The King’s School

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

The King’s School

2005
Higher School Certificate
Trial Examination

Mathematics Extension 2

| | | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total marks - 120
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Express $\frac{2}{1-x^{2}}$ in partial fractions.
(ii) Show that $\int_{0}^{\frac{1}{4}} \frac{2}{1-x^{2}} d x=\ln \left(\frac{5}{3}\right)$
(iii) Evaluate $\int_{0}^{\frac{1}{2}} \frac{2 x}{1-x^{4}} d x$
(b) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{2}{1+\sin 2 x+\cos 2 x} d x$
(c) Use completion of square to prove that $\int_{0}^{1} \frac{4}{4 x^{2}+4 x+5} d x=\tan ^{-1}\left(\frac{4}{7}\right)$
(d)

On separate diagrams, sketch the graphs of:
(i) $y=\ln f(x)$
(ii) $\quad y=e^{\ln f(x)}$

End of Question 1

(a) (i) Use integration by parts to show that

$$
\begin{equation*}
\int_{0}^{1}(x-1) f^{\prime}(x) d x=f(0)-\int_{0}^{1} f(x) d x \tag{2}
\end{equation*}
$$

(c) Sketch the region in the complex plane where $|z-i| \leq|z+1|$
(d) $z=x+i y, x, y$ real, is a complex number such that $(z+\bar{z})^{2}+(z-\bar{z})^{2}=4$
(i) Find the cartesian locus of z
(ii) Sketch the locus of z in the complex plane showing any features necessary to indicate your diagram clearly.

Question 2 is continued on the next page

(e)

In the Argand diagram, $\triangle \mathrm{ABC}$ is right-angled at B and isosceles.
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ represent the complex numbers a, b, c respectively.
(i) Find the complex number $\overrightarrow{B A}$ in terms of a and b.
(ii) Prove that $c=a i+b(1-i)$

End of Question 2

(a) (i) Sketch the parabola $y=\frac{1+x^{2}}{2}$ and use it to sketch the curve $y=\frac{2}{1+x^{2}}$ on the same diagram.
(ii) Hence, or otherwise, find the range of the function $y=\frac{2}{1+x^{2}}-1$
(b) Consider the function $y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
(i) By using (a), or otherwise, find the range of the function.
(ii) Show that $\frac{d}{d x} \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\frac{2 x}{\left(1+x^{2}\right) \sqrt{x^{2}}}$ and give the simplest expressions for the derivative if $(\alpha) \quad x>0$ and $(\beta) \quad x<0$
(iii) Sketch the curve $y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
(iv) The region bounded by $y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$ and the line $y=\frac{\pi}{2}$ is revolved about the y axis.

Show that the volume of the solid of revolution is given by

$$
V=\pi \int_{0}^{\frac{\pi}{2}} \frac{1-\cos y}{1+\cos y} d y
$$

(v) Find the volume V.

End of Question 3

(a)

The base of a solid is the triangular region bounded by the lines $y=2 x$, $y=-x$ and $x=2$.

At each point $P(x, y)$ in the base the height of the solid is $4 x^{2}+x$
Find the volume of the solid.
(b) If $x y^{2}+1=x^{2}, y \neq 0$, show that $\frac{d y}{d x}=\frac{1}{y}-\frac{y}{2 x}$
(c)

$\mathrm{P}(a \cos \theta, b \sin \theta)$ is a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b>0$, where e is the eccentricity of the ellipse.

From $\mathrm{A}(0, a e)$ and $\mathrm{B}(0,-a e)$ perpendiculars are drawn to meet the tangent at $\mathrm{P}(a \cos \theta, b \sin \theta)$ at Q and R , respectively.
(i) Prove that the equation of the tangent at P is $\frac{\cos \theta}{a} x+\frac{\sin \theta}{b} y=1$
(ii) Hence, or otherwise, show that the line $x \cos \alpha+y \sin \alpha=k$ is a tangent to the ellipse if $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=k^{2}$
(iii) Hence, or otherwise, prove that $A Q^{2}+B R^{2}=2 a^{2}$

End of Question 4

(a) A particle of mass m moving with speed v experiences air resistance $m k v^{2}$, where k is a positive constant. g is the constant acceleration due to gravity.
(i) The particle of mass m falls from rest from a point O .

Taking the positive x axis as vertically downward, show that $\ddot{x}=k\left(V^{2}-v^{2}\right)$, where V is the terminal speed.
(ii) Another particle of mass m is projected vertically upward from ground level with a speed V^{2}, where V is the terminal speed as in (i).

