2015

Year 12 Mathematics Extension 2

Trial HSC Examination

Teacher Setting Paper: Mr P Mirrington
 Head of Department: Mrs M Hill

General Instructions

Total Marks - 100

- Reading time -5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used (graphics calculators are not allowed)
- A table of standard integrals is provided at the back of this paper
- For Section I record your answers on the multiple choice answer sheet provided
- For Section II, answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
- For Section II show relevant mathematical reasoning and/or calculations

Section I Pages 2-5
10 Marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II Pages 6-13
90 Marks

- Attempt Questions 11 - 16
- Each Question is worth 15 marks
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet to record your answers for Questions 1-10.

QUESTION 1

The eccentricity of the hyperbola $x^{2}-4 y^{2}=1$ is:
(A) $\frac{4}{5}$
(B) $\frac{2}{\sqrt{5}}$
(C) $\frac{\sqrt{5}}{2}$
(D) $\frac{5}{4}$

QUESTION 2

The acute angle between the asymptotes of the hyperbola $x^{2}-\frac{y^{2}}{3}=1$ is:
(A) $\frac{\pi}{3}$
(B) $\frac{2 \pi}{3}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{4}$

QUESTION 3

P, Q and R are three consecutive terms in an arithmetic progression.
Which of the following is the simplification of $\frac{\sin (P+R)}{\cos Q}$?
(A) $2 \sin Q$
(B) $2 \cos Q$
(C) $\sin 2 Q$
(D) $\cos 2 Q$

QUESTION 4

How many asymptotes does the graph of the curve $y=\frac{x-1}{x^{2}-1}$ have?
(A) 1
(B) 2
(C) 3
(D) 4

QUESTION 5

On the Argand diagram below, P represents the complex number z.

Which of the following Argand diagrams shows the point Q representing $Z-\bar{z}$?
(A)

(B)

(C)

(D)

QUESTION 6

The equation $x^{3}+3 x-2=0$ has roots α, β and γ. The value of $\alpha^{3}+\beta^{3}+\gamma^{3}$ is:
(A) 2
(B) 6
(C) -2
(D) -6

QUESTION 7

A particle of mass m at B is attached to a string $A B$ that is fixed at A. The particle rotates in a horizontal circle with a radius of r. Let T be the tension in the string and $\angle B A O=\theta$.

Which of the following statements is not correct:
(A) $T>m g$
(B) $T=\frac{m \omega^{2} r}{\sin \theta}$
(C) $r=\frac{g \tan \theta}{\omega^{2}}$
(D) $\omega=\sqrt{\frac{g \cot \theta}{r}}$

QUESTION 8

Consider the rectangular hyperbola $x y=16$. If this hyperbola was rotated 45 degrees in a clockwise direction, its equation would be:
(A) $x^{2}-y^{2}=8$
(B) $x^{2}-y^{2}=16$
(C) $x^{2}-y^{2}=16 \sqrt{2}$
(D) $x^{2}-y^{2}=32$

QUESTION 9

Which function best represents the graph below?

(A) $y=e \cos x$
(B) $y=e+1-\cos x$
(C) $y=\frac{e}{\cos x}$
(D) $y=e^{\cos x}$

QUESTION 10

When $y^{2}+x y=1$ is differentiated with respect to x, the correct expression for the derivative is:
(A) $\frac{d y}{d x}=\frac{1}{1+2 y}$
(B) $\frac{d y}{d x}=\frac{1-y}{1+2 y}$
(C) $\frac{d y}{d x}=\frac{-y}{x+2 y}$
(D) $\frac{d y}{d x}=\frac{1-y}{x+2 y}$

Section II

90 marks

Attempt Questions 11-16
Allow about $\mathbf{2}$ hours and $\mathbf{4 5}$ minutes for this section
Answer each question in a separate writing booklet. Extra writing booklets are available.
ln Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

QUESTION 11 (15 Marks) Use a SEPARATE writing booklet.
(a) Let $z=1-3 i$ and $\omega=2+i$.

Find the value of $\frac{z}{\omega}$ in the form $a+i b$, where a and b are real numbers:
(b) (i) If $z=x+i y$, write down expressions for $z \bar{z}$ and $z+\bar{z}$.
(ii) Sketch the region on the Argand diagram described by: $z \bar{z} \leq 3(z+\bar{z})$
(c) Factorise $P(x)=x^{3}+x^{2}+4 x+4$ into its three linear factors.
(d) Find these indefinite integrals:
(i) $\int \frac{1}{x^{2}+2 x+5} d x$
(ii) $\int \frac{1}{x^{2}+2 x-3} d x$
(e) (i) Find all pairs of integers a and b such that $(a+i b)^{2}=7+24 i$
(ii) Hence, or otherwise, solve: $z^{2}+3 i z-(4+6 i)=0$
(a) The function $f(x)=4(x-2)^{2} e^{x-2}$ has stationary points at $x=0$ and $x=2$ as shown in the diagram below.

Draw separate half-page sketches of the following graphs. In each case, label any asymptote and the coordinates of any turning points.
(i) $y=\frac{1}{f(x)}$
(ii) $y=\sqrt{f(x)}$
(iii) $y=f(|x|)$
(b) (i) Use the result $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ to show that

$$
\begin{equation*}
\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right) \tag{2}
\end{equation*}
$$

(ii) Hence find the general solution to the equation: $\sin 2 x+\sin 4 x=\sin 6 x$
(iii) Use part (i) to evaluate $\int_{0}^{\frac{\pi}{4}} \sin 5 x \cos 3 x d x$
(c) If $A(x)$ and $B(x)$ are odd polynomial functions show that the product $P(x)=A(x) \times B(x)$ is an even polynomial function.
(a) A car of mass 800 kg moves with constant speed in a horizontal circle of radius 250 m on a track that is banked at an angle of $\alpha=7^{0}$ to the horizontal. The forces acting on the car are the weight force $m g$, a normal reaction force N to the road and a friction force F acting down the slope as shown. The acceleration due to gravity is $9.8 \mathrm{~ms}^{-2}$.

