

Knox Grammar School

2009

Trial Higher School Certificate
Examination

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- A table of standard integrals is provided at
the back of this paper
- All necessary working should be shown in every question

This paper MUST NOT be removed from the examination room

Student Number

Number of Students in Course: 40
Number of Writing Booklets Per Student (Eight Page) 8

Total Marks - 120

- Attempt Questions 1-8
- Answer each question in a separate
writing booklet
- All questions are of equal value

This page has been left intentionally blank

Total manks - 120
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks)

(a) Find $\int \frac{d x}{\sqrt{16 x^{2}-1}}$
(b) Evaluate $\int_{1}^{e} x \ln x d x$
(c) (i) Find real numbers a and b such that

$$
\frac{5 x^{2}+x+8}{(x+1)\left(x^{2}+3\right)} \equiv \frac{a}{x+1}+\frac{b x-1}{x^{2}+3}
$$

(ii) Hence find $\int \frac{5 x^{2}+x+8}{(x+1)\left(x^{2}+3\right)} d x$

2
(d) Find $\int \tan ^{3} x d x$
(e) Using a suitable substitution, or otherwise, evaluate:

End of Question 1
(a) Let $\alpha=1-\sqrt{3} i$.
(i) Find the exact value of $|\alpha|$ and arg α.
(ii) Hence express $(1-\sqrt{3} i)^{10}$ in modulus-argument form.
(b) Express $\sqrt{7-24 i}$ in the form $a+i b$, where a and b are real.
(c) Sketch the region in the complex plane where the two inequalities $0 \leq \operatorname{Arg}(z) \leq \frac{3 \pi}{4}$ and $|z-2 i| \geq|z|$ both hold.
(d) Sketch the locus of z satisfying $|z-3|+|z+3|=10$

Question 2 (continued)

(e)

The points A, B and C on the Argand diagram represent the complex numbers a, b and c respectively. $\triangle A B C$ is equilateral.

Let $w=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$.
(i) Show that $\frac{a-b}{c-b}=w$.
(ii) By writing another similar expression for w, prove that

$$
a^{2}+b^{2}+c^{2}=a b+b c+c a
$$

Question 3 (15 marks) Use a SEPARATE writing booklet.
Mariks
(a) The equation $x^{3}+3 x^{2}-5 x-2=0$ has roots α, β and γ.

Find a cubic equation with integer coefficients whose roots are $\frac{2}{\alpha}, \frac{2}{\beta}$ and $\frac{2}{\gamma}$.
(b) Consider the curve $x^{2}+y^{2}+x y=3$.
(i) Show that $\frac{d y}{d x}=-\left(\frac{2 x+y}{x+2 y}\right)$.
(ii) Hence find the coordinates of any stationary points.

Find of Question 2

(c) The diagram shows the graph of $y=f(x)$ where $f(x)=\frac{1}{4} x^{2}(x-3)$.

On the answer page provided, draw separate sketches of the graphs of the following:
(i) $y=\frac{1}{4} x^{2}|x-3|$
(ii) $y=\frac{1}{f(x)}$

1
(iii) $y^{2}=-f(x)$

2
(iv) $y=\tan ^{-1}(f(x))$
(d) (i)

A parabolic segment has height h and width $2 a$.
Use Simpson's Rule with three function values, to show that the exact area of this segment is $\frac{4 a h}{3}$.
(ii)

The base of a solid is the region in the $x y$ plane enclosed by the circle $x^{2}+y^{2}=r^{2}$.

Each cross-section perpendicular to the x-axis is a parabolic segment with height one half its width.

Show that the volume of the solid is $\frac{16 r^{3}}{9}$ units ${ }^{3}$.

Question 4 (15 marks) Use a SEPARATE writing booklet.

(a) The point $P\left(c p, \frac{c}{p}\right)$ is a point on the hyperbola $x y=c^{2}$. The tangent to the hyperbola at P intersects the x and y axes at \mathbb{A} and B respectively and the normal to the hyperbola at P intersects the second branch at Q.

