

Student Number

Knox Grammar School

2013

Trial Higher School Certificate
Examination

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Subject Teachers

Mr I Bradford
Mr M Vuletich

Total Marks - 100

Section I 10 Marks

- Answer Questions 1 to 10
- Use the Multiple Choice Answer Sheet

Section II 90 Marks

- Answer Questions 11 to 16
- All questions are worth 15 marks
- Answer each question in a separate Writing Booklet.

Setter

Mr Vuletich

This paper MUST NOT be removed from the examination room

Number of Students in Course: 31

This page has been left intentionally blank

Section I

10 Marks

Attempt Questions 1-10
 Allow about 20 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 Let $z=1+2 i$ and $w=-2+i$. What is the value of $\frac{5}{i w}$?
(A) $-1-2 i$
(B) $-1+2 i$
(C) $1-2 i$
(D) $1+2 i$

2 What is the volume of the solid formed when the region bounded by the curves, $y=x^{2}$, $y=\sqrt{30-x^{2}}$ and the y-axis is rotated about the y-axis?

What is the correct expression for volume of this solid using the method of cylindrical shells?
(A) $V=\int_{0}^{\sqrt{5}} 2 \pi\left(x^{2}-\sqrt{30-x^{2}}\right) d x$
(B) $\quad V=\int_{0}^{\sqrt{5}} 2 \pi x\left(x^{2}-\sqrt{30-x^{2}}\right) d x$
(C) $\quad V=\int_{0}^{\sqrt{5}} 2 \pi\left(\sqrt{30-x^{2}}-x^{2}\right) d x$
(D) $V=\int_{0}^{\sqrt{5}} 2 \pi x\left(\sqrt{30-x^{2}}-x^{2}\right) d x$

3 The diagram shows the graph of the function $y=f(x)$.

Which of the following is the graph of $y^{2}=f(x)$?
(A)

(C)

(B)

(D)

4 Let α, β and γ be roots of the equation $x^{3}+3 x^{2}+4=0$. Which of the following polynomial equations have roots α^{2}, β^{2} and γ^{2} ?
(A) $x^{3}-9 x^{2}-24 x-4=0$
(B) $x^{3}-9 x^{2}-12 x-4=0$
(C) $x^{3}-9 x^{2}-24 x-16=0$
(D) $x^{3}-9 x^{2}-12 x-16=0$

5 A particle of mass m is moving in a straight line under the action of a force.

$$
F=\frac{m}{x^{3}}(6-10 x)
$$

What of the following is an expression for its velocity in any position, if the particle starts from rest at $x=1$?
(A) $v= \pm \frac{1}{x} \sqrt{\left(-3+10 x-7 x^{2}\right)}$
(B) $v= \pm x \sqrt{\left(-3+10 x-7 x^{2}\right)}$
(C) $v= \pm \frac{1}{x} \sqrt{2\left(-3+10 x-7 x^{2}\right)}$
(D) $\quad v= \pm \frac{1}{x} \sqrt{2\left(-3+10 x+7 x^{2}\right)}$

6 Which of the following is an expression for $\int \frac{2}{x^{2}+4 x+13} d x$?
(A) $\frac{1}{3} \tan ^{-1} \frac{(x+2)}{3}+c$
(B) $\frac{2}{3} \tan ^{-1} \frac{(x+2)}{3}+c$
(C) $\frac{1}{9} \tan ^{-1} \frac{(x+2)}{9}+c$
(D) $\frac{2}{9} \tan ^{-1} \frac{(x+2)}{9}+c$

7 Consider the hyperbola with the equation $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.
What are the coordinates of the foci of the hyperbola?
(A) $(\pm 4,0)$
(B) $(0, \pm 4)$
(C) $(0, \pm 5)$
(D) $(\pm 5,0)$

8 The diagram below shows the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ where $a>b>0$. The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord $P Q$ subtends a right angle at the origin.