Prove that the particle will reach a maximum height of $\frac{1}{2 k} \ln \left(1+V^{2}\right)$
(iii) Prove that the particle in (ii) will return to the ground with speed U where $U^{-2}=V^{-2}+V^{-4}$
(b) The ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ is revolved about the line $x=4$.
(i) Use the method of cylindrical shells to show that the volume of the solid of revolution is given by

$$
\begin{equation*}
V=8 \sqrt{3} \pi \int_{-2}^{2} \sqrt{4-x^{2}} d x-2 \sqrt{3} \pi \int_{-2}^{2} x \sqrt{4-x^{2}} d x \tag{4}
\end{equation*}
$$

(ii) Prove that the volume $V=16 \sqrt{3} \pi^{2}$
(a)

$P\left(t^{2}, t^{3}\right)$ is any point in the curve $y=x^{\frac{3}{2}}$
(i) Show that the equation of the tangent at $P\left(t^{2}, t^{3}\right)$ is $3 t x-2 y-t^{3}=0$
(ii) $\quad A\left(x_{1}, y_{1}\right)$ is a point not on the curve $y=x^{\frac{3}{2}}$

Deduce that at most three tangents to the curve pass through A.
(iii) If the tangents with parameters t_{1}, t_{2}, t_{3} do pass through $A\left(x_{1}, y_{1}\right)$, show that
($\alpha) t_{1}{ }^{3}+t_{2}{ }^{3}+t_{3}{ }^{3}=-6 y_{1}$
(β) $\left(t_{1} t_{2}\right)^{2}+\left(t_{2} t_{3}\right)^{2}+\left(t_{3} t_{1}\right)^{2}=9 x_{1}^{2}$
(iv) Find a cubic equation with roots $\frac{1}{t_{1}}, \frac{1}{t_{2}}, \frac{1}{t_{3}}$
(b) (i) Given that $\sin (X+Y)+\sin (X-Y)=2 \sin X \cos Y$, show that

$$
\sin A+\sin C=2 \sin \frac{A+C}{2} \cos \frac{A-C}{2}
$$

(ii) Consider $\triangle A B C$ where

(α) Use the sine rule to show that $\sin A+\sin C=2 \sin B$
(β) Deduce that $\sin \frac{B}{2}=\frac{1}{2} \cos \frac{A-C}{2}$

End of Question 6

(a) Let $f(n)=(n+1)^{3}+(n+2)^{3}+\ldots+(2 n-1)^{3}+(2 n)^{3}, n=1,2,3, \ldots$
(i) Show that $f(n+1)-f(n)=(2 n+1)^{3}+7(n+1)^{3}$
(ii) Show that

$$
\begin{equation*}
(2 n+1)^{3}-\frac{2 n+1}{4}(3 n+1)(5 n+3)=\frac{2 n+1}{4}(n+1)^{2} \tag{1}
\end{equation*}
$$

(iii) Use mathematical induction for integers $n=1,2,3, \ldots$ to prove that

$$
f(n)=(n+1)^{3}+(n+2)^{3}+\ldots+(2 n)^{3}=\frac{n^{2}}{4}(3 n+1)(5 n+3)
$$

(iv) Given that $1^{3}+2^{3}+\ldots+n^{3}=\left[\frac{n}{2}(n+1)\right]^{2}$, prove that

$$
\begin{equation*}
(n+1)^{3}+(n+2)^{3}+\ldots+(2 n)^{3}=\frac{n^{2}}{4}(3 n+1)(5 n+3) \text { without induction. } \tag{2}
\end{equation*}
$$

(b) (i) Show that $\frac{\binom{n}{k}}{n^{k}}=\frac{\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{k-1}{n}\right)}{k!}, 2 \leq k \leq n$
(ii) Deduce that $\frac{\binom{n+1}{k}}{(n+1)^{k}}>\frac{\binom{n}{k}}{n^{k}}, 2 \leq k \leq n$
(iii) Deduce that, if n is a positive integer, $\left(1+\frac{1}{n+1}\right)^{n+1}>\left(1+\frac{1}{n}\right)^{n}$