(i) Show that the optimum speed for the car (when the friction force F acting on the car is zero) is about $62 \mathrm{~km} / \mathrm{hr}$.
(ii) If the car is travelling at a constant speed of $108 \mathrm{~km} / \mathrm{hr}$, find the size of the friction force F acting on the car? (Give your answer to the nearest Newton)
(b)

The base of a solid S is the region in the $x y$ plane enclosed by the parabola $y^{2}=4 x$ and the line $x=4$, and each cross section perpendicular to the x axis is a semi-ellipse with the minor axis one-half of the major axis.
(i) Show that the area of the semi-ellipse at $x=h$ is πh.
(You may assume that the area of an ellipse with semi-axes a and b is $\pi a b$.)
(ii) Find the volume of the solid S.

QUESTION 13 is continued on the next page.
(c) The region bounded by the curve $\sqrt{x}+\sqrt{y}=1$ and the x axis between $\mathrm{x}=0$ and $\mathrm{x}=1$ is rotated about the line $x=1$.

(i) Use the method of cylindrical shells to show that the volume V of the solid formed is given by:

$$
V=2 \pi \int_{0}^{1} 1-x^{2}+2 x \sqrt{x}-2 \sqrt{x} d x
$$

(ii) Hence find the value of V in simplest form
(d) The equation $x^{3}+2 x^{2}+3 x+4=0$ has roots α, β and γ.

Find the monic cubic equation with roots α^{2}, β^{2} and γ^{2}.
(a) The complex number ω is given by $\omega=2(\cos \theta+i \sin \theta)$, where $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$.
(i) Express each of ω^{2} and $\frac{1}{\omega}$ in modulus/argument form.
(ii) On an Argand diagram, the points Q and R represent the complex numbers ω^{2} and $\frac{1}{\omega}$ respectively. If the points Q, O and R are collinear, find ω in the form $a+i b$, where a and b are real numbers.
(b) Let $I_{n}=\int_{0}^{a}\left(\mathrm{I}+x^{2}\right)^{n} d x, n=1,2,3, \ldots \ldots$
(i) Use integration by parts to show that $I_{n}=\frac{a\left(1+a^{2}\right)^{n}}{2 n+1}+\frac{2 n}{2 n+1} I_{n-1}$
(ii) Show that $I_{1}=\frac{3 a+a^{3}}{3}$
(iii) Hence, or otherwise, evaluate $\int_{0}^{1}\left(1+x^{2}\right)^{3} d x$
(c)

In the diagram, MAN is the common tangent to two circles touching intemally at $\mathrm{A} . \mathrm{B}$ and C are two points on the larger circle such that BC is a tangent to the smaller circle with point of contact $\mathrm{D} . \mathrm{AB}$ and AC cut the smaller circle at E and F respectively. Copy the diagram. Show that AD bisects $\angle B A C$.
(a) A particle of mass $m \mathrm{~kg}$ is dropped from rest in a medium where the resistance to the motion has magnitude $\frac{1}{40} m v^{2}$ when the speed of the particle is $v \mathrm{~ms}^{-1}$. After t seconds the particle has fallen x metres. The acceleration due to gravity is $10 \mathrm{~ms}^{-2}$.
(i) Explain why $\ddot{x}=\frac{1}{40}\left(400-v^{2}\right)$.
(ii) Find an expression for t in terms of v by integration.
(iii) Show that $v=20\left(1-\frac{2}{1+e^{i}}\right)$.
(b) Consider the polynomial $P(x)=x^{4}-2 x^{3}-x^{2}+6 x-6$ over the complex field. Given that $P(1-i)=0$, find all four solutions to $P(x)=0$.
(c) In the diagram below, F is a focus of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ with eccentricity e.

This branch of the hyperbola cuts the x axis at A where $A F=h . P$ is the point on the hyperbola vertically above F and the normal at P cuts the x axis at B making an acute angle θ with the x axis.
(i) Show that $\tan \theta=\frac{1}{e}$
(ii) Show that $P F=h(e+1)$

A bowl is formed by rotating the hyperbola above through one revolution about the x axis. The bowl is then placed on a horizontal table with point A on the table.
A particle P of mass m is set in motion around the inside of the bowl, travelling with constant angular velocity ω in a horizontal circle with centre F.
(iii) Show that $\omega^{2}=\frac{g}{h e(e+1)}$
(iv) N is the normal reaction force between the particle P and the bowl. Show that if the hyperbola used to form the bowl is a rectangular hyperbola, then $N=m g \sqrt{\frac{3}{2}}$.
(a) The hyperbola $x y=c^{2}, c>0$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b>0$ at points P and Q , where $P\left(c p, \frac{c}{p}\right)$ lies in the first quadrant.

$\left(c t, \frac{c}{t}\right)$ is the general parametrisation of $x y=c^{2}, \quad t \neq 0$
(i) Explain why the equation $(b c)^{2} t^{4}-(a b)^{2} t^{2}+(c a)^{2}=0$ has roots $p, p,-p,-p$ where $\mu>0$.
(ii) Deduce that $p=\frac{a}{c \sqrt{2}}$ and $a b=2 c^{2}$.
(iii) Show that if $S(c \sqrt{2}, c \sqrt{2})$ and S^{\prime} are the foci of the hyperbola $x y=c^{2}$, then the quadrilateral with vertices P, S, Q and S^{\prime} has area $2 c(a-b)$.
(b) If a >0 and $\mathrm{b}>0$, prove that:
(i) $\frac{1}{a}+\frac{1}{b} \geq \frac{4}{a+b}$.
(ii) $\frac{1}{a^{2}}+\frac{1}{b^{2}} \geq \frac{8}{(a+b)^{2}}$.