Use the parametric representation of the hyperbola to determine which of the following expressions is correct?
(A) $\sin \theta \sin \alpha=-\frac{a^{2}}{b^{2}}$
(B) $\sin \theta \sin \alpha=\frac{a^{2}}{b^{2}}$
(C) $\tan \theta \tan \alpha=-\frac{a^{2}}{b^{2}}$
(D) $\tan \theta \tan \alpha=\frac{a^{2}}{b^{2}}$

9 It is given that $3+i$ is a root of $P(z)=z^{3}+a z^{2}+b z+10$ where a and b are real numbers. Which expression factorises $P(z)$ over the real numbers?
(A) $(z-1)\left(z^{2}+6 z-10\right)$
(B) $(z-1)\left(z^{2}-6 z-10\right)$
(C) $(z+1)\left(z^{2}+6 z+10\right)$
(D) $(z+1)\left(z^{2}-6 z+10\right)$

10 If $x^{3}+y^{3} x=y^{2}$, then $\frac{d y}{d x}$ is given by:
(A) $\frac{3 x^{2}+y^{3}}{2 y-3 y^{2} x}$
(B) $\frac{3 x^{2}+y^{3}}{3 y^{2} x-2 y}$
(C) $\frac{3 x^{2}+3 y^{2} x+y^{3}}{2 y}$
(D) $\frac{3 x^{2}+y^{3}}{3 y^{2} x-2 y}$

End of Section I

Section II

90 Marks

Attempt Questions 11-16
Allow about 2 hours and 40 minutes for this section
Answer each question in a separate writing booklet. Extra writing booklets are available
All necessary working should be shown in every question.
Question 11 (15 marks) Use a SEPARATE writing booklet
(a) If $z=4-2 i$ and $w=3+i$, evaluate $z^{2}+\bar{w}$.
(b) (i) Find the Cartesian equation of the locus of z if $\arg \left(\frac{z-2}{z}\right)=\frac{\pi}{2}$.
(ii) Sketch the locus from part (i)
(c) Find $\int \frac{\sin x}{\cos ^{3} x} d x$
(d) (i) Express $-\sqrt{3}-i$ in modulus argument form.
(ii) Show that $(-\sqrt{3}-i)^{6}$ is a real number
(e) By considering the function $f(x)=\left|x^{2}-4 x\right|$ sketch the graph of $y=\frac{1}{f(x)}$
(f) Find $\int \frac{1}{x^{2} \sqrt{x^{2}-4}} d x$

$$
3
$$

End of Question 11

(a) By using the substitution $t=\tan \left(\frac{x}{2}\right)$, or otherwise, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\sin x}$.
(b) The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ has foci $S(a e, 0)$ and $S^{\prime}(-a e, 0)$, and directrices $x= \pm \frac{a}{e}$. $P(a \cos \theta, b \sin \theta)$ is a point on the ellipse with the normal at P meeting the x-axis at G.

(i) Using the focus/directrix definition of an ellipse show that

$$
\frac{P S}{P S^{\prime}}=\frac{1-e \cos \theta}{1+e \cos \theta}
$$

(ii) The equation of the normal at P is given by

$$
\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2} . \text { (Do NOT prove this.) }
$$

Show that $\frac{G S}{G S^{\prime}}=\frac{P S}{P S^{\prime}}$.
(c) Let $I_{n}=\int_{1}^{e} x(\ln x)^{n} d x$ for $n=0,1,2, \ldots$, show that $I_{n}=\frac{e^{2}}{2}-\frac{n}{2} I_{n-1}$
(d) Suppose that the complex number z lies on the unit circle, and $0 \leq \arg (z) \leq \frac{\pi}{2}$. By the use of a suitable vector diagram, prove that $2 \arg (z+1)=\arg (z)$.

End of Question 12

(a) A particle of mass m is thrown vertically upwards with initial velocity U in a medium with resistive force $R=m k v$ where v is the velocity of the particle at time t and k is a constant. The equation of the motion of the particle is then $\frac{d v}{d t}=-g-k v$ where g is the acceleration due to gravity (Do not prove this).
(i) Use $\frac{d v}{d t}=v \frac{d v}{d x}$ to show that the vertical displacement x
from the point of projection of the particle is given by

$$
x=\frac{1}{k}(U-v)-\frac{g}{k^{2}} \log _{e}\left(\frac{g+k U}{g+k v}\right) .
$$

(ii) Hence find an expression for H the maximum height reached by the particle.
(iii) Find an expression for the time taken for the particle to reach its maximum height.
(b) In the diagram below, $A D$ bisects $\angle B A C$ and F is the point on $A D$ so that $\mathrm{BF}=\mathrm{BD}$. Prove that $A B$, is tangential to the circle passing through B, C and E.