End of Question 7

(a) Consider the equation $z^{7}-1=(z-1)\left(z^{6}+z^{5}+z^{4}+z^{3}+z^{2}+z+1\right)=0$
(i) Show that $v=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}$ is a complex root of $z^{7}-1=0$
(ii) Show that the other five complex roots of $z^{7}-1=0$ are

$$
\begin{equation*}
v^{k} \text { for } k=2,3,4,5,6 \tag{2}
\end{equation*}
$$

(iii) Show that $\left(\overline{v^{7-k}}\right)=v^{k}$ for $k=1,2, \ldots, 6$
i.e. show that the conjugate of v^{7-k} is v^{k}
(iv) Deduce that $v+v^{2}+v^{4}$ and $v^{3}+v^{5}+v^{6}$ are conjugate complex numbers.
(v) Deduce that $\cos \frac{\pi}{7}-\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}=\frac{1}{2}$

Question 8 is continued on the next page
(b) (i) Use a suitable substitution to show that

$$
\int_{0}^{\frac{\pi}{2}} \cos x \sin ^{n-1} x d x=\frac{1}{n}, \quad n=1,2,3, \ldots
$$

(ii) Show by integration that

$$
\int x \sin x d x=-x \cos x+\sin x
$$

(iii) Let $t_{n}=\int_{0}^{\frac{\pi}{2}} x \sin ^{n} x d x, \quad n=0,1,2, \ldots$

Use integration by parts to prove that

$$
t_{n}=\frac{1}{n^{2}}+\frac{n-1}{n} t_{n-2}, \quad n=2, \quad 3, \quad 4, \ldots
$$

End of Examination

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

TVS MATHEMATICS EXTENSION 2 ThAR HSC 2005
62.1
(a) (i) Put $\frac{2}{1-x^{2}}=\frac{2}{(1-x)(1+x)}=\frac{A}{1-x}+\frac{B}{1+2}$

$$
\begin{aligned}
& \quad: A(1+x)+B(1-x) \equiv 2 \\
& \text { For } x=1, \quad 2 A=2, A=1 \Rightarrow B=1 \\
& \therefore \frac{2}{1-x^{2}}=\frac{1}{1-x}+\frac{1}{1+x}
\end{aligned}
$$

(ii) From (i),

$$
\begin{aligned}
\int_{0}^{\frac{1}{4}} \frac{2}{1-x^{2}} d x & =\int_{0}^{\frac{1}{4}} \frac{1}{1-x}+\frac{1}{1+x} d x \\
& =[\ln (1+x)-\ln (1-x)]_{0}^{\frac{1}{4}} \\
& =\ln \frac{5}{4}-\ln \frac{3}{4}=\ln \left(\frac{5}{3}\right)
\end{aligned}
$$

(iii) Put $u=x^{2}$

$$
: x=0, u=0
$$

$$
\frac{d u}{d x}=2 x \quad x=\frac{1}{2}, u=\frac{1}{4}
$$

$$
\therefore I=\int_{0}^{\frac{1}{4}} \frac{d n}{1-u^{2}}=\ln \left(\frac{5}{3}\right) \text {, from (ii) }
$$

(b)

$$
\begin{aligned}
& \text { let } t=\tan x \quad x=0, t=0 \\
& \frac{d t}{d x}=\sec ^{2} x=1+t^{2} \quad x=\frac{\pi}{4}, t=1 \\
& \therefore I=\int_{0}^{1} \frac{2 d t}{\left(1+t^{2}\right)\left[1+\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}\right]} \\
& =\int_{0}^{1} \frac{2 d t}{1+t^{2}+2 t+1-t^{2}}=\int_{0}^{1} \frac{1}{t+1} d t \\
& =[\ln (t+1)]_{0}^{1}=\ln 2 \\
& \text { OR } \\
& I=\int_{0}^{\frac{\pi}{4}} \frac{2 d x}{2 \cos ^{2} x+2 \sin \cos x}=\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{1+\tan x} d x \\
& =[\ln (1+\tan x)]_{0}^{\pi / 4} \\
& =\ln 2
\end{aligned}
$$

(c)

$$
\begin{aligned}
I=\int_{0}^{1} \frac{4}{(2 x+1)^{2}+4} d x & =4 \cdot \frac{1}{2}\left[\tan ^{-1} \frac{2 x+1}{2}\right]_{0}^{1} \frac{1}{2} \\
& =\tan ^{-1} \frac{3}{2}-\tan ^{-1} \frac{1}{2} \\
& =\tan ^{-1}\left(\frac{\frac{3}{2}-\frac{1}{2}}{1+\frac{3}{2} \cdot \frac{1}{2}}\right)=\tan ^{-1}\left(\frac{4}{7}\right)
\end{aligned}
$$

(d) (i)

