

4 unit mathematics Trial HSC Examination 1994

- **1.** (a) Evaluate \int_0^1 0 $\frac{x^3}{(x^2+1)^2}$ *dx* by using the substitution $u = x^2 + 1$.
- **(b)** Evaluate $\int_0^1 2x \tan^{-1} x \ dx$
- **(c)** (i) Show that $\int_0^a f(x) dx = \int_0^a f(a-x) dx$
- (ii) Prove that $I = \int_0^{\frac{\pi}{2}}$ $\frac{A \sin x + B \cos x}{\sin x + \cos x} dx = \frac{\pi}{4}(A + B), A, B$ constants.
- (d) Find $\int \frac{2 \tan x}{\tan 2x + \sin 2x} dx$ by using the substitution $t = \tan x$.

2. (a) (i) Find the square roots of −35 + 12*i* **(ii)** Solve $z^2 - (5+4i)z + 11 + 7i = 0$ **(b)** Describe in the Argand diagram the locus of the complex numbers *z* if (i) $|z-1|=4$ **(ii)** $|z - 1| = |z + 1|$ (iii) $|z-1|+|z+1|=4$ **(iv)** $\Re(\frac{i}{z}) = \frac{1}{2}, z \neq 0.$ **(c)**

(Figure not to scale)

 $\triangle ABC$ is drawn in the Argand diagram. $B\hat{A}C = 45^\circ$, $A = (10, 2)$, $B = (6, 8)$. The length of side *AC* is twice the length of side *AB*. Find **(i)** the complex number that the vector *AB* represents. **(ii)** the complex number that point *C* represents.

3. (a) Sketch carefully the hyperbola $3x^2 - y^2 = 12$, showing on your diagram the foci, the directrices and the asymptotes in their correct positions.

(b) A tangent to the parabola $y^2 = 2ax$ meets the hyperbola $xy = c^2$ in the points *P, Q*.

(i) Show that the equation of the tangent at $R(x_1, y_1)$ on the parabola is $y_1y =$ $a(x + x_1)$

(ii) Show that the *x* coordinates of *P* and *Q* are given by the equation

 $ax^{2} + ax_{1}x - c^{2}y_{1} = 0$

(iii) Deduce the cartesian equation of the locus of the midpoint *M* of the interval *P Q*.

4. (a) (i) Sketch the line $y = x - 1$ and the rectangular hyperbola $y = \frac{1}{x-1}$ on the same axes, showing their points of intersection.

(ii) On separate diagrams and using **(i)**, sketch the graphs of the following functions and relations. For each graph label any asymptote.

\n- **(a)**
$$
y = x - 1 + \frac{1}{x-1}
$$
\n- **(b)** $y = |x - 1 + \frac{1}{x-1}|$
\n- **(b)** $y = x - 1 - \frac{1}{x-1}$
\n- **(b)** Consider two functions f and g for which we know the following facts: $f(c) = g(c) = 0$, $f'(c)$ and $g'(c)$ exist, $g'(c) \neq 0$.
\n- By considering $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ and a similar result for $g'(c)$, show that $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$. Hence, or otherwise, show that
\n- **(i)** $\lim_{x \to 1} \frac{\ln x}{x^2 - 1} = \frac{1}{2}$
\n- **(ii)** $\lim_{x \to 0} \frac{1 - \cos^7 x}{x^2} = \frac{7}{2}$
\n

5. (a) A particle of mass *m* moves in the *x* axis under the influence of a force $\frac{mn^2}{x^3}$, *n* a positive constant, directed **away** from the origin, *O*. Initially, the particle is at rest at $x = a > 0$.

(i) Prove that the velocity *v* is given by $v^2 = n^2(\frac{1}{a^2} - \frac{1}{x^2})$

(ii) Deduce that $ax = \sqrt{n^2t^2 + a^4}$

(b) A particle of mass *m* is projected from a point *O* on horizontal ground with speed *u* at an angle of elevation α . It hits the ground again at a distance 2*a* from *O* and in its flight reaches a maximum height of *b*. The acceleration due to gravity is *g* and no forces other than the gravitational force act on the particle. At time *t*, the horizontal and vertical displacements from *O* are *x* and *y*, respectively

(i) Prove that
$$
\dot{y}^2 = (u \sin \alpha)^2 - 2gy
$$

(ii) Deduce that $\tan \alpha = \frac{2b}{a}$ and $u^2 = \frac{g}{2b}(4b^2 + a^2)$

6. (a) *u, v, w* are the roots of the equation $P(x) = 8x^3 + 28x^2 + 14x - 15 = 0$

(i) Form the equation with roots $2u + 3$, $2v + 3$ and $2w + 3$

(ii) Hence, or otherwise, solve $P(x) = 0$.

(b) Consider the polynomial equation $f(x) = x^n + nkx + (n-1) = 0$, $n > 1$. For what values of *k* will $f(x) = 0$ have a double root if **(i)** *n* is odd

(ii) *n* is even?

(c) If $a > b > 0$, show that $P(x) = x^3 + x^2 - ax - b$ always has

(i) two distinct stationary points, and

(ii) 3 distinct real zeros.

7. (a) Consider the region between the line $y = x$ and the curve $y = x^3$ in the first quadrant. Take $P(x, x^3)$ as any point on the curve $y = x^3$.

(i) The region is rotated about the line $x = 2$. Use the method of cylindrical shells to find the volume of the solid of revolution.

(ii) The region is rotated about the line $y = x$. By taking a slice in the region perpendicular to $y = x$, find the volume of the solid of revolution.

(b) (i) Find *a, b, c* if $\frac{4n-2}{n(n+1)(n+2)} \equiv \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}$

(ii) Use (i) to deduce that the sum to infinity of the series $\frac{2}{1\times 2\times 3} + \frac{6}{2\times 3\times 4} + \frac{10}{3\times 4\times 5} + \cdots$ is $1\frac{1}{2}$.

8. (a) (i)

(Figure not to scale)

In the diagram, $QR||DS$ and $\frac{PD}{DQ} = \frac{PS}{SQ}$. Copy the diagram. Prove that (c) $SQ = SR$ (β) $Q\hat{S}D = T\hat{S}D$

In the diagram, PQ is a chord of an ellipse with eccentricity *e*. PQ produced meets a directrix at *D* and *P P* , *QQ* are drawn perpendicular to this directrix. *S* is the corresponding focus of the ellipse. Copy the diagram.

 (α) Prove that $\frac{PP'}{QQ'} = \frac{PD}{QD}$

 (β) Deduce that *DS* bisects $Q\hat{S}T$.

(b) Consider the series of *n* terms

 $S_n = 1 + \frac{2n-2}{2n-3} + \frac{(2n-2)(2n-4)}{(2n-3)(2n-5)} + \cdots + \frac{(2n-2)(2n-4)\cdots \times 4\times 2}{(2n-3)(2n-5)\cdots \times 3\times 1}$

(i) Show that $S_3 = 5$

(ii) Prove by induction, for $n \ge 1$, that $S_n = 2n - 1$.