QUESTION 16 is continued on the next page.
(c) Let $f(x)=\frac{x^{n}}{e^{x}}$, where $n>1$.
(i) Show that $f^{\prime}(x)=\frac{x^{n-1}(n-x)}{e^{n}}$
(ii) Show that the graph of $y=f(x)$ has a maximum turning point at $\left(n, \frac{n^{n}}{e^{n}}\right)$, and hence sketch the graph for $x \geq 0$. (Don't attempt to find any points of inflexion).
(iii) Explain, by considering the graph of $y=f(x)$ for $x>n$, why $\frac{x^{n}}{e^{x}}<\frac{n^{n}}{e^{n}}$ for $x>n$.
(iv) Deduce from part (iii), using the substitution $x=n+1$, that $\left(1+\frac{1}{n}\right)^{n}<e$.
1.

$$
\begin{aligned}
& \frac{x^{2}}{1^{2}}-\frac{y^{2}}{(y / 2)^{2}}=1 \quad a=1 \quad b=\frac{1}{2} \\
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& \frac{1}{4}=1\left(e^{2}-1\right) \\
& e^{2}=\frac{5}{7} \quad e=\frac{\sqrt{5}}{2}
\end{aligned}
$$

2. $\quad \frac{x^{2}}{1}-\frac{y^{2}}{3}=1 \quad a=1 \quad b=\sqrt{3}$
assymptites $y= \pm \frac{b}{a} x$

$$
y= \pm \sqrt{3} x
$$

$$
\begin{aligned}
\tan \theta & =\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{\sqrt{3}-\sqrt{3}}{1-3}\right| \\
& =\sqrt{3} \\
\theta & =\pi / 3 .
\end{aligned}
$$

3. P, Q, R in $A P$

$$
\begin{aligned}
\therefore & Q=\frac{P+k}{2} \\
& P+R=2 Q
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin (P+R)}{\cos Q} & =\frac{\sin 2 Q}{\cos Q} \\
& =\frac{2 \sin Q \cos Q}{\cos Q} \\
& =2 \sin Q
\end{aligned}
$$

4. $\quad y=\frac{x-1}{x^{2}-1}=\frac{x-1}{(x+1)(x-1)}$

$$
=\frac{1}{x+1}
$$

2 assunpthet.
5.

$$
\begin{aligned}
z-\bar{z} & =(x+i y)-(x+i y) \\
& =2 i y
\end{aligned}
$$

$\therefore Q$ has x card $=$ zero

$$
y \text { cad }=2 \times \text { ycood of } P .
$$

6.

$$
\left.\begin{array}{rl}
x^{3}+3 x-2=0 \\
\alpha^{3}+3 \alpha-2=0 \\
\beta^{3}+3 \beta-2=0 \\
\gamma^{3}+3 \gamma-2=0
\end{array}\right\} \text { and } \Rightarrow \begin{aligned}
& \alpha^{3}+\beta^{3}+\gamma^{3}+3(\alpha+\beta+\gamma)-6=0 \\
& \\
& \alpha^{3}+\beta^{3}+\gamma^{3}+3 \times 0=6 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}=6
\end{aligned}
$$

7. $T \cos \theta=m g$

$$
T=\frac{m g}{\cos \theta}
$$

$$
\begin{aligned}
T \sin \theta & =m \omega^{2} r \Rightarrow T=\frac{m \omega^{2}}{\sin \theta} \\
\therefore \tan \alpha & =\frac{\omega^{2} r}{g} \\
r & =\frac{\tan \theta}{\omega} r \\
\omega^{2} & =\frac{\tan \theta}{r}
\end{aligned}
$$

$\therefore D$ is not correct.
8.

$$
\begin{aligned}
& x y=16=c^{2}=\frac{a^{2}}{2} \\
& \therefore a^{2}=32 \\
& x^{2}-y^{2}=32
\end{aligned}
$$

9.

$$
\begin{array}{ll}
\cos 0=1 & \\
\cos \pi=-1 & \text { eliminates } A \text { and } B \\
\cos \frac{\pi}{2}=0 & \text { eliminates } C
\end{array}
$$

D
10.

$$
\begin{gathered}
y^{2}+x y=1 \\
2 y \frac{d y}{d x}+x \frac{d y}{d x}+y=0 \\
\frac{d y}{d x}(2 y+x)+y=0 \\
\frac{d y}{d x}=\frac{-y}{2 y+x}
\end{gathered}
$$

Question $1 /$
(a)

$$
\begin{aligned}
z=1-3 i \quad \frac{z}{w} & =\frac{1-3 i}{2+i} \times \frac{2-i}{2-i} \\
& =\frac{2-i-6 i+3 i^{2}}{2^{2}-i^{2}} \\
& =\frac{2-7 i-3}{4-1} \\
& =\frac{-1-7 i}{5} \\
& =-\frac{1}{5}-\frac{7 i}{5}
\end{aligned}
$$

(b) (i) $z=x+i y$

$$
\begin{aligned}
z \bar{z} & =(x+i y)(x-i y) \\
& =x^{2}-i^{2} y^{2} \\
& =x^{2}+y^{2} \\
z+\bar{z} & =x+i y+x-i y \\
& =2 x .
\end{aligned}
$$

(ii)

$$
\begin{gathered}
z \overline{3} \leqslant 3(z+\bar{z}) \\
x^{2}+y^{2} \leqslant 3(2 x) \\
x^{2}-6 x+y^{2} \leqslant 0 \\
(x-3)^{2}+y^{2} \leqslant 9
\end{gathered}
$$

circle centre $(3,0)$ radio 3 .