(ii) $y=e^{\ln f(x)}=f(x)$ if $f(x)>0$

Qu 2
(a) (i) put $u=x-1 \quad \frac{d v}{d x}=f^{\prime}(x)$

$$
\begin{aligned}
\therefore \frac{d u}{d x}=1, \quad v & =f(x) \\
\therefore \int_{0}^{1}(x-1) f^{\prime}(x) d x & =[(x-1) f(x)]_{0}^{1}-\int_{0}^{1} f(x) d x \\
& =0-(-f(0))-\int_{0}^{1} f(x) d x \\
& =f(0)-\int_{0}^{1} f(x) d x
\end{aligned}
$$

$$
\begin{aligned}
\therefore I=-1+\int_{0}^{1} \frac{1}{x+1} d x= & -1+[\ln (x+1)]_{0}^{1} \\
& =\ln 2-1
\end{aligned}
$$

or, Otherwise...

$$
\begin{aligned}
\int_{0}^{1} \frac{x-1}{(x+1)^{2}} d x & =\int_{0}^{1} \frac{x+1-2}{(x+1)^{2}} d x \\
& =\int_{0}^{1} \frac{1}{x+1}-\frac{2}{(x+1)^{2}} d x \\
& =\left[\ln (x+1)+\frac{2}{x+1}\right]_{0}^{1} \\
& =\ln 2+1-(0+2) \\
& =\ln 2-1
\end{aligned}
$$

(b) (i)

$$
\text { (ii) } \begin{aligned}
\arg (-2) & =\pi+\frac{3 \pi}{5} \\
& =\frac{8 \pi}{5} \text { or }-\frac{2 \pi}{5}
\end{aligned}
$$

(c)

(d)

$$
\begin{aligned}
&(i) \quad(2 x)^{2}+(2 i y)^{2}=4 \\
& \Rightarrow x^{2}-y^{2}=4 \quad \text { [rectangular hyperbola] }
\end{aligned}
$$

(e)
(i)

$$
\overrightarrow{B A}=a-b
$$

6. 3
(a) (i)

$$
\begin{aligned}
& \text { (ii) from (i), } 0<\frac{2}{1+x^{2}} \leq 2 \\
& \therefore-1<\frac{2}{1+2^{2}}-1 \leqslant 1
\end{aligned}
$$

le: range is $-1<y \leqslant 1$
(b)

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
& \frac{2}{1+x^{2}}-1=\frac{2-\left(1+x^{2}\right)}{1+x^{2}}=\frac{1-x^{2}}{1+x^{2}} \\
& \therefore \text { from (a)(ii), range is } 0 \leq y<\pi \\
& \text { (ii) } \frac{d}{d x} \cos ^{-1}\left(\frac{1-x^{2}}{\left.1+x^{2}\right)}\right.=-\frac{1}{\sqrt{1-\left(\frac{1-x^{2}}{1+x^{2}}\right)^{2}}} \cdot-2\left(1+x^{2}\right)^{-2} \cdot 2 x \\
&=\frac{4 x}{\sqrt{\left(1+x^{2}\right)^{2}-\left(1-x^{2}\right)^{2}}\left(1+x^{2}\right)} \\
&=\frac{4 x}{\left(1+x^{2}\right) \sqrt{4 x^{2}}}=\frac{2 x}{\left(1+x^{2}\right) \sqrt{x^{2}}} \\
& \therefore(\alpha), \text { if } x>0, \frac{d v}{d x}=\frac{2}{1+x^{2}} \\
& \therefore(\beta), \text { if } x<0, \frac{d y}{d x}=\frac{-2}{1+x^{2}}
\end{aligned}
\end{aligned}
$$

Q. 4
(a)

$$
\begin{aligned}
\therefore \quad V & =\int_{0}^{2} 12 x^{3}+3 x^{2} d x \\
& =\left[3 x^{4}+x^{3}\right]_{0}^{2}=56 \mathrm{u}^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \therefore x 2 y \frac{d y}{d x}+y^{2}=2 x \\
& \quad \Rightarrow \frac{d y}{d x}=\frac{2 x-y^{2}}{2 x y}=\frac{1}{y}-\frac{y}{2 x}
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x} & =-\frac{e^{2} x}{a^{2} y} \\
& =-\frac{b^{2}}{a^{2}} \cdot \frac{a \cos \theta}{b \sin \theta} \text { at } P \\
& =-\frac{b \cos \theta}{a \sin \theta} \\
\therefore \text { tangent at } P \text { is } y-b \sin \theta & =-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta) \\
\text { \& } \frac{\sin \theta}{b} y-\sin ^{2} \theta & =-\frac{\cos \theta}{a} x+\cos ^{2} \theta \\
\text { er } \frac{\cos \theta}{a} x+\frac{\sin \theta}{b} y & =\cos ^{2} \theta+\sin ^{2} \theta=1
\end{aligned}
$$

