Kincoppal-Rose Bay, School of the Sacred Heart Mathematics Extension 2. Internal Examination 2004

Total Marks – 120 Attempt Questions 1-8 All questions are of equal value

Types mensio spppmengaggerenges.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.

Marks

2

(a) Show that
$$\int_{1}^{e} \frac{\left(\log_{e} x\right)^{3} dx}{x} = \frac{1}{4}$$

(b) (i) Write
$$1 - \frac{1}{1 + x^2}$$
 as a single fraction.

(ii) Use integration by parts to find
$$\int 2x \tan^{-1} x dx$$

(c) Use the table of standard integrals to help evaluate
$$\int \frac{dx}{\sqrt{x^2 - 6x + 25}}$$

(d) (i) Find A and B such that
$$\frac{2x^2 + 7x - 10}{(x-4)(x+1)^2} = \frac{A}{x-4} + \frac{B}{(x+1)^2}$$

(ii) Hence find
$$\int \frac{2x^2 + 7x - 10}{(x-4)(x+1)^2} dx$$

(e) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \csc x \, dx$ 4

Kincoppal-Rose Bay, School of the Sacred Heart
Mathematics Extension 2. Internal Examination 2004

(ii) Simplify $\omega^4 + \omega^5 + \omega^6$.

Mathematics Extension 2, Internal Examination 2004		
Question 2 (15 marks) Use a SEPARATE writing booklet.		Marks
(a)	Let $z = 3 - 2i$ and $w = 4 + i$. Find in the form $x + iy$,	
	(i) $z\overline{z}$	1
	(ii) $\frac{1}{w}$. 1
(b)	On an Argand Diagram the point A is represented by $z = 1 + i$ and the point B is represented by $\frac{1}{z}$.	
	(i) Express z in mod-arg form.	1
	(ii) Show clearly the points A and B on the Argand Diagram.	2
	(iii) Find the area of the triangle OAB where O is the origin. Justify your answer carefully.	2
(c)	(i) Find the locus in the Argand Diagram satisfied by $z\overline{z} - 2\operatorname{Re}(z) = 0$	2
	(ii) Draw a neat sketch of this locus.	1
	(iii) On the same diagram, draw the locus $\arg z = \frac{\pi}{4}$.	1
	(iv) Find the complex number satisfied by $\arg z = \frac{\pi}{4}$ and $z = 2 \operatorname{Re}(z) = 0$.	2
(d)	If ω is a complex cube root of unity,	
	(i) Write down the value of $1 + \omega + \omega^2$.	1

1

Kincoppal-Rose Bay, School of the Sacred Heart Mathematics Extension 2, Internal Examination 2004

Ouestion 3 (15 marks) Use a SEPARATE writing booklet.

Marks

The diagram shows y = f(x) which is an odd function. There is a turning point at (1,1).

Draw a separate sketch of each of the following graphs.

Use about one third of a page for each graph. Show all significant features.

(i)
$$y = f(-x)$$

(ii)
$$y = \frac{1}{f(x)}$$

(iii)
$$y = f(|x|)$$

(iv) Draw
$$y = f(x)$$
 and $y = \sqrt{f(x)}$ on the same number plane.

$$(\mathbf{v}) \quad \mathbf{y} = e^{f(\mathbf{x})}$$

$$(vi) y = (f(x))^2$$

(vii)
$$y = f(x) \times \sin^{-1} x$$
 (show the coordinates of the endpoints)

Kinceppal-Rose Bay, School of the Sacred Heart Mathematics Extension 2. Internal Examination 2004

Question 4 (15 marks) Use a SEPARATE writing booklet.

Marks

3

2

2

2

3

- (a) If α is a root of $ax^4 + bx^3 + cx^2 + dx + e = 0$ where a, b, c, d, e are real and α is complex, prove that \overline{a} is also a root.
- (b) (i) Given that $1-\sqrt{3}i$ is a root of P(x)=0 where $P(x)=x^4-2x^3+5x^2-2x+4$, write down two of the linear factors of P(x).
 - (ii) Hence factorise P(x) completely into real factors.
- (c) (i) Show that the solutions of $z^6 + z^3 + 1 = 0$ are contained in the solutions of $z^9 1 = 0$.
 - (ii) Sketch the nine solutions of $z^9 1 = 0$ on an Argand Diagram. (about one third of a page in size)
 - (iii) Mark clearly on your diagram, the six roots $z_1, z_2, z_3, z_4, z_5, z_6$ of $z^6 + z^3 + 1 = 0$.
 - (iv) Show that the sum of the six roots of $z^6 + z^3 + 1 = 0$ can be given by $2\left(\cos\frac{2\pi}{9} + \cos\frac{4\pi}{9} \cos\frac{\pi}{9}\right)$

Kincoppal-Rose Bay, School of the Sacred Heart Mathematics Extension 2, Internal Examination 2004

Question 5 (15 marks) Use a SEPARATE writing booklet.