(i) Show that the equation of the normal at P is $p y-c=p^{3}(x-c p)$. 2
(ii) Show that the x coordinates of P and Q satisfy the equation

$$
x^{2}-c\left(p-\frac{1}{p^{3}}\right) x-\frac{c^{2}}{p^{2}}=0
$$

and hence find the coordinates of Q.
(iiii) Given the distance $A B=2 c \sqrt{p^{2}+\frac{1}{p^{2}}}$, show that the area of $\triangle A B Q=c^{2}\left(p^{2}+\frac{1}{p^{2}}\right)^{2}$.
(iv) Find the minimum area of $\triangle A B Q$.

Question 4 comtinues om page 3

Question 4 (Continued)
(b) An ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ has foci S and S^{\prime} where $b^{2}=a^{2}\left(1-e^{2}\right)$ where $0<e<1$ is its eccentricity.
(i) Show that the equation of the normal to the ellipse at the point $P\left(x_{1}, y_{1}\right)$ is

$$
\frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}
$$

(ii) Show that N, the x-intercept of the normal has coordinates $N\left(e^{2} x_{1}, 0\right)$
(iii) Use the focus/directrix definition of a conic to prove that $\frac{S N}{S^{\prime} N}=\frac{S P}{S^{\prime} P}$
(c)

Two circles C_{1} and C_{2} intersect at A and $B . C_{2}$ passes through O, the centre of C_{1}. X lies on the arc $A O B$ and $A X$ intersects C_{1} again at Y.
(i) State why $\angle A O B=2 \times \angle A Y B$
(ii) Prove that $X Y=X B$.

Question 5 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Show that if a is a double root of $f(x)=0$ then $f(\alpha)=f^{\prime}(a)=0$. 2
(ii) Find all roots of the equation $2 x^{3}-5 x^{2}-4 x+12=0$ given that 3 two of the roots are equal.
(b) (i) By drawing a diagram, or otherwise, find the solutions of $z^{5}=1$
(ii) Show that $\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}$.
(iii) Hence find the exact value of $\cos \frac{2 \pi}{5}$.
(c) 11 persons gather to play basketball by forming 2 teams of 5 to play each other. The remaining person acts as a referee.
(i) In how many ways can the teams be formed?

Question (15 marks) Use a SEPARATE writing booklet.

(a) The sequence $\left\{a_{n}\right\}$ is given by:
$a_{1}=2, a_{2}=\frac{3}{2}$ and $(n+1) a_{n+1}=a_{n-1}-(n-2) a_{n}$ for $n>1$.
Prove by induction that for $n \geq 1, a_{n}=\frac{n+1}{n!}$
(b) The region bound by the curve $y=8 x^{2}-x^{4}$ and the x axis in the first quadrant is rotated about the y axis to form a solid. When the region is rotated, the horizontal line segment l at height y sweeps out an annulus.

(ii) Find the volume of the solid.
(c)

A bowl is formed by rotating the hyperbola $y^{2}-x^{2}=1$ for $1 \leq y \leq 5$ through 180° about the y-axis. Sometime later, a particle P of mass m moves around the inner surface of the bowl in a horizontal circle with constant angular velocity ω.
(i) Show that if the radius of the circle in which P moves is r, then the normal to the surface at P makes an angle θ with the horizontal where $\tan \theta=\frac{\sqrt{1+r^{2}}}{r}$.
(ii) Find expressions for the radius r of the circle of motion and the magnitude of the reaction force between the surface and the particle in terms of m, g and ω
(iii) Find the values for ω for which the described motion of P is possible.

End of Question 6
(a) A particle of mass m is projected vertically upwards with and initial velocity of V in a medium where the resistance force R to the motion has a magnitude $R=m k v$ where v is the velocity of the particle after the initial projection.
(i) Show that the maximum height h of the particle is given by

$$
h=\frac{g}{k^{2}}\left\{\frac{k}{g} V-\ln \left(1+\frac{k}{g} V\right)\right\}
$$

(ii) Find an expression for the time T of particle to reach its maximum height in terms of V, k and g.
(iii) After reaching its maximum height the particle returns vertically downwards towards its projection point in the same medium. Show that the downward velocity is given by $\nu=\frac{g}{k}\left(1-e^{-k t}\right)$ where t is the time of the downward motion and give the terminal velocity of the particle.
(iv) The speed of upward projection is double the terminal velocity and the particle's downward displacement y from its maximum height is given by the equation $-\frac{k^{2}}{g} y=\frac{k}{g} v+\ln \left(1-\frac{k}{g} v\right) .($ Do NOT prove this result $)$.