Rewrite as $\frac{\cos \alpha}{k} x+\frac{\sin \alpha}{k} y=1$
(ii)

La, from (ii), we need $\frac{\cos \alpha}{k}=\frac{\cos \theta}{a}$ and $\frac{\sin \alpha}{k}=\frac{\sin \theta}{b}$

$$
\begin{aligned}
\Rightarrow(a \cos \alpha)^{2}+(b \sin \alpha)^{2} & =k^{2} \cos ^{2} \theta+k^{2} \sin ^{2} \theta \\
& =k^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
\text { en } e^{2} a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha & =k^{2}
\end{aligned}
$$

(iii)
from (iii) a (iii),

$$
\begin{aligned}
A Q^{2}+B R^{2} & =\frac{(a e \sin \alpha-k)^{2}+(a e \sin \alpha+k)^{2}}{\cos ^{2} \alpha+\sin ^{2} \alpha} \\
& =2\left(a^{2} e^{2} \sin ^{2} \alpha+k^{2}\right) \\
& \left.=2\left(a^{2}-b^{2}\right) \sin ^{2} \alpha+a^{2} \cos ^{2} \alpha+e^{2} \sin ^{2} \alpha\right) \text {, foo (i), (iii) } \\
& =2\left(a^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)\right) \\
& =2 a^{2}
\end{aligned}
$$

Qu 5
(a) (i)

$$
\begin{aligned}
& m \ddot{x}=m g-m k v^{2} \\
& \Rightarrow \ddot{x}=g-k v^{2} \quad \Rightarrow g-k v^{2}=0 \quad \text { or } \quad v^{2}=\frac{g}{k} \\
& \therefore \ddot{x}=k\left(\frac{g}{k}-v^{2}\right)=k\left(v^{2}-v^{2}\right)
\end{aligned}
$$

(ii) $m \ddot{x}=-m g-m k v^{2}$
ne
$\prod_{n=0}^{e}$

$$
\begin{aligned}
\therefore \ddot{x} & =-k\left(v^{2}+v^{2}\right) \\
\therefore v & \frac{d v}{d x}
\end{aligned}=-k\left(v^{2}+v^{2}\right) .
$$

(iii)

$$
\begin{aligned}
& v \frac{d v}{d x}=k\left(v^{2}-v^{2}\right) \Rightarrow \frac{d x}{d v}=\frac{1}{k} \cdot \frac{v}{v^{2}-v^{2}} \\
& \begin{aligned}
& \therefore \text { from (ii) } \frac{1}{2 k} \ln \left(1+v^{2}\right)=\frac{1}{k} \int_{0}^{u} \frac{v}{v^{2}-v^{2}} d x \\
&=-\frac{1}{2 k}\left[\ln \left(v^{2}-v^{2}\right)\right]_{0}^{u} \\
&=\frac{1}{2 k}\left(\ln v^{2}-\ln \left(v^{2}-u^{2}\right)\right)=\frac{1}{2 k} \ln \left(\frac{v^{2}}{v^{2}-v^{2}}\right) \\
& \Rightarrow \frac{v^{2}}{v^{2}-u^{2}}=1+v^{2} \text { or } v^{2}-v^{2}=\frac{v^{2}}{1+v^{2}} \\
& \therefore u^{2}=v^{2}-\frac{v^{2}}{1+v^{2}}=\frac{v^{4}}{1+v^{2}} \\
& \therefore u^{-2}=\frac{1+v^{2}}{v^{4}}=v^{-2}+v^{-4}
\end{aligned}
\end{aligned}
$$

$f(i)$

$$
\therefore \delta V \approx \pi\left[(4-x)^{2}-(4-x-\delta x)^{2}\right] 2 y
$$

$\approx 2 \pi[2(4-x) \delta x] y$, ignoring δx^{2} term

$$
=4 \pi(4-x) y \delta_{x}: y^{2}=3\left(1-\frac{x^{2}}{4}\right)=\frac{3}{4}\left(4-x^{2}\right)
$$

$$
\begin{aligned}
\therefore V & =4 \pi \int_{-2}^{2}(4-x) \frac{\sqrt{3}}{2} \sqrt{4-x^{2}} d x \\
& =2 \pi \sqrt{3} \int_{-2}^{2}(4-x) \sqrt{4-x^{2}} d x \\
& =8 \sqrt{3} \pi \int_{-2}^{2} \sqrt{4-x^{2}} d x-2 \sqrt{3} \pi \int_{-2}^{2} x \sqrt{4-x^{2}} d x
\end{aligned}
$$

