

Student Number

Knox Grammar School

2013

Trial Higher School Certificate Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Subject Teachers Mr I Bradford Mr M Vuletich

Setter

Mr Vuletich

This paper MUST NOT be removed from the examination room

Number of Students in Course: 31

Total Marks – 100

Section I 10 Marks

- Answer Questions 1 to 10
- Use the Multiple Choice Answer Sheet

Section II 90 Marks

- Answer Questions 11 to 16
- All questions are worth 15 marks
- Answer each question in a separate Writing Booklet.

This page has been left intentionally blank

Section I

10 Marks Attempt Questions 1–10 Allow about 20 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 Let z=1+2i and w=-2+i. What is the value of $\frac{5}{iw}$?
 - (A) -1-2i
 - (B) -1+2i
 - (C) 1-2i
 - (D) 1 + 2i
- 2 What is the volume of the solid formed when the region bounded by the curves, $y = x^2$, $y = \sqrt{30 - x^2}$ and the y-axis is rotated about the y-axis?

What is the correct expression for volume of this solid using the method of cylindrical shells?

(A) $V = \int_0^{\sqrt{5}} 2\pi \left(x^2 - \sqrt{30 - x^2} \right) dx$

(B)
$$V = \int_0^{\sqrt{5}} 2\pi x \left(x^2 - \sqrt{30 - x^2} \right) dx$$

(C)
$$V = \int_0^{\sqrt{5}} 2\pi \left(\sqrt{30 - x^2} - x^2\right) dx$$

(D)
$$V = \int_0^{\sqrt{5}} 2\pi x \left(\sqrt{30 - x^2} - x^2\right) dx$$

3 The diagram shows the graph of the function y = f(x).

Which of the following is the graph of $y^2 = f(x)$?

(A)

(C)

- 4 Let α , β and γ be roots of the equation $x^3 + 3x^2 + 4 = 0$. Which of the following polynomial equations have roots α^2 , β^2 and γ^2 ?
 - (A) $x^3 9x^2 24x 4 = 0$
 - (B) $x^3 9x^2 12x 4 = 0$
 - (C) $x^3 9x^2 24x 16 = 0$
 - (D) $x^3 9x^2 12x 16 = 0$
- 5 A particle of mass *m* is moving in a straight line under the action of a force.

$$F = \frac{m}{x^3}(6-10x)$$

What of the following is an expression for its velocity in any position, if the particle starts from rest at x = 1?

(A) $v = \pm \frac{1}{x} \sqrt{(-3 + 10x - 7x^2)}$

(B)
$$v = \pm x \sqrt{(-3+10x-7x^2)}$$

(C)
$$v = \pm \frac{1}{x} \sqrt{2(-3+10x-7x^2)}$$

(D)
$$v = \pm \frac{1}{x} \sqrt{2(-3+10x+7x^2)}$$

- 6 Which of the following is an expression for $\int \frac{2}{x^2 + 4x + 13} dx$?
 - (A) $\frac{1}{3} \tan^{-1} \frac{(x+2)}{3} + c$ (B) $\frac{2}{3} \tan^{-1} \frac{(x+2)}{3} + c$ (C) $\frac{1}{9} \tan^{-1} \frac{(x+2)}{9} + c$ (D) $\frac{2}{9} \tan^{-1} \frac{(x+2)}{9} + c$
- 7 Consider the hyperbola with the equation $\frac{x^2}{16} \frac{y^2}{9} = 1$. What are the coordinates of the foci of the hyperbola?
- (A) $(\pm 4, 0)$ (B) $(0, \pm 4)$
- (C) $(0,\pm 5)$ (D) $(\pm 5,0)$

8 The diagram below shows the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where a > b > 0. The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord PQ subtends a right angle at the origin.

Use the parametric representation of the hyperbola to determine which of the following expressions is correct?

(A) $\sin\theta\sin\alpha = -\frac{a^2}{b^2}$

(B)
$$\sin\theta\sin\alpha = \frac{a^2}{b^2}$$

(C)
$$\tan \theta \tan \alpha = -\frac{a^2}{b^2}$$

(D)
$$\tan \theta \tan \alpha = \frac{a^2}{b^2}$$

9 It is given that 3+i is a root of $P(z) = z^3 + az^2 + bz + 10$ where *a* and *b* are real numbers. Which expression factorises P(z) over the real numbers?

(A)
$$(z-1)(z^2+6z-10)$$

(B)
$$(z-1)(z^2-6z-10)$$

(C)
$$(z+1)(z^2+6z+10)$$

(D) $(z+1)(z^2-6z+10)$

10 If
$$x^3 + y^3 x = y^2$$
, then $\frac{dy}{dx}$ is given by:

(A)
$$\frac{3x^2 + y^3}{2y - 3y^2x}$$

(B)
$$\frac{3x^2 + y^3}{3y^2x - 2y}$$

(C)
$$\frac{3x^2 + 3y^2x + y^3}{2y}$$

(D)
$$\frac{3x^2 + y^3}{3y^2x - 2y}$$

End of Section I

Section II

90 Marks Attempt Questions 11-16 Allow about 2 hours and 40 minutes for this section

Answer each question in a separate writing booklet. Extra writing booklets are available

All necessary working should be shown in every question.