Show that the velocity of the particle on return to its projection point is given by $\frac{k v}{g}+2-\ln 3+\ln \left(1-\frac{k v}{g}\right)=0$. If a root to this equation for $\frac{k v}{g}$ lies near 0.81 , use one application of "Newton's Method" to find a better approximation correct to two decimal places and deduce the percentage of the terminal velocity that the particle has acquired on return to its projection point.
(v) Hence find the ratio of the time taken to reach maximum height to the time to fall from maximum height to the point of projection.
(b) When an unbiased coin is tossed $2 n$ times, the probability of observing k heads and $2 n-k$ tails is given by $P_{k}={ }^{2 n} C_{k}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{2 n-k}$.
(i) Show that the most likely outcome is $k=n$
(ii) Show that $P_{n}=\frac{(2 n)!}{2^{2 n}(n!)^{2}}$

Question 8 (15 Marks) Use a SEPARATE writing booklet
(a) Given $I_{n}=\int_{1}^{e}(1-\ln x)^{n} d x$ for $n=0,1,2, \ldots$
(i) Show that $I_{n}=-1+n I_{n-1}$ for $n=1,2,3 \ldots$
(ii) Hence evaluate $\int_{1}^{e}(1-\ln x)^{3} d x$
(iii) Show that $\frac{I_{n}}{n!}=e-\sum_{r=0}^{n} \frac{1}{r!}$ for $n=1,2,3 \ldots$
(iv) Show that $0 \leq I_{n} \leq e-1$
(v) Deduce that $\lim _{n \rightarrow \infty} \sum_{r=0}^{n} \frac{1}{r!}=e$
(b) $\quad \phi(x)$ and $\psi(x)$ are continuous and bounded functions.
(i) By considering $\int_{0}^{a}\{\lambda \phi(x)+\psi(x)\}^{2} d x$ for $a>0$ as a quadratic function in λ,

$$
\text { show that }\left\{\int_{0}^{a} \phi(x) \psi(x) d x\right\}^{2} \leq \int_{0}^{a}\{\phi(x)\}^{2} d x \times \int_{0}^{a}\{\psi(x)\}^{2} d x .
$$

(ii) Hence show that $\left\{\int_{0}^{1} \phi(x) d x\right\}^{2} \leq \int_{0}^{1}\{\phi(x)\}^{2} d x$.
(iii) Deduce that $\left\{\int_{0}^{1} \phi(x) d x\right\}^{4} \leq \int_{0}^{1}\{\phi(x)\}^{4} d x$.
i. WAH
5.WAM
2. MAX
6. MAX
3. HAR
7. WAM
4. DIN
8. MAX

2009 Year 12 Mathematics Extension 2 Task 4 Trial HSC SOLUTIONS

$$
\begin{aligned}
& \text { b) } \int_{1}^{e} x \ln x \quad \mu=\ln x v^{\prime}=x \\
& =\left[\frac{x^{2} \ln x}{2}\right]_{1}^{e}-\int_{1}^{e} \frac{x}{2} d x \\
& =\frac{e^{2}}{2}-\left[\frac{x^{2}}{4}\right]_{1}^{e} \\
& =\frac{e^{2}}{4}+\frac{1}{4}
\end{aligned}
$$

Question 2
a) i) $|\alpha|=2 \quad \arg (\alpha)=-\frac{\pi}{3}$
ii)

$$
\begin{aligned}
(1-3 i)^{10} & =\left(2 \operatorname{cis}\left(-\frac{\pi}{3}\right)\right)^{10} \\
& =2^{10} \operatorname{cis}\left(\frac{-10 \pi}{3}\right) \\
& =2^{10} \operatorname{cis}\left(\frac{2 \pi}{3}\right)
\end{aligned}
$$

b) let $(a+b-i)^{2}=7-24 i$

$$
\therefore \quad a^{2}-b^{2}+2 a b i=7-2+i
$$

ie, $a^{2}-b^{2}=7 \quad 2 a b=-24$

$$
a b=-12
$$

by inspection

$$
a= \pm 4 \quad a, b \in \mathbb{R}
$$

$$
\therefore \sqrt{7-2+i}=4-3 y,-4+3 \dot{y}
$$

a)

$$
\begin{aligned}
& \text { i) } a=3 \quad b=2 \\
& \text { i) } \int \frac{5 x^{2}+x+8}{(x+1)(x+3)} d x=\int \frac{3}{x+1}+\frac{2 x-1}{x^{2}+3} d x
\end{aligned}
$$

d)

$$
=3 \ln |x+1|+\ln \left(x^{2}+3\right)-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{1 x}{\sqrt{3}}\right)
$$