(iii) $V=8 \sqrt{3} \pi \int_{-2}^{2} \sqrt{4-x^{2}} d x$ since $x \sqrt{4-x^{2}}$ is an add function

$$
\begin{aligned}
& =8 \sqrt{3} \pi \cdot \frac{1}{2} \pi \cdot 2^{2} \quad u^{3} \quad \text { Ssemi-circle] } \\
& =16 \sqrt{3} \pi^{2} \mathrm{u}^{3}
\end{aligned}
$$

Q un 6
(a) (i) $\frac{d y}{d x}=\frac{3}{2} x^{\frac{1}{2}}=\frac{3}{2} t$ at P
\therefore tangent at P is $y-t^{3}=\frac{3}{2} t\left(x-t^{2}\right)$
or $3 t x-2 y+2 t^{3}-3 t^{3}=0$
(1.) $3 t x-2 y-t^{3}=0$
(ii) The tangat at $P\left(t^{2}, t^{3}\right)$ is a cubic equation in t
\Rightarrow at most 3 values for t for $3 t x_{1}-2 y_{1}-t^{3}=0$
\Rightarrow at most 3 tangents
(iii) Now, $t^{3}-3 x_{1} t+2 y_{1}=0$ has roots t_{1}, t_{2}, t_{3}

$$
\begin{aligned}
& \therefore \text { (d) } \sum k_{1}^{3}-3 x_{1} \sum t_{1}+3\left(2 y_{1}\right)=0 \text { are } \sum t_{1}=0 \\
& \therefore \sum t_{1}^{3}
\end{aligned}=-6 g_{1}, \begin{aligned}
\sum\left(t_{1} t_{2}\right)^{2} & =\left(t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{1}\right)^{2}-2\left(t_{1} t_{2} t_{2} t_{3}+t_{2} t_{3} t_{1}+t_{3} t_{1} t_{1} t_{2}\right) \\
& =\left(-3 x_{1}\right)^{2}-2 t_{1} t_{2} t_{3}\left(t_{1}+t_{2}+t_{3}\right) \\
& =9 x_{1}^{2} \quad \text { since } \sum t_{1}=0
\end{aligned}
$$

(iv) It is $\left(\frac{1}{t}\right)^{3}-3 x_{1}\left(\frac{1}{t}\right)+2 y_{1}=0$

$$
\text { en } 2 y_{1} t^{3}-3 x_{1} z^{2}+1=0
$$

(b) (i)

$$
\text { put } \begin{aligned}
x+y & =A \\
x-y & =c
\end{aligned}
$$

$$
\Rightarrow \begin{aligned}
2 x & =A+C \\
2 y & =A-C
\end{aligned}
$$

$\therefore \sin A+\sin C=2 \sin \frac{A+C}{2} \cos \frac{A-C}{2}$ from data

$$
\text { (ii) (a) } \begin{aligned}
& \sin A \\
& 2 a=\frac{\sin B}{a+c}
\end{aligned}=\frac{\sin c}{2 c}, ~\left(\frac{2 a}{a+c}+\frac{2 c}{a+c}\right) \sin B+\sin B=(\sin B=2 \sin B)
$$

(β)

$$
\begin{aligned}
2 \sin B= & 2 \sin \frac{A+C}{2} \cos \frac{A-C}{2} \quad \text { fron (i) } \\
\Rightarrow 2 \sin \frac{B}{2} \cos \frac{B}{2} & =\sin \frac{A+C}{2} \cos \frac{A-C}{2} \\
& =\sin \left(\frac{\pi}{2}-\frac{B}{2}\right) \cos \frac{A-C}{2} \quad \text { since } A+B+C=\pi \\
& =\cos \frac{B}{2} \cos \frac{A-C}{2} \\
\therefore \sin \frac{B}{2} & =\frac{1}{2} \cos \frac{A-C}{2}
\end{aligned}
$$

