VIRILE AGITUR

KNOX GRAMMAR SCHOOL
MATHEMATICS DEPARTMENT

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided
- All necessary working should be shown in every question

TRIAL HSC EXAMINATION
 \title{
2003
}
 \title{
2003
}

Teachers:

Teachers.

DS

EH

BLANK PAGE

Total marks (120)
Attempt questions 1 - 8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks)
Use a SEPARATE writing booklet
(a) Using the method of integration by parts, find $\int x e^{2 x} d x$.
(b) (i) Find real constants A and B such that $\frac{7 x-4}{2 x^{2}-3 x-2}=\frac{A}{2 x+1}+\frac{B}{x-2}$.
(ii) Hence, find $\int \frac{7 x-4}{2 x^{2}-3 x-2} d x$.
(c) Using an appropriate diagram or otherwise, evaluate $\int_{0}^{\frac{3}{2}} \sqrt{9-x^{2}} d x$.
(d) Use the substitution $t=\tan \frac{\theta}{2}$ to show that $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{2+\cos \theta}=\frac{\pi}{3 \sqrt{3}}$.
(a) Given $z=1-i$, find:
(i) $\operatorname{Im}\left(\frac{1}{z}\right)$
(ii) $|z|$
(iii) $\arg (z)$
(iv) z^{8} in the form $x+y i$
(v) the two values for ω such that $\omega^{2}=3 \bar{z}+i$.
(b) Illustrate on an Argand diagram, the region that satisfies both

$$
0 \leq \arg (z+4) \leq \frac{2 \pi}{3} \quad \text { and } \quad|z+4| \leq 4
$$

(c)

The diagram above represents a square $O A B C$. The point C represents the complex number $2+3 i$.
(i) Find the coordinates of the point A.
(ii) Hence, or otherwise determine the coordinates of the point B.
(a) Consider the function $y=f(x)$ where $f(x)=9-x^{2}$.

On separate number planes, sketch the following graphs showing any intercepts on the coordinate axes and the equations of any asymptotes:
(i) $y=f(x) \quad 1$
(ii) $\quad y=|f(x)| \quad \mathbf{1}$
(iii) $|y|=f(x) \quad \mathbf{2}$
(iv) $y=[f(x)]^{2} \quad \mathbf{2}$
(v) $y=\sqrt{f(x)} \quad \mathbf{2}$
(vi) $y=\log _{e} f(x) . \quad \mathbf{2}$
(b) Consider the function $y=f(x)$ where $f(x)=\sin \left(\cos ^{-1} x\right)$.
(i) Show that $f(x)$ is an even function. $\mathbf{2}$
(ii) Find the domain and range of $y=f(x)$. $\mathbf{2}$
(iii) Hence, sketch the graph of $y=f(x)$.
(a) For the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, find:
(i) its eccentricity
(ii) the coordinates of the foci
(iii) the equations of the directrices.
(b) Show that the condition for which the line $y=m x+c$ is a tangent to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is given by $c^{2}=9 m^{2}+4$.
(c) (i) Show that the equation of the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $P(a \sec \theta, b \tan \theta)$ is given by $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$.
(ii) The equation of the normal at the point $P(a \sec \theta, b \tan \theta)$ is given by:

$$
\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2}
$$

A line through P parallel to the y axis meets the asymptote $y=\frac{b x}{a}$ at Q. The tangent at P meets the same asymptote at the point R. The normal at P meets the x axis at the point G.
(α) Find the coordinates of Q and G.
(β) Show that $\angle R Q G=90^{\circ}$.
$(\gamma) \quad$ Explain why the points R, Q, P, and G are concyclic?
(a) The polynomial $P(x)=x^{4}-6 x^{3}+12 x^{2}-10 x+3$ has a rational zero of multiplicity three.

Find all the roots of $x^{4}-6 x^{3}+12 x^{2}-10 x+3=0$.
(b) Consider the polynomial $P(x)=x^{4}-8 x^{3}+29 x^{2}-52 x+40$.
(i) $\quad P(x)=0$ has complex roots of the form $a+b i$ and $a-2 b i$ (where a and b are real numbers).