$\sqrt{ }$ ellipse with fort $(\pm 3,0)$ \sqrt{x}-intercepts ± 5
\sqrt{y}-intercepts ± 4
e) i) $\overrightarrow{B_{A}}=(a-b), \quad \overrightarrow{B C}=c-b$

Since $\overrightarrow{B A}=\overrightarrow{B C} \times$ cis $\left(\frac{\pi}{3}\right)$

$$
\begin{aligned}
& (a-b)=(c-b) \times w \\
& \therefore w=\frac{a-b}{c-b}
\end{aligned}
$$

ii) Similarly $\frac{c-a}{b-a}=w$

$$
\begin{aligned}
& \text { a) } \begin{aligned}
& \int_{0}^{2} \frac{x^{2}}{\sqrt{4-x^{2}}} d x \quad \operatorname{let} x=2 \sin d \\
& d x=2 \cos \theta d \theta \\
&= \int_{0}^{\frac{\pi}{2}} \frac{4 \sin ^{2} \theta}{2 \cos \theta} \cdot 2 \cos \theta d \theta \quad \begin{array}{l}
x=0, \theta=0 \\
x=2, \theta=\frac{\pi}{2} \\
=
\end{array} \int_{0}^{\frac{\pi}{2}} 4 \sin ^{2} \theta d \theta=\int_{0}^{\frac{\pi}{2}} 2(1-\cos 2 \theta) d \theta \\
&= {[2 \theta-\sin 2 \theta]_{0}^{\pi}=\pi }
\end{aligned} \\
& \text { a) } \begin{aligned}
& \int_{0}^{2} \frac{x^{2}}{\sqrt{4-x^{2}}} d x \quad \text { let } x=2 \sin y \\
& d x=2 \cos \theta d d \theta \\
&= \int_{0}^{\frac{\pi}{2}} \frac{4 \sin ^{2} \theta}{2 \cos \theta} \cdot 2 \cos \theta d \theta \quad \begin{array}{l}
x=0, \theta=0 \\
x=2, \theta=\frac{\pi}{4}
\end{array} \\
&= \int_{0}^{\frac{\pi}{2}} 4 \sin ^{2} \theta d \theta=\int_{0}^{\frac{\pi}{2}} 2(1-\cos 2 \theta) d \theta \\
&= {[2 \theta-\sin 2 \theta]_{0}^{\frac{\pi}{2}}=\pi }
\end{aligned} \\
& \text { a) } \begin{aligned}
& \int_{0}^{2} \frac{x^{2}}{\sqrt{4-x^{2}}} d x \quad \operatorname{let} x=2 \sin d \\
& d x=2 \cos \theta d \theta \\
&= \int_{0}^{\frac{\pi}{2}} \frac{4 \sin ^{2} \theta}{2 \cos \theta} \cdot 2 \cos \theta d \theta \quad \begin{array}{l}
x=0, \theta=0 \\
x=2, \theta=\frac{\pi}{4}
\end{array} \\
&= \int_{0}^{\frac{\pi}{2}} 4 \sin ^{2} \theta d \theta=\int_{0}^{\frac{\pi}{2}} 2(1-\cos 2 \theta) d \theta \\
&= {[2 \theta-\sin 2 \theta]_{0}^{\frac{\pi}{2}}=\pi }
\end{aligned} \\
& \text { C) } \begin{aligned}
& \int_{0}^{2} \frac{x^{2}}{\sqrt{4-x^{2}}} d x \quad \text { let } x=2 \sin y \\
& d x=2 \cos \theta d d \theta \\
&= \int_{0}^{\pi} \frac{4 \sin ^{2} \theta}{2 \cos \theta} \cdot 2 \cos \theta d \theta \quad \begin{array}{l}
x=0, \theta=0 \\
x=2, \theta=\frac{\pi}{4}
\end{array} \\
&= \int_{0}^{\frac{\pi}{2}} 4 \sin ^{2} \theta d \theta=\int_{0}^{\frac{\pi}{2}} 2(1-\cos 2 \theta) d \theta \\
&= {[2 \theta-\sin 2 \theta]_{0}^{\frac{\pi}{2}}=\pi }
\end{aligned} \\
& \text { C) } \begin{aligned}
& \int_{0}^{2} \frac{x^{2}}{\sqrt{4-x^{2}}} d x \quad \text { let } x=2 \sin y \\
& d x=2 \cos \theta d d \theta \\
&= \int_{0}^{\pi} \frac{4 \sin ^{2} \theta}{2 \cos \theta} \cdot 2 \cos \theta d \theta \quad \begin{array}{l}
x=0, \theta=0 \\
x=2, \theta=\frac{\pi}{4}
\end{array} \\
&= \int_{0}^{\frac{\pi}{2}} 4 \sin ^{2} \theta d \theta=\int_{0}^{\frac{\pi}{2}} 2(1-\cos 2 \theta) d \theta \\
&= {[2 \theta-\sin 2 \theta]_{0}^{\frac{\pi}{2}}=\pi }
\end{aligned} \\
& \text { C) } \begin{aligned}
& \int_{0}^{2} \frac{x^{2}}{\sqrt{4-x^{2}}} d x \quad \text { let } x=2 \sin y \\
& d x=2 \cos \theta d d \theta \\
&= \int_{0}^{\pi} \frac{4 \sin ^{2} \theta}{2 \cos \theta} \cdot 2 \cos \theta d \theta \quad \begin{array}{l}
x=0, \theta=0 \\
x=2, \theta=\frac{\pi}{4}
\end{array} \\
&= \int_{0}^{\frac{\pi}{2}} 4 \sin ^{2} \theta d \theta=\int_{0}^{\frac{\pi}{2}} 2(1-\cos 2 \theta) d \theta \\
&= {[2 \theta-\sin 2 \theta]_{0}^{\frac{\pi}{2}}=\pi }
\end{aligned} \\
& \left.=\int \sec ^{2} x \tan x-\frac{\sin x}{\cos x} \right\rvert\, d x \\
& =\frac{1}{2} \tan ^{2} \mu^{2}+\ln |\cos y y|+C \\
& \text { d) } \\
& \int \tan ^{3} d x=\int \tan x\left(\sec ^{2} x-1\right) d x \\
& d x=2 \cos \theta d \theta
\end{aligned}
$$