Q. 7
(a)

$$
\text { (i) } \begin{aligned}
f(n+1)-f(n) & =(n+2)^{3}+\cdots+(2 n)^{3}+(2 n+1)^{3}+(2 n+2)^{3}-\left((n+1)^{3}+\cdots+(2 n)^{3}\right) \\
& =(2 n+1)^{3}+(2 n+2)^{3}-(n+1)^{3} \\
& =(2 n+1)^{3}+8(n+1)^{3}-(n+1)^{3} \\
& =(2 n+1)^{3}+7(n+1)^{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
L S & =\frac{2 n+1}{4}\left(4(2 n+1)^{2}-(3 n+1)(5 n+3)\right) \\
& =\frac{2 n+1}{4}\left(16 n^{2}+16 n+4-15 n^{2}-14 n-3\right) \\
& =\frac{2 n+1}{4}\left(n^{2}+2 n+1\right)=\frac{2 n+1}{4}(n+1)^{2}
\end{aligned}
$$

(iii)

$$
f(1)=2^{3}=8 \quad \text { and } \frac{1^{2}}{4}(4)(8)=8
$$

\therefore Assume $f(n)=(n+1)^{3}+\cdots+(2 n)^{3}=\frac{n^{2}}{4}(3 n+1)(5 n+3)$ for some integer $n \geqslant 1$

The, $f(a+1)=f(a)+(2 a+1)^{3}+7(a+1)^{3}$ from (i)

$$
=\frac{n^{2}}{4}(3 n+1)(5 n+1)+(2 n+1)^{3}+7(n+1)^{3} \text {, using the }
$$

$$
\begin{aligned}
& =\frac{(n+1)^{2}}{4}(3 n+1)(5 n+3)-\frac{2 n+1}{4}(3 n+1)(5 n+3)+(2 n+1)^{3}+7(n+1)^{3} \\
& =\frac{(n+1)^{2}}{4}(3 n+1)(5 n+3)+\frac{2 n+1}{4}(n+1)^{2}+7(n+1)^{3}, \text { fro }(i i) \\
& =\frac{(n+1)^{2}}{4}[(3 n+1)(5 n+3)+2 n+1+28(n+1)] \\
& =\frac{(n+1)^{2}}{4}\left(15 n^{2}+44 n+32\right) \\
& =\frac{(n+1)^{2}}{4}(3 n+4)(5 n+8)=\frac{(n+1)^{2}}{4}(3(n+1)+1)(5(n+1)+3)
\end{aligned}
$$

\therefore if the result is the for n it is also true for $n+1$.
But it is correct for $n=1$
\therefore by induction, $(n+1)^{3}+\cdots+(2 n)^{3}=\frac{n^{2}}{4}(3 n+1)(5 n+3) \quad \forall n \geqslant 1$
(iv)

$$
\begin{aligned}
(n+1)^{3}+\cdots+(2 n)^{3} & =1^{3}+\cdots+n^{3}+\cdots+(2 n)^{2}-\left(1^{3}+\cdots+n^{3}\right) \\
& =\left(\frac{2 n}{2}(2 n+1)\right)^{2}-\left(\frac{n}{2}(n+1)\right)^{2} \\
& =\frac{n^{2}}{4}\left(4(2 n+1)^{2}-(n+1)^{2}\right) \\
& =\frac{n^{2}}{4}(4 n+2-n-1)(4 n+2+n+1) \\
& =\frac{n^{2}}{4}(3 n+1)(5 n+3)
\end{aligned}
$$

(b)

$$
\text { (i) } \begin{aligned}
\frac{\binom{n}{k}}{n^{k}} & =\frac{a!}{(n-k)!k^{!} \cdot n^{k}} \\
& =\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!n^{k}} \\
& =\frac{1\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)}{k!}
\end{aligned}
$$

$$
\text { (ii) Fron(i), } \begin{aligned}
\frac{\binom{n+1}{k}}{(n+1)^{k}} & =\frac{\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right) \cdots\left(1-\frac{k-1}{n+1}\right)}{k!} \\
& >\frac{\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)}{k!} \text { rince } \frac{1}{n+1}<\frac{1}{n} \\
& =\frac{(\hat{k})}{n^{k}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\left(1+\frac{1}{n+1}\right)^{n+1} & =1+(n+1) \frac{1}{n+1}+\frac{\binom{n+1}{2}}{(n+1)^{2}}+\cdots+\frac{\binom{+1}{k}}{(n+1)^{k}}+\cdots+\frac{\binom{n+1}{1}}{(n+1)^{n}}+\frac{1}{(n+1)^{n+1}} \\
& >\left(1+1+\frac{\left.\binom{n}{2}+\cdots+\frac{\binom{n}{k}}{n^{2}}+\cdots+\frac{\binom{n}{n}}{n^{k}}\right)+\frac{1}{(n+1)^{n+1}}}{}\right. \\
& >1+1+\cdots+\frac{\binom{n}{n}}{n^{k}}+\cdots+\frac{\left(\begin{array}{l}
n \\
n
\end{array}\right.}{n^{n}} \\
& =\left(1+\frac{1}{n}\right)^{n}
\end{aligned}
$$