(c)

$$
\begin{aligned}
& P(x)=x^{3}+x^{2}+4 x+4 \\
& P(-1)=-1+1-4+4=0 \\
& \therefore(x+1) \text { is a factor. } \\
& P(x)=(x+1)\left(x^{2}+4\right) \text { by inspection. (or division) } \\
& \\
& =(x+1)(x-2 i)(x+2 i)
\end{aligned}
$$

Questron 11 (contimed)
(d)
(i)

$$
\begin{aligned}
\int \frac{1}{x^{2}+2 x+5} d x & =\int \frac{1}{(x+1)^{2}+4} d x \\
& =\int \frac{1}{u^{2}+2^{2}} d x \quad \begin{array}{l}
\frac{d u x+1}{d x} \\
d u=d x
\end{array} \\
& =\frac{1}{2} \tan ^{-1}\left(\frac{u}{2}\right)+c \\
& =\frac{1}{2} \tan ^{-1}\left(\frac{x+1}{2}\right)+c
\end{aligned}
$$

(ii) $\int \frac{1}{x^{2}+2 x-3} d x=\int \frac{1}{(x+3)(x-1)} d x$

$$
\begin{aligned}
\text { Let } \frac{1}{(x+3)(x-1)} & =\frac{a}{(x+3)}+\frac{b}{(x-1)} \\
& =a(x-1)+b(x+3) \\
\left.\begin{array}{rl}
1=1 \Rightarrow \quad 1 & =4 b \\
b=-3 \\
b=-\frac{1}{4} \\
1 & =-4 a \\
a & =-\frac{1}{4}
\end{array}\right\} \therefore \frac{1}{(x+3)(x-1)} & =\frac{1}{4}\left(\frac{1}{x-1}-\frac{1}{x+3}\right) \\
\therefore \int \frac{1}{x^{2}+2 x-3} d x & =\frac{1}{4}\left(\frac{1}{x-1}-\frac{1}{x+3} d x\right. \\
& =\frac{1}{4} \ln (x-1)-\frac{1}{4} \ln (x+3)+ \\
& =\frac{1}{4} \ln \left(\frac{x-1}{x+3}\right)+c
\end{aligned}
$$

QVESTON II (contived)
(e) (i)

$$
\begin{aligned}
& (a+i b)^{2}=7+24 i \\
& a^{2}-b^{2}+2 a b i=7+24 i
\end{aligned}
$$

equating real + ineginnry parts:

$$
\begin{array}{rlrl}
a^{2}-b^{2} & =7 \quad \text { and } \quad \begin{array}{l}
2 a b
\end{array}=24 \\
a b & =12 \\
a & =\frac{12}{b} \\
\left(\frac{12}{b}\right)^{2}-b^{2}=7 & & \\
144-b^{4}=7 b^{2} \\
b^{4}+7 b^{2}-144 & =0 \\
\left(b^{2}+16\right)\left(b^{2}-9\right) & =0 \\
b= \pm 3 \quad a & \\
b= \pm 4
\end{array}
$$

Solutions: $a=4 \quad b=3$ or $a=-4 \quad b=-3$.
(ii)

$$
\begin{aligned}
z^{2} & +3 i z-(4+6 i)=0 \\
z & =\frac{-3 i \pm \sqrt{(3 i)^{2}-4(4+6 i)}}{2} \\
& =\frac{-3 i \pm \sqrt{-9+16+24 i}}{2} \\
& =\frac{-3 i \pm \sqrt{7+24 i}}{2} \\
& =\frac{-3 i \pm(4+3 i)}{2} \quad \text { fram part (i) } \\
& =\frac{-3 i+4+3 i}{2} \quad \text { Or } \quad \frac{-3 i-4-3 i}{2} \\
& =2 \quad \text { Or } \quad-2-3 i
\end{aligned}
$$

QUESTION 12
(a) (i)

(ii) $y=\sqrt{f(x)}$

(iii) $y=f(|x|)$

QUESTIN 12 (continued)
(b) (i)

$$
\text { (i) } \begin{align*}
\sin (\alpha \pm \beta)= & \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
& \sin \alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \tag{1}\\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \tag{2}
\end{align*}
$$

(1) + (2)

$$
\sin (\alpha+\beta)+\sin (\alpha-\beta)=2 \sin \alpha \cos \beta
$$

Let

$$
\begin{aligned}
A & =\alpha+\beta \\
B & =\alpha-\beta \\
\therefore 2 \alpha & =A+B \\
\alpha & =\frac{A+B}{2} \quad 2 \beta=A-B \\
& \beta=\frac{A-B}{2}
\end{aligned}
$$

substitute into (3) $\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$.
(ii)

$$
\begin{aligned}
& \sin 2 x+\sin 4 x=\sin 6 x \\
& 2 \sin \left(\frac{2 x+4 x}{2}\right) \cos \left(\frac{2 x-4 x}{2}\right)=\sin 6 x \text {. noing (i) with } \\
& 2 \sin 3 x \cos (-x)=\sin 6 x \\
& 2 \sin 3 x \cos x=2 \sin 3 x \cos 3 x \\
& 2 \sin 3 x(\cos x-\cos 3 x)=0 \\
& \sin 3 x=0 \text { or } \cos 3 x=\cos x \\
& 3 x=\pi n \quad \text { or } \quad 3 x=2 \pi n \pm x \\
& x=\frac{\pi n}{3} \quad \text { or } \quad 2 x=2 \pi n \quad \text { or } 4 x=2 \pi n \quad n= \pm 1, \pm 2, \pm 3, \ldots . \\
& x=\frac{\pi n}{3} \quad \text { or } \quad x=\frac{\pi n}{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\int_{0}^{\pi / 4} \sin 5 x \cos 3 x d x & =\frac{1}{2} \int_{2}^{\pi / 4}\left(2 \sin \left(\frac{8 x+2 x}{2}\right) \cos \left(\frac{8 x-2 x}{2}\right) d x\right. \\
& =\frac{1}{2} \int_{0}^{\pi / 4} \sin 8 x+\sin 2 x d x \\
& =-\frac{1}{2}\left[\frac{1}{8} \cos 8 x+\frac{1}{2} \cos 2 x\right]_{0}^{\pi / 4} \\
& =-\frac{1}{2}\left(\frac{1}{8}+0-\left(\frac{1}{8}+\frac{1}{2}\right)\right)=\frac{1}{4}
\end{aligned}
$$

Question 12 (contimed)
(c)

$$
\begin{aligned}
A(-x) & =-A(x) \\
B(-x) & =-B(x)
\end{aligned}
$$

$P(x)=A(x) \times B(x)$
$P(-x)=A(-x) \times B(-x)$
$=-A(x) \times-B(x)$

$$
=A(x) \times B(x)
$$

$=P(x)$
$\therefore \quad P(x)$ is even.