2009 Year 12 Mathematics Extension 2 Task 4 Trial HSC SOLUTIONS

HIOMER SCHOOL CERTHFICATE TRIAL EXAMHATION Mathematics Extension 2

Centre Number
Questions 3 (c)

	So	12	1	I	1	\|						

Student Number
(i)

(ii)

Question 3 (continued)
(c) (iii)

(iv)

- Question 4
a)

$$
\begin{aligned}
x y & =c^{2} \\
x \cdot \frac{d y}{d x}+y & =0 \\
\frac{d y}{d x} & =\frac{-y}{x}
\end{aligned}
$$

at $p\left(c p, \frac{c}{p}\right) \quad \frac{d y}{d x}=\frac{-\frac{\Delta}{p}}{c p}$

$$
\begin{aligned}
\therefore m_{T} & =-\frac{1}{\rho^{2}} \\
m_{T} & =\rho^{2} \\
\therefore y-\frac{c}{p} & =\rho^{2}(x-c p) \\
\rho y-c & =\rho^{3}(x-c \rho)
\end{aligned}
$$

ii) Solving

$$
\therefore p^{3}: \quad \frac{c^{2}}{p^{2}}-\frac{c}{p^{3}} x=x^{2}-c p x
$$

Let x wand of Q be α

$$
\begin{aligned}
\therefore \alpha+c p & =c\left(p-\frac{1}{p^{3}}\right) \quad \text { sim ot roots } \\
\therefore \alpha & =-\frac{c}{p^{3}}
\end{aligned}
$$

$$
\begin{align*}
& y=\frac{c^{2}}{x} \\
& \rho y-c=\rho^{3}(x-c \rho) \\
& p \cdot \frac{c^{2}}{x}-c=\varphi^{3}(x-\varphi) \\
& \rho c^{2}-c x=\rho^{3} x^{2}-c p^{4} x \\
& \sqrt{ } \text { correct } \\
& \text { pages } \\
& \text { to } \\
& x^{2}-c\left(p-\frac{1}{\rho^{3}}\right) x-\frac{c^{2}}{p^{2}}=c \\
& \text { equation }
\end{align*}
$$