Question 13 is continued on the next page

(c) The hyperbola \mathcal{H} has equation $x y=16$. The points $P\left(4 p, \frac{4}{p}\right)$ for $p>0$ and $Q\left(4 q, \frac{4}{q}\right)$ for $q>0$ are two distinct arbitrary points on \mathcal{H}.
(i) Show that the equation of the tangent at P is $x+p^{2} y=8 p$
(ii) Find the coordinates of T, the point of intersection of the tangents at P and Q.
(iii) The equation of the chord passing through $P Q$ is given by $p q x+y=4(p+q)$ (Do not prove this).

If chord $P Q$ passes through the point $N(0,8)$ find the Cartesian equation of the locus of T

End of Question 13

(a) Find $\int \frac{x^{2}-2 x-3}{(x+2)\left(x^{2}+1\right)} d x$
(ii) For what values of k will $x^{3}-k x^{2}+4 k=0$ have exactly one real root.
(c)

The diagram above shows the horizontal square base of a solid. Vertical cross-sections of the solid perpendicular to the x -axis are right-angled isosceles triangles with hypotenuse in the base.
(i) Find, as a function of x, the area of a typical cross-section standing on the interval $P Q$.
(ii) Find the volume of the solid.
(d) If $U_{1}=8$ and $U_{2}=20$ and $U_{n}=4 U_{n-1}-4 U_{n-2}$ for $n \geq 3$, prove by mathematical induction that $U_{n}=(n+3) 2^{n}$ for $n \geq 1$

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet
(a) Show by the use of calculus that $x \geq \ln (x+1)$ for $x>-1$

Hint: Let $f(x)=x-\ln (x+1)$.
(b) In the diagram, $A B$ is the diameter of a semicircle. $\angle A N B=90^{\circ}$ and M is a point on $A B$ such that $N M$ is perpendicular to $A B$.

If $A M=p$ and $B M=q$.
(i) Explain why $N M=\sqrt{p q}$
(ii) By reference to the geometry of the diagram deduce that $\sqrt{p q} \leq \frac{p+q}{2}$
(iii) Hence prove that for $p, q, x, y \geq 0$ then

$$
\frac{1}{4}(p+q+x+y) \geq(p q x y)^{\frac{1}{4}}
$$

(iv) Deduce that if $k, l, m, n \geq 0$ then $\frac{k}{l}+\frac{l}{m}+\frac{m}{n}+\frac{n}{k} \geq 4$

Question 15 continued

(c)

$A B$ is an arc of a circle centre C and radius R. A surface is formed by rotating the $\operatorname{arc} A B$ through one revolution about the y-axis. A light, inextensible string of length $l, l \leq R$, is attached to point A, and a particle of mass m is attached to the other end. The particle is set in motion, tracing out a horizontal circle on the surface with constant angular velocity ω radians per second, while the string stays taught.
i) Explain why, when the particle is in position P shown on the diagram, the direction of the force N exerted by the surface on the particle is towards C.
ii) If the string makes an angle θ with the vertical, show that $\angle A C P=2 \theta$.
iii) Show on a diagram the tension force T, the force N and the weight force of magnitude $m g$ acting on the particle, indicating their direction in terms of θ.
iv) Show that

$$
\begin{aligned}
& T \cos \theta+N \sin 2 \theta=m g \\
& T \sin \theta-N \cos 2 \theta=m l \sin \theta \omega^{2}
\end{aligned}
$$

v) Show that

$$
N=m l \sin \theta\left(\frac{g}{l} \sec \theta-\omega^{2}\right)
$$

vi) Deduce that there is a maximum value ω for the motion to occur as described, and write down this maximum value.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet
(a) A bag contains 10 black and 10 blue marbles. Six marbles are selected without replacement.
(i) Calculate the probability that exactly three marbles selected are blue, giving your answer correct to three decimal places.
(ii) Hence, or otherwise, calculate the probability that more than three of the marbles selected are blue, giving your answer correct to three decimal places.
(b) (i) Find an expression for the limiting sum of infinite geometric series