QUESTION 13
(a) (i) Vertically

$$
\begin{aligned}
& N \cos \alpha-F \sin -m g=0 \\
& N \cos \alpha=F \sin \alpha+m g
\end{aligned}
$$

Radially

$$
\begin{align*}
& F \cos \alpha+N \sin \alpha=\frac{m V^{2}}{r} \\
& N \sin \alpha=\frac{M V^{2}}{r}-F \cos \alpha \tag{2}
\end{align*}
$$

If $F=0$

$$
\begin{align*}
& N \cos \alpha=m g \tag{3}\\
& N \sin \alpha=\frac{m v^{2}}{r} \tag{4}
\end{align*}
$$

(4) $\div(3)$
$\tan \alpha=\frac{v^{2}}{g r}$
(ii) (2) \div (1) gives

$$
\tan \alpha=\frac{m v^{2}}{r}-F \cos \alpha
$$

$$
F \frac{\sin ^{2} \alpha}{\cos \alpha}+m g \frac{\sin \alpha}{\cos \alpha}=\frac{m v^{2}}{r}-F_{\cos \alpha}
$$

$$
F \sin ^{2} \alpha+m g \sin \alpha=\frac{m v^{2}}{r} \cos \alpha-F \cos ^{2} \alpha
$$

$$
F\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=\frac{m v^{2} \cos \alpha}{r}-m g \sin \alpha
$$

$$
\begin{aligned}
F & =\frac{m v^{2} \cos \alpha}{r}-m g \sin \alpha \\
& =\frac{800 \times 30^{2} \cos 7}{250}-800 \times 9.8 \times \sin 7^{\circ}
\end{aligned}
$$

Question 13 (contrived)
(b) (i) when $x=h \quad y^{2}=4 h$

$$
y= \pm 2 \sqrt{h}
$$

\therefore the base of the semi-ellige is $4 \sqrt{h}$

$$
\begin{aligned}
\therefore \text { The cered of the semi-ellipee } & =\frac{1}{2} \pi a b \\
& =\frac{1}{2} \pi(2 \sqrt{h})(\sqrt{h}) \\
& =\frac{1}{2} \times 2 \pi(\sqrt{h})^{2} \\
& =\pi h(a s ~ r e q u i r e d) . ~
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Volume of solid } & =\sum_{h=0}^{4} \text { Area } \times \delta h \\
& =\int_{0}^{4} \pi h d h \\
& =\pi\left[\frac{h^{2}}{2}\right]_{0}^{4} \\
& =\pi\left(\frac{16}{2}-0\right) \\
& =8 \pi \text { units }^{3}
\end{aligned}
$$

(c) over page...

Question is (continued)
(c) (i)

The cylindrical shell opens out to form a thin rectangular prison as shown belour:

$$
\begin{aligned}
8 V & =2 \pi(1-x) y d x \\
& =2 \pi(1-x)(1-\sqrt{x})^{2} d x \\
V & =2 \pi \int_{0}^{1}(1-x)(1-\sqrt{x})^{2} d x \\
& =2 \pi \int_{0}^{1}(1-x)(1-2 \sqrt{x}+x) d x \\
& =2 \pi \int_{0}^{1} 1-2 \sqrt{x}+\sqrt{x}+\sqrt{x}+2 x \sqrt{x}-x^{2} d x
\end{aligned}
$$

$$
\sqrt{y}=1-\sqrt{x}
$$

$$
y=(1-\sqrt{x})^{2}
$$

$=2 \pi \int_{0}^{1} 1-x^{2}+2 x \sqrt{x}-2 \sqrt{x}$ dx as required.
(ii)

$$
\begin{aligned}
V & =2 \pi\left[x-x^{3 / 3}+\frac{2 x^{5 / 2}}{5 / 2}-\frac{2 x^{3 / 2}}{3 / 2}\right]_{0}^{1} \\
& =2 \pi\left[x-\frac{x^{3}}{3}+\frac{4 x^{5 / 2}}{5}-\frac{4 x^{3 / 2}}{3}\right]_{0}^{1} \\
& =2 \pi\left(1-\frac{1}{3}+\frac{4}{5}-\frac{4}{3}\right) \\
& =\frac{4 \pi}{15} \text { units }^{3} .
\end{aligned}
$$

QuESTION 13 (continued)
(d)

$$
P(x)=x^{3}+2 x^{2}+3 x+4=0 \quad \text { roots } \alpha, \beta, \gamma
$$

$P(\sqrt{x})=0$ will have roots $\alpha^{2}, \beta^{2}, \gamma^{2}$

$$
\begin{aligned}
& (\sqrt{x})^{3}+2(\sqrt{x})^{2}+3(\sqrt{x})+4=0 \\
& x \sqrt{x}+2 x+3 \sqrt{x}+4=0 \\
& \sqrt{x}(x+3)=-2 x-4 \\
& x(x+3)^{2}=(-2)^{2}(x+2)^{2} \\
& x\left(x^{2}+6 x+9\right)=4\left(x^{2}+4 x+4\right) \\
& x^{3}+6 x^{2}+9 x=4 x^{2}+16 x+16 \\
& x^{3}+2 x^{2}-7 x-16=0
\end{aligned}
$$

\therefore The cubic equation with roots $\alpha^{2}, \beta^{2}, \gamma^{2}$

$$
\text { is } \quad x^{3}+2 x^{2}-7 x-16=0
$$

QUESTION 14
(a) $\omega=2(\cos \theta+i \sin \theta)=2 \operatorname{cis} \theta \quad \frac{\pi}{4} \leqslant \theta \leqslant \frac{\pi}{2}$.
(i) $\omega^{2}=4 \operatorname{cis} 2 \theta$

$$
=4(\cos 2 \theta+i \sin 2 \theta)
$$

$$
\begin{aligned}
\frac{1}{\omega} & =\frac{1}{2} \operatorname{cis}(-\theta) \\
& =\frac{1}{2}(\cos (-\theta)+i \sin (-\theta))
\end{aligned}
$$