Marks

1

(a)

In triangle BAC, DA bisects $\angle BAC$. $\angle BAD = \angle DAC = \theta$ and $\angle BDA = \alpha$.

(i) Use trigonometry to prove that
$$\frac{BD}{DC} = \frac{AB}{AC}$$
.

(ii) If
$$\frac{AB}{AC} = r$$
, show that $\frac{\text{Area } \triangle ABD}{\text{Area } \triangle ADC} = r$

(b) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is the equation of a hyperbola, and $P(x_1, y_1)$ is a point on the hyperbola.

(i) Write down the coordinates of the foci S. S'.

- (ii) Show that the equation of the tangent at $P(x_1, y_1)$ is given by $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$
- (iii) Find Q, the point at which the tangent cuts the x-axis.
- (iv) Find the distances,

(v) Show that
$$\frac{PS'}{PS} = \frac{QS'}{QS}$$

(vi) Using your proof in (a), what geometrical fact can you deduce in the triangle PSS'? 2

Question 6 (15 marks) Use a SEPARATE writing booklet.

Marks

(a)

In the Argand Diagram above, point P corresponds to complex number z. The triangle OPQ is a right-angled triangle and OP=3OQ.

(i) What is the complex number that corresponds to point Q?

1

2

2

4

3

(ii) QOPR is a rectangle. Write down the complex number that corresponds to R.

(i) Prove the identity $\cos(a-b)x - \cos(a+b)x = 2\sin ax \sin bx$

(ii) Hence find $\int \sin 3x \sin 2x dx$

2

If $u_1 = 8$, $u_2 = 20$ and $u_n = 4u_{n-1} - 4u_{n-2}$ for $n \ge 3$.

(i) Determine u_1 and u_4 .

1

(ii) Prove by induction that $u_n = (n+3)2^n$ for $n \ge 1$.

If $ax^3 + bx^2 + d = 0$ $(a, b, d \neq 0)$ has a double root, show that $27a^2d + 4b^3 = 0$.

- 6 -

Kincoppal-Rose Bay, School of the Sacred Heart Mathematics Extension 2, Internal Examination 2004

Question 7 (15 marks) Use a SEPARATE writing booklet.

Marks

3

3

In the diagram ABCD is a cyclic quadrilateral. E is the point on AC such that $\angle ABE = \angle DBC$

(i) Show that $\triangle ABE \parallel \triangle DBC$ and $\triangle ABD \parallel \triangle EBC$.

(ii) Hence show that (AB)(DC)+(AD)(BC)=(AC)(DB)

In the diagram ABC is an equilateral triangle inscribed in a circle. 2 P is a point on the minor arc AB of the circle.

Use the result from (a) to show that PC = PA + PB.

Examiner: ND 7/6/04

Examiner: ND 7/6/04

-7.

Kincoppal-Rose Bay, School of the Sacred Heart Mathematics Extension 2, Internal Examination 2004

Ouestion 7 (continued)

- (c) (i) Show that $\csc 2\theta + \cot 2\theta = \cot \theta$ for all real values of θ .
 - (ii) Use the result above to:
 - (a) find in surd form the values of $\cot \frac{\pi}{8}$ and $\cot \frac{\pi}{12}$.

3

 (β) show without using calculators that

$$\csc \frac{4\pi}{15} + \csc \frac{8\pi}{15} + \csc \frac{16\pi}{15} + \csc \frac{32\pi}{15} = 0$$

Kincoppal-Rose Bay, School of the Sacred Heart Mathematics Extension 2. Internal Examination 2004

Question 8 (15 marks) Use a SEPARATE writing booklet.

Marks

- (a) (i) Sketch the graph of $y = \sec x$ for $0 \le x \le \frac{\pi}{2}$ indicating any important features. 2

 On the same set of axes, sketch the graph of $y = \sec^{-1} x$, again indicating any important features.
 - (ii) If $x = \sec y$, find $\frac{dx}{dy}$ and hence if $y = \sec^{-1} x$, find $\frac{dy}{dx}$.
- (b) The points $P(a\cos\theta, b\sin\theta)$, $Q(-a\sin\theta, b\cos\theta)$ lie on the ellipse E, given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - (i) Show that if O is the centre of E, then $OP^2 + OQ^2 = a^2 + b^2$.
 - (ii) The equations of the tangents at P and Q are: $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$ $\frac{-x\sin\theta}{a} + \frac{y\cos\theta}{b} = 1$ Show that the point of intersection T of the two tangents at P and Q is given by $T(a(\cos\theta \sin\theta), b(\sin\theta + \cos\theta)).$
 - (iv) Show that the locus of T is given by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$
 - (v) If α is the angle between the tangents at P and Q, show that $\tan \alpha = 2 \frac{\sqrt{1 e^2}}{e^2 \sin 2\theta}$

End of paper