iii)

$$
\begin{aligned}
A B & =2 c \sqrt{p^{2}+\frac{1}{p^{2}}} \quad \text { (given) } \\
\therefore P Q & =\sqrt{\left(c p+\frac{c}{p^{3}}\right)^{2}+\left(\frac{c}{p}+c p^{3}\right)} \\
& =c \sqrt{p^{2}+\frac{2}{p^{2}}+\frac{1}{p^{6}}+\frac{1}{p^{2}}+2 p^{2}+p^{6}} \\
& =c \sqrt{p^{6}+3 p^{2}+\frac{3}{p^{2}}+\frac{1}{p^{6}}} \\
& =c \sqrt{\left(p^{2}+\frac{1}{p^{2}}\right)^{3}}
\end{aligned}
$$

Area $\triangle A B Q=\frac{1}{2} \times A B \times P Q$

$$
\begin{aligned}
& =\frac{1}{2} \times 2 c \sqrt{\rho^{2}+\frac{1}{\rho^{2}}} \times c \sqrt{\left(\rho^{2}+\frac{1}{\rho^{2}}\right)^{3}} \\
& =c^{2}\left(\rho^{2}+\frac{1}{\rho^{2}}\right)^{2}
\end{aligned}
$$

iv) if $\frac{a}{b}+\frac{b}{a} \geqslant 2$

$$
p^{2}+\frac{1}{p^{2}} \geqslant 2
$$

\therefore Ara $\triangle A B Q \geqslant c^{2} \times 2^{2}$

$$
\geqslant 4 c^{2}
$$

\therefore Min. Sora is $4 c^{2}$.
(b)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0 \\
& \text { at } p(x, y) \quad \frac{d y}{d x}=-\frac{b^{2} x_{1}}{a^{2} y_{1}} \\
& \therefore \text { gradint ot roormal }=+\frac{a^{2} y_{1}}{b^{-} x_{1}} \\
& y-y_{1}=\frac{a^{2} y_{1}}{b^{2} x_{1}}\left(x-x_{1}\right) \\
& \frac{a^{2} x}{x_{1}}-\frac{b^{2} y}{y_{1}}=a^{2}-b^{2}
\end{aligned}
$$

ii) at $y=0$

$$
\begin{aligned}
a^{2} x & =x_{1}\left(a^{2}-b^{2}\right) \\
a^{2} x & =x_{1}\left(a^{2}-a^{2}\left(1-e^{2}\right)\right) \\
a^{2} x & =x_{1} a^{2} e^{2} \\
\therefore x & =e^{2} x_{1}
\end{aligned}
$$

$$
\therefore N\left(e^{2} x, 0\right)
$$

iii)

$$
\begin{aligned}
R \cdot H S & =\frac{P S}{P S^{\prime}} \\
& =\frac{e P M}{e P M^{\prime}} \\
& =\frac{\frac{a}{e}-x_{1}}{\frac{a}{e}+x_{1}} \\
& =\frac{a-e x_{1}}{a+e x_{1}}
\end{aligned}
$$

$$
\begin{aligned}
L . H . S & =\frac{S N}{S^{\prime} N} \\
& =\frac{a e-e^{2} x_{1}}{a e-e^{2} x_{1}}=\frac{k\left(a-e x_{1}\right)}{S^{\prime} N}=\frac{S N}{S^{\prime} P}
\end{aligned}
$$

- $\psi(c)$ i) If $\angle X Y B=\alpha$
$\angle A O B=2 \alpha$ (\angle at centre is double Lat financing once on same are).
$\angle A X B=\angle A O B=2 \alpha \quad(L$'s in same segment
are equal).

$$
\begin{aligned}
\therefore \angle X B Y & =\angle A X B-\angle X Y B \\
& =2 \alpha-\alpha \\
& =\alpha \quad \text { (EXt } \angle \text { of } \triangle \text { equals } \\
& \text { sum ot } 2 \text { op. int. } \angle ' s) \\
\therefore X Y & =X B \quad \text { (sides opposite equal } \angle \text { 's } \\
& \text { in a } \triangle \text { are equal) }
\end{aligned}
$$