(ii)

$$
\begin{aligned}
2 \theta+\theta & =\pi \\
\theta & =\frac{\pi}{3} \\
\omega & =2 \cos \frac{\pi}{3}+2 i \sin \pi / 3 \\
& =2 \times \frac{1}{2}+i \times 2 \frac{\sqrt{3}}{2} \\
\omega & =1+i \sqrt{3} \\
& =a+i b \quad \text { where } a=1, b=\sqrt{3}
\end{aligned}
$$

QUESTION 14 (continued)
(b) $\quad I_{n}=\int_{0}^{a}\left(1+x^{2}\right)^{n} d x$

$$
n=1,2,3, \ldots
$$

(i)

$$
\text { i) } \begin{aligned}
& I_{n}=\left[x\left(1+x^{2}\right)^{n}\right]_{0}^{a}-\int_{0}^{a} 2 x^{2} n\left(1+x^{2}\right)^{n-1} d x \quad u=(1 \\
&=\left(a\left(1+a^{2}\right)^{n}-0\right)-2 n \int_{0}^{a} x^{2}\left(1+x^{2}\right)^{n-1} d x \quad \frac{d a}{d x}= \\
&= a\left(1+a^{2}\right)^{n}-2 n \int_{0}^{a}\left(1+x^{2}-1\right)\left(1+x^{2}\right)^{n-1} d x \\
&= a\left(1+a^{2}\right)^{n}-2 n \int_{0}^{a}\left(1+x^{2}\right)^{n}-\left(1+x^{2}\right)^{n-1} d x \\
&= a\left(1+a^{2}\right)^{n}-2 n I_{n}+2 n I_{n-1} \\
& \therefore \quad I_{n}(1+2 n)=a\left(1+a^{2}\right)^{n}+2 n I_{n-1} \\
& \therefore \quad I_{n}=\frac{a\left(1+a^{2}\right)^{n}}{2 n+1}+\frac{2 n}{2 n+1} I_{n-1}
\end{aligned}
$$

$$
u=\left(1+x^{2}\right)^{\wedge}
$$

$$
\frac{d u}{I}=n\left(1+x^{2}\right)^{n-1} \times 2 x \quad \frac{n}{d x}=1
$$

$$
\begin{aligned}
\frac{d u}{d x} & =n\left(1+x^{2}\right)^{n-1} \times 2 x \\
& =2 x n\left(1+x^{2}\right)^{n-1}
\end{aligned}
$$

$$
=2 x n\left(1+x^{2}\right)^{n-1}
$$

(ii)

$$
\begin{array}{rlrl}
I_{1} & =\frac{a\left(1+a^{2}\right)^{1}}{2(1)+1}+\frac{2(1)}{2(1)+1} I_{0} & \\
& =\frac{a\left(1+a^{2}\right)}{3}+\frac{2}{3} I_{0} & I_{0} & =\int_{0}^{a} 1 d x \\
& =\frac{a+a^{3}}{3}+\frac{2 a}{3} & & =[x]_{0}^{a} \\
& =\frac{3 a+a^{3}}{3} & & =a
\end{array}
$$

(iii)

$$
\begin{aligned}
& \int_{0}^{1}\left(1+x^{2}\right)^{3} d x=I_{3} \quad \text { where } a=1 \quad \text { and } I_{n}=\frac{2^{n}}{2 n+1}+\frac{2 n}{2 n+1} I_{n-1} \\
&=\frac{8}{7}+\frac{6}{7} I_{2} \\
&=\frac{8}{7}+\frac{6}{7}\left(\frac{4}{5}+\frac{4}{5} I_{1}\right) \quad \text { and } I_{1} \\
&=\frac{3 a+a^{3}}{3} \\
&=\frac{8}{7}+\frac{24}{35}+\frac{64}{7} \times \frac{4}{5} \times \frac{4}{3} \\
&=\frac{8}{7}+\frac{24}{35}+\frac{32}{35} \\
&=2 \frac{26}{35}
\end{aligned}
$$

QUESTION 14 (continued)
(c)

RTP AD bisects $\angle B A C$
that is RTP $\angle B A D=\angle F A D$.
Construct EF and ED.
Let $\alpha=\angle F E A=\angle$ FAN (congle between tangent and chord squab the angle in the alternate segment.)
then $\alpha=\angle C B A=\angle C A N$
$\therefore B C \| E F$ (correpoending angles $\angle C B A=\angle F E A$ are equal so parallel lines exist).
Let $\angle D E F=\beta$
then $\angle B D E=\angle D E F=\beta$ ((alternate angles in //lines are equal)
$\angle B A D=\angle B D E=\beta$ (alternate segment theorem (os above))
$\angle F A D=\angle D E F=\beta$ (angles standing on the same arc DF subtend equal angles at the circamitrennue)

$$
\therefore \angle B A D=\angle F A D
$$

$\therefore A D$ bisects $\angle B A C$ as required.

QUESTION 15
(a)

down $=$ positive

$$
g=10 \mathrm{~m} / \mathrm{s}^{2}
$$

downwards
(i)

$$
\begin{aligned}
\text { Resultant Force }=m \ddot{x} & =m g-\frac{1}{40} m v^{2} \\
\ddot{x} & =g-\frac{1}{40} v^{2} \\
& =\frac{40 g}{40}-\frac{v^{2}}{40} \\
& =\frac{40 g-v^{2}}{40} \\
& =\frac{400-v^{2}}{40} \\
& =\frac{1}{40}\left(400-v^{2}\right) \quad \text { as required. }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& =\frac{1}{40}\left(400-v^{2}\right) \text { as required. } \\
& \frac{d v}{d t}=\frac{1}{40}\left(400-v^{2}\right) \\
& \frac{d t}{d v}=\frac{40}{400-v^{2}} \\
& t=40 \int \frac{1}{400-r^{2}} d r \\
& =40 \int \frac{1}{(20+v)(20-v)} d v \\
& =\frac{40}{40} \int \frac{1}{20+v}+\frac{1}{20-v} d x \\
& =[\ln (20+r)-\ln (20-r)]+c \\
& =\ln \left(\frac{20+r}{20-v}\right)+c
\end{aligned}
$$