Qu 8
(a)
(i)

$$
\begin{aligned}
& v^{7}-1=\left(\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}\right)^{7}-1 \\
&=\cos 2 \pi+i \sin 2 \pi-1=1-1=0 \\
& \text { is } v \text { is a root of } z^{7}-1=0
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& v^{k}=\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7} \\
& \therefore\left(v^{k}\right)^{7}=\cos 2 \pi k+i \sin 2 \pi k \\
&=1 \text { if } k=2,3, \ldots, 6 \\
& \Rightarrow v^{2}, v^{3}, \ldots, v^{6} \text { ae also roots of } z^{7}=1
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\left(\overline{v^{7-k}}\right) & =\cos \frac{2 \pi}{7}(7-k)-i \sin \frac{2 \pi}{7}(7-k) \\
& =\cos \left(-\frac{2 \pi k}{7}\right)-i \sin \left(-\frac{2 \pi k}{7}\right) \\
& =\cos \frac{2 \pi k}{7}+i \sin \frac{2 \pi k}{7}=v^{k}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\overline{v+v^{2}+v^{4}} & =\bar{v}+\bar{v}^{2}+\bar{v}^{4} \\
& =v^{6}+v^{5}+v^{3} \quad \text { from (iii) }
\end{aligned}
$$

ex $v+v^{2}+v^{4}$ ad $v^{3}+v^{5}+v^{6}$ are conjugates
(v) From (iv), $\left(v+v^{2}+v^{4}\right)+\left(v^{3}+v^{5}+v^{6}\right)$

$$
\begin{aligned}
&=2 \operatorname{Re}\left(v+v^{2}+v^{4}\right) \\
&=2\left(\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{8 \pi}{7}\right) \\
&=2\left(\cos \frac{2 \pi}{7}-\cos \frac{3 \pi}{7}-\cos \frac{\pi}{7}\right) \\
&=-1 \text { since } v^{6}+v^{5}+\cdots+v^{2}+v+1=0 \\
& \therefore \quad \cos \frac{\pi}{7}-\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}=\frac{1}{2}
\end{aligned}
$$

(b)
(i) put $u=\sin x$

$$
; x=0, u=0
$$

$$
\frac{d x}{d x}=\cos x, \quad x=\frac{\pi}{2}, \quad x=1
$$

$$
\therefore \quad I=\int_{0}^{1} \mu^{n-1} d u=\left[\frac{\mu^{n}}{n}\right]_{0}^{1}=\frac{1}{n}
$$

(ii) put $\mu=x, \frac{d v}{d x}=\sin x$

$$
\begin{aligned}
\therefore \frac{d x}{d x}=1, v & =-\cos x \\
\therefore \int x \sin x d x & =x(-\cos x)-\int(-\cos x) d x \\
& =-x \cos x+\sin x
\end{aligned}
$$

(iii) As suggested form (ii),

$$
\begin{aligned}
& \rho^{n t} \mu=\sin ^{n-1} x, \frac{d v}{d x}=x \sin x \\
\therefore & \frac{d u}{d x}=(n-1) \sin ^{n-1} x \cos x, \quad v=-x \cos x+\sin x \\
\therefore t_{n}= & {\left[\sin ^{n-1} x(-x \cos x+\sin x)\right]_{0}^{\frac{\pi}{2}}-(n-1) \int_{0}^{\frac{\pi}{2}} \sin ^{n-2} x \cos x(-x \cos x+\sin x) d x } \\
= & 1-(n-1) \int_{0}^{\frac{\pi}{2}}-x \sin ^{n-2} x\left(1-\sin ^{2} x\right)+\cos x \sin ^{n-1} x d x \\
= & 1+(n-1) t_{n-2}-(n-1) t_{n}-(n-1) \int_{0}^{\frac{\pi}{2}} \cos x \sin ^{-1} x d x \\
= & 1+(n-1) t_{n-2}-(n-1) t_{n}-\frac{n-1}{n}, \operatorname{fon}(i) \\
\therefore & n t_{n}=1-1+\frac{1}{n}+(n-1) t_{n-2}
\end{aligned}
$$

or, $\quad t_{n}=\frac{1}{n^{2}}+\frac{n-1}{n} t_{n-2}, n=2,3, \ldots$.