Question 5
(a) (i) If α is a double root of $f(x)=0$, then $f(x)$ can be written:

$$
\begin{aligned}
f(x) & =(x-\alpha)^{2} \cdot Q(x) \\
f^{\prime}(x) & =2(x-\alpha) \cdot Q(x)+(x-\alpha)^{2} \cdot Q^{\prime}(x) \\
& =(x-\alpha)\left[2 Q(x)+(x-\alpha) \cdot Q^{\prime}(x)\right] \\
& =(x-\alpha) \cdot \Phi(x)
\end{aligned}
$$

$$
\begin{array}{rlrl}
f(\alpha) & =(\alpha-\alpha)^{2} \cdot Q(\alpha) & f^{\prime}(\alpha) & =(\alpha-\alpha) \cdot \Phi(\alpha) \\
& =0 \cdot Q(\alpha) & =0 \cdot \Phi(\alpha) \\
& =0 & \therefore f(\alpha)=f^{\prime}(\alpha) & =0
\end{array}
$$

$\because(i i)$

$$
\text { let } \begin{aligned}
& f(x)= 2 x^{3}-5 x^{2}-4 x+12 \\
& \text { so } f^{\prime}(x)= 6 x^{2}-10 x-4=0 \\
& 3 x^{2}-5 x-2=0 \\
&(3 x+1)(x-2)=0 \\
& x=-\frac{1}{3}, 2
\end{aligned}
$$

and $f(2)=0 \quad \therefore x=2$ is the double rect so $\quad \alpha+\alpha+\beta=\sum_{L}$

$$
\beta=-\frac{3}{2}
$$

\therefore Root are $2,2,-\frac{3}{2}$

Sb)

$$
\left.\begin{array}{l}
z_{0}=1 \\
z_{1}=\text { cis } \frac{2 \pi}{5} \\
z_{L}=\text { cis } \frac{4 \pi}{5} \\
z_{3}=\text { cis }-\frac{4 \pi}{5} \\
z_{4}=\text { cis }-\frac{2 \pi}{5}
\end{array}\right\} \text { roots }
$$

ii)
sum of roots $=-\frac{b}{a}$

$$
\begin{aligned}
\therefore & z_{0}+z_{1}+z_{2}+z_{3}+z_{4}=-\frac{0}{6} \quad z^{r}-1=0 \\
& =
\end{aligned}
$$

Noting $\quad \bar{z}_{1}=z_{4} \quad \bar{z}_{2}=z_{3}$

$$
1+z_{1}+\bar{z}_{1}+z_{2}+\bar{z}_{2}=0
$$

Note $z+\bar{z}=2 \operatorname{Re}(z)$

$$
\begin{aligned}
\therefore 1+2 \cos \frac{2 \pi}{5}+2 \cos \frac{4 \pi}{5} & =0 \\
& \therefore \cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}
\end{aligned}=-\frac{1}{2}
$$

iii)

$$
\begin{aligned}
& \cos \frac{2 \pi}{5}+2 \cos ^{2} \frac{2 \pi}{5}-1=-\frac{1}{2} \\
& 4 \cos ^{2} \frac{2 \pi}{5}+2 \cos \frac{2 \pi}{5}+1=0 \\
& \therefore \cos \frac{2 \pi}{5}=-\frac{1 \pm \sqrt{5}}{4} \quad \text { but } \cos \frac{2 \pi}{5}>0 \\
& \therefore \cos \frac{2 \pi}{5}=\frac{-1+\sqrt{5}}{4}
\end{aligned}
$$

Ci) $\frac{{ }^{11} C_{5} \times{ }^{6} C_{5} \times{ }^{1} C_{1}^{\prime}}{2}=1386$
ii) ${ }^{9} C_{4} *{ }^{5} C_{4} \times{ }^{1} C_{1}+\frac{{ }^{2} C_{1} \times{ }^{10} C_{5} \times{ }^{5} C_{5}}{2}$

$$
=630+252=882 .
$$

2009 Year 12 Mathematics Extension 2 Task 4 Trial HSC SOLUTIONS

Suggested Solution (s)
$\frac{\text { Questing } G}{\text { When } n=1,} \frac{1+1}{1!}=2=a_{1}$