$$
1+z+z^{2}+\ldots \text { for }|z|<1
$$

(ii) Given that complex number $z=\frac{1}{2}(\cos \theta+i \sin \theta)$, use your answer in part (i) to show that the imaginary part of $1+z+z^{2}+\ldots$ is $\frac{2 \sin \theta}{5-4 \cos \theta}$.
(iii) Find an expression for $1+\frac{1}{2} \cos \theta+\frac{1}{2^{2}} \cos 2 \theta+\frac{1}{2^{3}} \cos 3 \theta+\ldots$ in terms of $\cos \theta$
(c) (i) Find $\lim _{n \rightarrow \infty}\left[\tan ^{-1}(n+1)+\tan ^{-1}(n)\right]$.
(ii) Show that $\tan ^{-1}(n+1)-\tan ^{-1}(n-1)=\tan ^{-1}\left(\frac{2}{n^{2}}\right)$, where n is a positive integer.
(iii) Hence show that $\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \tan ^{-1}\left(\frac{2}{j^{2}}\right)=\frac{3 \pi}{4}$

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Suggested Solution (s)

$\frac{\text { Question I/ }}{(c)}$| $z^{2}+i=$ | $(4-2 i)^{2}+3-i$ |
| ---: | :--- |
| | $=12-16 i+3-i$ |

$$
=15-17 i
$$

(b)

$$
\arg (z-2)-\arg (z)=\frac{\pi}{2}
$$

let $\alpha-\beta=\frac{\pi}{2}$

$$
\alpha=\beta+\frac{\pi}{2}
$$

1) Solaces is semicircle con he $(4,0)$, radius 1 unit

$$
\begin{aligned}
& y=\sqrt{1-(x-1)^{2}} \\
& y=\sqrt{2 x-x^{2}}, x-y=1
\end{aligned}
$$

i- $\quad(x-1)^{2}+j^{2}=1, x-y \leqslant 1$
ii)

c)

$$
\begin{aligned}
& \int \sin x(\cos x)^{-3} d x \\
= & \int-\sin x(\cos x)^{-3} d x \\
= & \frac{1}{2}(\cos x)^{-2}+C \\
= & \frac{1}{2} \sec ^{2} x+C
\end{aligned}
$$

d) :)

$$
-\sqrt{3}-i=2 \operatorname{cis}\left(\frac{7 \pi}{6}\right)
$$

er equivalent.
ii)

$$
\begin{aligned}
(-\sqrt{3}-i)^{6} & =\left[2 \operatorname{cis}\left(\frac{7 \pi}{6}\right)\right]^{6} \\
& =2^{6} \operatorname{cis}(7 \pi) b y \\
& =2^{6} \times-1 \\
& =-64 \quad \therefore \text { Devi }
\end{aligned}
$$

$$
y=|x(x-4)|
$$

f) let $x=2 \sec \theta \therefore d x=2 \operatorname{se} \theta \tan \theta d \theta$

$$
\begin{aligned}
& \therefore \int \frac{1}{4 \sec ^{2} \theta \sqrt{4 \sec ^{2} \theta-4}} \cdot 2 \sec \theta \tan \theta \\
& =\frac{1}{2} \int \frac{\tan \theta}{\sec \theta 2 \tan \theta} \cdot d e \\
& =\frac{1}{4} \int \cos \theta d \theta \sqrt{0} \sqrt{2} \sqrt{x^{2}+4} \\
& =\frac{1}{4} \sin \theta+c \\
& =\frac{\sqrt{x^{2}-4}}{4 x}+c
\end{aligned}
$$

2013 Year 12 Mathematics Extension 2 Trial HSC SOLUTIONS

$\frac{\text { Suggested Solution (s) }}{\text { b) Fo: AB to be tangeutial }}$ to crale thm RCE, need to shois $\angle A B E=\angle B C E$.

$$
\begin{aligned}
A+\angle A B F & =\beta \\
\angle B F D & =\alpha+\beta \quad(E x+\angle O A(\angle A B F) \\
& =\angle B D F(B F=E D g \cdot 2) \\
\angle F B D & =\pi-(2 \alpha+2 \beta)\left(\angle \sin \int\right.
\end{aligned}
$$

Also $\angle A F E=\alpha+\beta\left(\right.$ ve-t. $\left.0_{f p}\right)$.

