi^{n-1}}{2} \frac{2}{3} \frac{(q-\chi^2)^{3/L}}{(q-\chi^2)^{3/L}} + \int \frac{2}{3} \frac{(q-\chi^2)^{2/L}}{(q-\chi^2)^{3/L}} \frac{\chi^{n-L}}{(q-\chi^2)^{3/L}} \right] d\eta$ = m-1) xn-2 (9-14) (9-1-dn)m $I_n = (n-1) | qI_{n-L} - I_n |$ 1 march $= I_n = (1 + n - 1) I_n = (1 + n - 1) I_n = (0 - 1) I_n$ (1+ n-1) In = 3(n-1) In-2 arm.115

 $C(ii) I_{n} = \frac{9(n-1)I_{n-2}}{(n+2)I_{n-2}}$ $\int_{x}^{3} \sqrt{9-n^{2}} dn = I_{5}$; 14 c (ii) $T = \int_{0}^{s} \sqrt{3 \cdot 5 \cdot h} Z$ worths. $= \frac{36}{7} I_3$ = $\frac{36}{7} . \frac{18}{5} I_1$ = $\frac{36}{7} . \frac{18}{5} I_1$ = 36 × 18 91 meed he show in the calc. Students need (d)21 to show the shell and of the wat--d'y calculober Vol. of the shall Sy= 20 y. 20. Sy 21 Mony shading : Vol. of solid former = E for 2 Py m1m with the quelle =) STJ y [16-y-dy and caloulabin = 50 [- (16-y y 23)] to pressing that volumin of wrong sorrids = 25m 15 11 Umit 3

Question 15

. . . .

(i) $f'(x) = e^x + \frac{1}{e^x} > 0$ $e^x > 0$	1- Correct differentiation & conclusion	
\therefore $f(x)$ is an increasing function for all x		
(ii) $x = e^{y} - \frac{1}{e^{y}} = \frac{e^{2y} - 1}{e^{y}}$ $\rightarrow e^{2y} - xe^{y} - 1 = 0$		Generally well done
$e^{y} = \frac{x \pm \sqrt{x^{2} + 4}}{2} \longrightarrow y = \log_{e}\left(\frac{x \pm \sqrt{x^{2} + 4}}{2}\right)$	1-correct formula for y	
Since $\sqrt{x^2 + 4} > x$ and $\frac{x \pm \sqrt{x^2 + 4}}{2} > 0$ (domain of $\log_e x$)	1-correct answer with reasoning	
$ \rightarrow y = \log_e\left(\frac{x + \sqrt{x^2 + 4}}{2}\right)$		
(iii) Using result from (ii)		
$x = \log_e \left(\frac{5 + \sqrt{25 + 4}}{2}\right) = 1.65$	1-correct answer.	
(b)		Well done
(i) $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma)$ = $0 - (-A) = A$	1-correct answer with working	
$\rightarrow \alpha^2 + \beta^2 = A - \alpha^2 \qquad (1)$		
(ii) $\frac{\beta}{\gamma} + \frac{\gamma}{\beta} = \frac{\beta^2 + \gamma^2}{\beta\gamma} = \frac{A - \alpha^2}{\beta\gamma}$ (Multiplying by α) $= \frac{A\alpha - \alpha^3}{\alpha\beta\gamma} = \frac{A\alpha - \alpha^3}{\frac{2}{2}} = A\alpha - \alpha^3$	2-correct answer with working	Generally well done
(iii) Let $x = A\alpha - \alpha^3$ and $P(\alpha) = 2\alpha^3 - A\alpha - 2 = 0$ $\rightarrow -(A\alpha - \alpha^3) + \alpha^3 - 2 = 0$		

	$\therefore -x + \alpha^3 - 2 = 0 \rightarrow x = \alpha^3 - 2 or \alpha^3 = x + 2$ $\therefore \text{ the cubic is}$	2-correct answer with working.	
	$P(x) = 2(x+2) - A(x+2)^{\frac{1}{3}} - 2 = 0$ 2(x+1) = A(x+2)^{\frac{1}{3}} \rightarrow 8(x+1)^{3} - A^{3}(x+2) = 0		Only 2 students found the correct answer
	(c)		
	$\uparrow mkv$		
	t = 0, x = 0, v = 0		Well done
,	Resultant force acting on the body:		
	$mg - mkv = m\ddot{x}$		
	$\ddot{x} = k \left(\frac{g}{k} - v\right)$ when $mkv = mg$ $\ddot{x} \to 0$ $v \to \frac{g}{k}$	1-correct formula for \ddot{x}	
	Hence the terminal velocity is $V = \frac{g}{k}$	with reasoning.	
	$\therefore \ddot{x} = k(V - v)$		
	(ii) $\frac{dv}{dt} = k(V - v)$ $-k\frac{dt}{dv} = \frac{-1}{V - v} \rightarrow -kt = \ln\{A(V - v)\}, A \text{ constant}$	1-correct integration for t	Generally well done
	$t = 0, v = 0 \rightarrow A = \frac{1}{v}$		

,

1 7 L F

,

· · · ·

. . . .

* * * *

Question 16 Mang shadens block the (9/ Ji)KBA = BECISO I avant Wis Con Captions KVU = VW Ciso 三日二日 ここ 43 wher 12 is a Ginshant Z21 Z41 · BA = BC) what $\frac{a-b}{u-v} = \frac{c-b}{w-v}$ to 1 month = (a-b)(w-v)=(e-b)(u-v)=> aw-av-bw+4v= cy-cv-bu+ble = aw+by+cv= av+bw+cu 氧 (in, when AABC is equilational 10-61=10-61 1 a rats Ð : (a - b) = (c - b) (2) 173 Similarly (2-9) = (4-9, (1))3 - 2 0-5 = C-4 $\mathbf{D} \div \mathbf{D}$, wowh $= -(a-b)^{2} = (c-a)(c-b)$ = -9"+ 296-6": (-ac-6c+05) $=) a^2 + b^2 + c^2 = ab + bc + ca$

. . 16 6 ţ.Î.ţ ३ थ]*≈ त*व् part (i, mas not clearly on sweers IS1 m . <u>6</u> di. h ST + SI + SI + - + St. represents the sum of /-(11) Sum of the arms of the new changles show > area under the court from any area been -1m = 5+6+8+-..+ (6 > 1 G do 1 65 = [2] zndn Z/

1 12.35 Mang Students experiment difficulty with this Enciber. halesian 11 M-83 area under the same from a tom + area of the staded same < and whendow the same from a hagenty 1 m $\frac{2n\sqrt{n}}{3} + \left[\frac{\sqrt{n+1}\sqrt{n}}{2}\right] < \frac{2(n+1)\sqrt{n+1}}{3}$ - p 1m (4n+3) for < (4n+1) fort = (4nr3) fx 2 (4hr) fhr //

*. •		, e 7 ≤ °.	$\overline{\}$
* *	16 (c) PRESERVERE	· ·	
	11/ No 2'E's together		
	- P - R - s - v - r -		
	There are 6 places for 4'E's to fill The next chances = 4 Ca	m l	
	PRSVR can be already in Stronger)		
	: The regioned me of a mangements = 6 Car from 1 m		
	(1) Must short and and and with S and P with me 25's togethe		
	S_R_V_K_P 4 places For q'E's - 4C_ = 1 man 1/ APA		
	RUR can be away of in 31 = 3 ways ff = 3/m s and P can swap = = 2 ways ff = 1/m		
	: John b way -> '		