when $n=2 \quad \frac{2+1}{2!}=\frac{3}{2}=a_{2}$
\therefore statement True io $n=1,2$ Assume the stalnent true fr $\quad x=k-1$ ad $n=k$ is, $a_{k-1}=\frac{k}{(k-1)!}$

$$
a_{k}=\frac{k+1}{k!}
$$

Ln $n=k+1$

$$
\begin{aligned}
L-\mu \cdot S & =a_{n} \\
& =\frac{a_{k+1}}{(k+1)} \\
& =\frac{a_{k-1}-(k-2) a_{k+}}{(k-1)!} \\
& =\frac{k}{(k+1)} \\
& =\frac{k^{2}-(k+2)}{(k+1)!} \\
& =\frac{n+1}{n!} \cdot w
\end{aligned}
$$

It the statement true in $n=b-1 / 2$ then proved true for $n=k+1$. Since trine for $n=1,2$,
\therefore the for $n=3,4,5$.
\therefore true fo $a l l n \geqslant 1$.
7. MAX
4. DIN
8. MAX

2009 Year 12 Mathematics Extension 2 Task 4 Trial HSC SOLUTIONS

Suggested Solution (s)
6 b) i) $y=8 x^{2}-x^{4}$
$x^{4}-8 x^{2}=-y$
$\left(x^{2}-4\right)^{2}=16-y$
$x^{2}= \pm \sqrt{ \pm \sqrt{16-y}+4}$

let x_{1} and x_{2} L endpoints of l with

$$
\begin{gathered}
0 \leqslant x_{1} \leqslant x_{2} \\
\therefore x_{2}=+\sqrt{+\sqrt{16-y}+4} \\
x_{1}=-\sqrt{-\sqrt{16-y}+4} \\
\therefore \text { Area }=\pi\left(x_{2}{ }^{2}-x_{1}^{2}\right) \\
=\pi(\sqrt{16-y}++-(-\sqrt{16-y}++) \\
=2 \pi \sqrt{16-y}
\end{gathered}
$$

ii) $V=\int_{0}^{16} 2 \pi \sqrt{16-y} d y$

$$
\begin{aligned}
& =\left[-\frac{4 \pi}{3}(16-4)^{\frac{3}{4}}\right]_{0}^{16} \\
& =\frac{4^{4} \pi}{3} v^{3}
\end{aligned}
$$

at $P\left(r, \sqrt{1+r^{2}}\right)$

$$
\begin{aligned}
\therefore m_{N E, \operatorname{maz}} & =-\frac{\sqrt{j+r^{2}}}{r} \\
\therefore \tan \theta & =\frac{\sqrt{1+r^{2}}}{r}
\end{aligned}
$$

ii) Forces on P

Resolving Vatic ally ad Herizalally
$N \sin \theta=m g-(1) \quad N \cos \theta=n r \omega^{2}$
(1)

$$
\begin{array}{r}
\therefore \text { (an } \theta=\frac{g}{r w^{2}} \\
\therefore \quad \frac{\sqrt{1+r^{2}}}{r}=\frac{g}{r w^{2}} \\
\therefore \quad r=\frac{\sqrt{y^{2}-w^{4}}}{\omega^{2}}
\end{array}
$$

From (2): $N^{2}=m^{2} r^{2} \omega^{c} \sec ^{2} \theta$

$$
\begin{aligned}
& =m^{2} \omega^{4}\left(r^{2}+r^{2} \tan ^{2} \theta\right) \\
& =m^{2} \omega^{4}\left(\frac{g^{2}}{w^{2}}-1+\frac{g^{2}}{\omega^{4}}\right. \\
& =m^{2}\left(2 g^{2}-\omega^{2}\right)
\end{aligned}
$$

$$
\therefore N=\sqrt{2 g^{2}-w^{4}}
$$

iii) $\omega^{4} \leqslant g^{2}$

$$
\begin{aligned}
y \leq 5 \quad \sqrt{1-r^{2}} & \leq 5 \quad, \quad \frac{g}{4 y^{2}} \leq 5 \checkmark \\
& \quad \sqrt{\frac{g}{5}} \leq \omega \leq \sqrt{g}
\end{aligned}
$$

2009 Year 12 Mathematics Extension 2 Task 4 Trial HSC SOLUTIONS

2009 Year 12 Mathematics Extension 2 Task 4 Trial HSC SOLUTIONS