$$
\therefore \angle F E D=2 \alpha+\beta\left(E_{x}+\angle O+\angle F A E\right)
$$

$$
\therefore \angle B C E=\sigma-(\pi-(2 \alpha+2 \beta))-\beta+\beta)
$$

$$
\begin{aligned}
& =\pi-\pi+2 \alpha+2 \beta-2 \alpha-\beta \\
& =\beta
\end{aligned}
$$

$$
\therefore \quad \angle A B E=\angle B C E
$$

so $A B$ ir tangantial
a) argk made behweon $\sqrt{ }$ tangent oret chard $B E$ is eyrat to a_{y} le in the alternale seyment.
c)

$$
\begin{gathered}
x y=16 \\
\frac{d}{d x}(x y)=0 \\
x \frac{d y}{d x}+y=0 \\
\therefore \frac{d y}{d x}=\frac{-y}{x}
\end{gathered}
$$

at $R \quad m_{T}=\frac{\frac{-4}{p}}{\psi p}$

$$
=-\frac{1}{p^{2}}
$$

$$
\begin{aligned}
\therefore y-\frac{4}{p} & =-\frac{1}{p^{2}}(x-4 p) \\
\rho^{2} y-4 p & =-x+4 p \\
\therefore x+p^{2} y & =8 p
\end{aligned}
$$

ii) Similaly $x+\dot{g}^{2} y=8 q$

For togust at Q.
subtractiog.

$$
\begin{aligned}
& \left(p^{2}-q^{2}\right) y=8(p-q) \\
& \therefore y=\frac{8}{p+q}
\end{aligned}
$$

so

$$
\begin{aligned}
& 0+\frac{8 q^{2}}{\rho+q}=8 p \\
& x=\frac{8 p^{2}+8 q q-8 q^{2}}{p+q} \\
&=\frac{8 q q}{\rho+q} \\
& \therefore T\left(\frac{8 p q}{p+q}, \frac{8}{\rho+q}\right)
\end{aligned}
$$

2013 Year 12 Mathematics Extension 2 Trial HSC SOLUTIONS

C) i)

$$
\begin{aligned}
-A n & =\frac{1}{2} \times \operatorname{cy} \times y \\
& =y^{2}
\end{aligned}
$$

$$
P Q=(6-x)-(x-6)
$$

$$
=12-2 x
$$

$\therefore A_{\text {Re }}=(6-x)^{2}$
ii).

$$
\begin{aligned}
V & =2 \int_{0}^{6}(6-x)^{2} d x\left(\left.s y\right|_{\text {of sol,d }}\right. \text { iny } \\
& =2\left[\frac{(6-x)^{3}}{-3}\right]_{0}^{6} \\
& =2\left(0-\left(\frac{6^{3}}{-3}\right)\right. \\
& =1+40^{3}
\end{aligned}
$$

$P a=2(b+x)$
in $2 \mathrm{and}^{2} / 3=1$

$$
=2(6-x)
$$

quadiants.
d) When $n=1, U_{1}=4 \times 2^{\prime}$
ad $\quad n=2 \quad v_{2}=5 \times 2^{2}$

$$
=20
$$

\therefore Statemet Thaie fo $x=1 ; 2$
Assume statemat trove for $n=k, n=k-1$

$$
i l \quad \begin{aligned}
& v_{k-1}=(k+2) \cdot 2^{k-1} \\
& v_{k}=(k+3) \cdot 2^{k}
\end{aligned}
$$

Wh $n=k+1$

$$
\begin{aligned}
U_{n} & =v_{k+1} \\
& =4 v_{(k+1)-1}-4 U_{(k+1)-2} \\
& =4 U_{k}-4 v_{k-1} \\
& =4(k+5) 2^{k}-4(k+2) 2^{k}-1 \\
& =(4 k+12) \cdot 2^{k}-2(k+2) \cdot 2^{k} \\
& =2 k \cdot 2^{k}-8 \cdot 2^{k} \\
& =k \cdot 2^{k+1}+4 \cdot 2^{k+1} \\
& =(k+4) \cdot 2^{k+1} \\
& =(n+3) \cdot 2^{n} \text { Avr }
\end{aligned}
$$

	$n=k+1$

2013 Year 12 Mathematics Extension 2 Trial HSC SOLUTIONS