when $t=0 \quad r=0 \quad \therefore \quad c=0$

$$
\therefore \quad t=\ln \left(\frac{20+v}{20-v}\right)
$$

QUESTION 15 (continued)
(a) (iii)

$$
\begin{aligned}
& t=\ln \left(\frac{20+v}{20-v}\right) \\
& e^{t}=\frac{20+v}{20-v} \\
& (20-v) e^{t}=20+v \\
& 20 e^{t}=20+v\left(1+e^{t}\right) \\
& 20\left(e^{t}-1\right)=v\left(1+e^{t}\right) \\
& v=20\left(\frac{e^{t}-1}{1+e^{t}}\right) \\
& \\
& =20\left(\frac{1+e^{t}-2}{1+e^{t}}\right) \\
& \\
& =20\left(1-\frac{2}{1+e^{t}}\right) \quad \text { as required. }
\end{aligned}
$$

(b) $\quad P(x)=x^{4}-2 x^{3}-x^{2}+6 x-6$

Since $P(1-i)=0 \quad x-(1-i)$ is a factor of $P(x)$ and so is $x-(1+i)$

$$
\begin{aligned}
(x-(1-i))(x-(1+i)) & =(x-1+i)(x-1-i) \\
& =(x-1)^{2}-i^{2} \\
& =x^{2}-2 x+1+1 \\
& =x^{2}-2 x+2
\end{aligned}
$$

$$
\begin{aligned}
P(x)=\left(x^{4}-2 x^{3}-x^{2}+6 x-6\right) & =\left(x^{2}-2 x+2\right)\left(x^{2}+0 x-3\right) \\
& =\left(x^{2}-2 x+2\right)\left(x^{2}-3\right) \\
& =(x-(1-i))(x-(1+i))(x-\sqrt{3})(x+\sqrt{3})
\end{aligned}
$$

\therefore the Four solutions to $P(x)=0$ are:

$$
x=1-i, 1+i, \sqrt{3},-\sqrt{3}
$$

ie. $\quad x= \pm \sqrt{3}, \| \pm i$

QUESTION 15 (continued)
(c)
(i)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
& \frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{2 x}{a^{2}} \div \frac{2 y}{b^{2}} \\
&=\frac{b^{2} x}{a^{2} y} \\
&=\left(e^{2}-1\right) \frac{x}{y}
\end{aligned}
$$

at P, $\frac{d y}{d x}=\left(e^{2}-1\right) \frac{a e}{a\left(e^{2}-1\right)}=e$
\therefore Normal at P has gradient $=-\frac{1}{e}$

$$
\begin{aligned}
\therefore \tan & (180-\theta)=-\frac{1}{e} \\
& -\tan \theta=-\frac{1}{e}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A F=h & =a e-a \\
h & =a(e-1) \\
P F & =a\left(e^{2}-1\right) \\
& =a(e-1)(e+1)
\end{aligned}
$$

$$
=h(e+1) \text { as required. }
$$

QUESTION 15 (continued)
(c) (iii)

Forces on P

Resolving forces vertically $\quad N \cos \theta=m g$
Radially $\quad N \sin \theta=m \omega^{2} r$
(2) \div (1)

$$
\begin{align*}
\tan \theta & =\frac{m \omega^{2} r}{m g} \tag{2}\\
\frac{1}{e} & =\frac{\omega^{2}}{g} h(e+1) \quad \text { since } r=P F=h \\
\frac{g}{e} & =\omega^{2} h(e+1) \\
\therefore \omega^{2} & =\frac{g}{h e(e+1)} \quad \text { as required. }
\end{align*}
$$

(iv) for a rectangular hyperbola $e=\sqrt{2}$

$$
\begin{array}{ll}
N \cos \theta=m g & \tan \theta=\frac{1}{e}=\frac{1}{\sqrt{2}} \\
N \frac{\sqrt{2}}{\sqrt{3}}=m g & \sqrt{3} \theta_{\sqrt{2}} \\
N \sqrt{\frac{2}{3}}=m g & \\
\therefore N=m g \sqrt{\frac{3}{2}} &
\end{array}
$$

Question 16
(a) (i) The hyperbola $\left(c t, \frac{c}{t}\right)$ intersects the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ when $\frac{(c t)^{2}}{a^{2}}+\frac{\left(\frac{c}{t}\right)^{2}}{b^{2}}=1$

$$
\begin{aligned}
& b^{2} c^{2} t^{2}+\frac{a^{2} c^{2}}{t^{2}}=a^{2} b^{2} \\
& b^{2} c^{2} t^{4}+a^{2} c^{2}=a^{2} b^{2} t^{2} \\
& (b c)^{2} t^{4}-(a b)^{2} t^{2}+(a c)^{2}=0
\end{aligned}
$$

The number of solutions is 0,2, or $4=\#$ of possible interaction point.
for the hyperbola to "ToucH" the ellipse at P where tip, P must be a double root, and to "Touch" at Q where $t=-p,-p$ nut be a double root.
\therefore the roots of the equation are P,P, $-P,-p$.
(ii)

$$
\begin{aligned}
& \begin{array}{r}
\text { roots in pairs }=p^{2}-p^{2}-p^{2}-p^{2}-p^{2}+p^{2}=\frac{-(a b)^{2}}{(b c)^{2}} \\
-2 p^{2}=-\frac{a^{2}}{c^{2}}
\end{array} \\
& \text { product of roots }=p^{4}=\frac{(c a)^{2}}{(b c)^{2}} \\
& p^{4}=\frac{a^{2}}{b^{2}} \\
& \rho^{2}=\frac{a}{b} \quad \text { but } p^{2}=\frac{a^{2}}{2 c^{2}} \quad \therefore \quad \frac{a}{b}=\frac{a^{2}}{2 c^{2}} \\
& 2 a c^{2}=a^{2} b \\
& \therefore a b=2 c^{2} \\
& \therefore p=\frac{a}{\sqrt{2} c} \text { and } a b=2 c^{2}
\end{aligned}
$$