State why $a-b i$ and $a+2 b i$ are also roots of $P(x)=0$?
(ii) Find the values of a and b.
(iii) Hence, or otherwise, express $P(x)$ as a product of two quadratic factors with real coefficients.
(c) The equation $x^{3}+2 x-1=0$ has roots α, β, and γ. Find:
(i) the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$
(ii) the cubic equation whose roots are $-\alpha,-\beta,-\gamma$
(iii) the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(a)

The area defined by $y \geq \sin x, 0 \leq x \leq \frac{\pi}{2}$ and $0 \leq y \leq 1$ is rotated about the straight line $y=1$.
(i) Copy the diagram above into your writing booklet and shade in the region defined by the simultaneous inequalities $y \geq \sin x, 0 \leq x \leq \frac{\pi}{2}$ and $0 \leq y \leq 1$.
(ii) Find the total volume of the solid formed, by taking slices perpendicular to the axis of rotation.
(b) The horizontal base of a solid is an ellipse defined by the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Vertical cross-sections taken perpendicular to the y axis are squares with one side in the horizontal base of the solid.

Find the volume of the solid formed in terms of a and b.

Question 6 continued ...

(c) The region bounded by the curve $y=\frac{x^{2}}{x^{2}+1}$, the x axis and $0 \leq x \leq 2$, is rotated about the line $x=4$ to form a solid.

(i) Using the method of cylindrical shells, explain why the volume δV of a typical shell distant x units from the origin and with thickness δx is given by

$$
\delta V=2 \pi(4-x)\left(1-\frac{1}{1+x^{2}}\right) \delta x .
$$

(ii) Hence, find the total volume of the solid formed.
(a) (i) Evaluate $\int_{0}^{\frac{\pi}{4}} \tan x d x$.
(ii) If $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x \quad d x, n=0,1,2,3, \ldots$, show that for $n=2,3,4, \ldots$

$$
I_{n}=\frac{1}{n-1}-I_{n-2}
$$

(iii) Hence, evaluate I_{5}.
(b) The equation of the tangent to the rectangular hyperbola $x y=4$ at the point $T\left(2 t, \frac{2}{t}\right)$ is given by $x+t^{2} y-4 t=0$. This tangent cuts the x axis at the point Q.
(i) State the coordinates of Q in terms of t.
(ii) Find the equation of line through Q which is perpendicular to the tangent at T.
(iii) The line through Q and perpendicular to the tangent at T meets the hyperbola at the points R and S.

Show that the x coordinates of the points R and S are the roots of the quadratic equation $t^{2} x^{2}-4 t^{3} x-4=0$.
(iv) Show that the midpoint M of the interval $R S$ has coordinates $\left(2 t,-2 t^{3}\right)$.
(v) Find the equation of the locus of M as T moves on the hyperbola $x y=4$, noting any restriction(s) that may apply.
(a)

NOT TO SCALE

In the diagram above, two circles touch externally at the point T.
The points A and B lie on the circumference of one circle such that $A T=B T$.
The intervals $A T$ and $B T$ produced meet the second circle at C and D respectively. $R S$ is the common tangent at T as shown. Let $\angle B A T=\alpha$.

Copy or trace this diagram into your writing booklet.
(i) Explain why $\angle B A C=\angle A C D=\alpha$.
(ii) Prove that quadrilateral $A B C D$ is an isosceles trapezium.

Question 8 continued...

(b) (i) Prove that $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=\frac{d^{2} x}{d t^{2}}$ where v is the velocity and $\frac{d^{2} x}{d t^{2}}$ is the acceleration of a particle as a function of time t.
(ii) A particle moves from rest toward the origin O when its displacement from O is d metres (with $d>0$). At any time t during the motion the particle's acceleration toward O at a displacement x is given by $\frac{k}{x^{3}}$, where k is a constant greater than zero.
(α) \quad Show that $v^{2}=k\left(\frac{1}{x^{2}}-\frac{1}{d^{2}}\right)$.
(β) \quad Explain why $v=-\sqrt{k\left(\frac{1}{x^{2}}-\frac{1}{d^{2}}\right)}$.
(c) Suppose a function $f(x)$ is defined by $f(x)=\sin (a x)$.

Show by using the Principle of Mathematical Induction, that the $n^{\text {th }}$ derivative is given by:

$$
f^{(n)}(x)=a^{n} \sin \left(a x+\frac{n \pi}{2}\right)
$$

for all positive integers n.

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\quad \sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { Note } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