QUESTION 16 continued.
(a) (iii)

$$
\begin{aligned}
& y=x \\
& x-y+0=0 \\
& \text { genera form. }
\end{aligned}
$$

Area of PSQS' $=2 \times$ Area PSS'

$$
\begin{aligned}
& =2 \times \frac{1}{2} \times S S^{\prime} \times(1 \text { distance from } p \text { to } y=x .) \\
& =2 \times \frac{1}{2}(2 c+2 c) \times\left|\frac{1 \times c p-1 \times \frac{c}{p}+0}{\sqrt{1^{2}+(-1)^{2}}}\right| \\
& =1 \times 4 c \times \frac{c p-\frac{c}{p}}{\sqrt{2}} \\
& =\frac{4 c}{\sqrt{2}} \times\left(c p-\frac{c}{p}\right) \\
& =\frac{4 c}{\sqrt{2}} \times\left(\frac{a}{\sqrt{2}}-c \times \frac{c \sqrt{2}}{a}\right) \\
& =\frac{4 c}{\sqrt{2}} \times\left(\frac{a}{\sqrt{2}}-\frac{c^{2} \sqrt{2}}{a}\right) \\
& =2 a c-\frac{8 c^{3}}{a} \\
& =2 c\left(a-\frac{2 c^{2}}{a}\right) \\
& =2 c(a-b)
\end{aligned} \quad \begin{aligned}
& p=\frac{a}{c \sqrt{2}} \\
& c p=\frac{a}{\sqrt{2}}
\end{aligned}, \begin{aligned}
& a b=2 c^{2} \\
& b=\frac{2 c^{2}}{a}
\end{aligned}
$$

QVESTION 16 (continued)
(b) (i) RTP $\frac{1}{a}+\frac{1}{b} \geqslant \frac{4}{a+b}$
ie. RTP $\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b} \geqslant 0 \quad$ since $P \geqslant Q \Leftrightarrow P-Q \geqslant 0$

$$
\begin{aligned}
\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b} & =\frac{b+a}{a b}-\frac{4}{a+b} \\
& =\frac{(a+b)^{2}-4 a b}{a b(a+b)} \\
& =\frac{a^{2}+b^{2}+2 a b-4 a b}{a b(a+b)} \\
& =\frac{a^{2}+b^{2}-2 a b}{a b(a+b)} \\
& =\frac{(a-b)^{2}}{a b(a+b)}
\end{aligned}
$$

$$
\geqslant 0 \quad \text { since }(a-b)^{2} \geqslant 0 \text { and } a b(a+b) \geqslant 0
$$ when $a, b>0$.

$$
\begin{aligned}
& \text { (ii) } \frac{x+y}{2} \geqslant \sqrt{x y} \\
& \left.\begin{array}{l}
x=\frac{1}{a^{2}} \\
y=\frac{1}{b^{2}}
\end{array}\right\} \Rightarrow \frac{\frac{1}{a^{2}}+\frac{1}{b^{2}}}{2} \geqslant \sqrt{\frac{1}{a^{2}} \frac{1}{b^{2}}} \\
& \frac{1}{a^{2}}+\frac{1}{b^{2}} \geqslant \frac{2}{a b} \\
& \geqslant \frac{8}{(a+b)^{2}} \\
& \text { Alsu, } \frac{a+b}{2} \geqslant \sqrt{a b} \\
& \therefore \frac{(a+b)^{2}}{4} \geqslant a b \\
& \therefore(a+b)^{2} \geqslant 4 a b \\
& \therefore \frac{1}{4 a b} \geqslant \frac{1}{(a+b)^{2}} \\
& \therefore \frac{2}{a b} \geqslant \frac{8}{(a+b)^{2}}
\end{aligned}
$$

QUESTION 16 (continued)
(c) $f(x)=\frac{x^{n}}{e^{x}} \quad n>1$
(i)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{e^{x} \times n x^{n-1}-x^{n} \times e^{x}}{\left(e^{x}\right)^{2}} \\
& =\frac{e^{x} x^{n-1}(n-x)}{\left(e^{x}\right)^{2}} \\
& =\frac{x^{n-1}(n-x)}{e^{x}}
\end{aligned}
$$

(ii) stationary points when $f^{\prime}(x)=0$

$$
\begin{aligned}
& \frac{x^{n-1}(n-x)}{e^{x}}=0 \\
& x^{n-1}(n-x)=0 \\
& x=0 \quad \text { or } \quad x=x
\end{aligned}
$$

$$
\lim _{x \rightarrow \infty} \frac{x^{\wedge}}{e^{x}}=0^{+}
$$

when $x=0 \quad f(x)=0$
when $x=n \quad f(n)=\frac{n^{n}}{e^{n}}$

Question 16 (continued)
(c) (iii) when $x>n$ the curve is decreasing
\therefore the y-coordinate of the graph for $x>x$ is always less than the maximum value $\frac{n^{n}}{e^{n}}$

$$
\therefore \quad \frac{x^{n}}{e^{x}}<\frac{n^{n}}{e^{n}} \quad \text { for } x>n \text {. }
$$

(iv) $\quad \frac{x^{n}}{e^{x}}<\frac{n^{n}}{e^{n}} \quad$ for $x>n$
noe $x=n+1, x>x$

$$
\begin{aligned}
& \frac{(n+1)^{n}}{e^{n+1}}<\frac{n^{n}}{e^{n}} \\
& \frac{(n+1)^{n}}{n^{n}}<\frac{e^{n+1}}{e^{n}} \quad \text { noting } n^{n}>0 \\
& \left(\frac{n+1}{n}\right)^{n}<\frac{e^{n} e}{e^{n}} \\
& \left(\frac{n+1}{n}\right)^{n}<e \\
& \therefore\left(1+\frac{1}{n}\right)^{n}<e
\end{aligned}
$$