Ques	stion 11 (15 marks) Use a SEPARATE writing booklet	Marks
(a)	If $z = 4 - 2i$ and $w = 3 + i$, evaluate $z^2 + \overline{w}$.	2
(b)	(i) Find the Cartesian equation of the locus of z if $\arg\left(\frac{z-2}{z}\right) = \frac{\pi}{2}$.	1
	(ii) Sketch the locus from part (i)	1
(c)	Find $\int \frac{\sin x}{\cos^3 x} dx$	2
(d)	(i) Express $-\sqrt{3}-i$ in modulus argument form.	2
	(ii) Show that $\left(-\sqrt{3}-i\right)^6$ is a real number	2
(e)	By considering the function $f(x) = x^2 - 4x $ sketch the graph of $y = \frac{1}{f(x)}$	2

(f) Find
$$\int \frac{1}{x^2 \sqrt{x^2 - 4}} dx$$
 3

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) By using the substitution
$$t = \tan\left(\frac{x}{2}\right)$$
, or otherwise, evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{1+\sin x}$.

(b) The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ has foci S(ae,0) and S'(-ae,0), and directrices $x = \pm \frac{a}{e}$.

 $P(a\cos\theta, b\sin\theta)$ is a point on the ellipse with the normal at P meeting the x-axis at G.

(i) Using the focus/directrix definition of an ellipse show that $\frac{PS}{PS'} = \frac{1 - e \cos \theta}{1 + e \cos \theta}.$

(ii) The equation of the normal at P is given by

$$\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2.$$
 (Do NOT prove this.)

Show that
$$\frac{GS}{GS'} = \frac{PS}{PS'}$$
.

(c) Let
$$I_n = \int_1^e x(\ln x)^n dx$$
 for $n = 0, 1, 2, ...,$ show that $I_n = \frac{e^2}{2} - \frac{n}{2}I_{n-1}$ 3

(d) Suppose that the complex number z lies on the unit circle, and $0 \le \arg(z) \le \frac{\pi}{2}$. 3 By the use of a suitable vector diagram, prove that $2\arg(z+1) = \arg(z)$.

End of Question 12

Marks

Question 13 (15 marks) Use a SEPARATE writing booklet

- (a) A particle of mass *m* is thrown vertically upwards with initial velocity *U* in a medium with resistive force R = mkv where *v* is the velocity of the particle at time *t* and *k* is a constant. The equation of the motion of the particle is then $\frac{dv}{dt} = -g - kv$ where *g* is the acceleration due to gravity (**Do not** prove this).
 - (i) Use $\frac{dv}{dt} = v \frac{dv}{dx}$ to show that the vertical displacement x 3 from the point of projection of the particle is given by

$$x = \frac{1}{k}(U - v) - \frac{g}{k^2} \log_e\left(\frac{g + kU}{g + kv}\right)$$

- (ii) Hence find an expression for *H* the maximum height reached by the particle.
- (iii) Find an expression for the time taken for the particle to reach its maximum height. **3**
- (b) In the diagram below, AD bisects $\angle BAC$ and F is the point on AD so that BF=BD. **3** Prove that AB, is tangential to the circle passing through B, C and E.

Question 13 is continued on the next page

Question 13 continued

(c)	The h	yperbola \mathcal{H} has equation $xy = 16$. The points $P\left(4p, \frac{4}{p}\right)$ for $p > 0$ and	
	$Q\left(4q\right)$	$\left(q, \frac{4}{q}\right)$ for $q > 0$ are two distinct arbitrary points on \mathcal{H} .	
	(i)	Show that the equation of the tangent at <i>P</i> is $x + p^2 y = 8p$	1
	(ii)	Find the coordinates of T , the point of intersection of the tangents at P and Q .	2
	(iii)	The equation of the chord passing through PQ is given by $pqx + y = 4(p+q)$ (Do not prove this).	
		If chord <i>PQ</i> passes through the point $N(0,8)$ find the Cartesian equation of the locus of <i>T</i>	2

End of Question 13

Marks

(a) Find
$$\int \frac{x^2 - 2x - 3}{(x+2)(x^2+1)} dx$$
 3

(b) (i) Draw a one third page sketch the graph of $y = \frac{x^3}{x^2 - 4}$, indicating the coordinates of all stationary points and all asymptotes. 4

(ii) For what values of k will $x^3 - kx^2 + 4k = 0$ have exactly one real root.

(c)

The diagram above shows the horizontal square base of a solid. Vertical cross-sections of the solid perpendicular to the x-axis are right-angled isosceles triangles with hypotenuse in the base.

- (i) Find, as a function of x, the area of a typical cross-section standing on the interval PQ.
- (ii) Find the volume of the solid.
- (d) If $U_1 = 8$ and $U_2 = 20$ and $U_n = 4U_{n-1} 4U_{n-2}$ for $n \ge 3$, prove by mathematical induction that $U_n = (n+3)2^n$ for $n \ge 1$

End of Question 14

Marks

1

2

2

Question 15 (15 marks) Use a SEPARATE writing booklet

- (a) Show by the use of calculus that $x \ge \ln(x+1)$ for x > -1Hint: Let $f(x) = x - \ln(x+1)$.
- (b) In the diagram, AB is the diameter of a semicircle. $\angle ANB = 90^{\circ}$ and M is a point on AB such that NM is perpendicular to AB.

If AM = p and BM = q.

(i) Explain why
$$NM = \sqrt{pq}$$
 1

(ii) By reference to the geometry of the diagram deduce that $\sqrt{pq} \le \frac{p+q}{2}$ 1

(iii) Hence prove that for $p, q, x, y \ge 0$ then

$$\frac{1}{4}(p+q+x+y) \ge (pqxy)^{\frac{1}{4}}$$
2

(iv) Deduce that if
$$k, l, m, n \ge 0$$
 then $\frac{k}{l} + \frac{l}{m} + \frac{m}{n} + \frac{n}{k} \ge 4$ 1

Question 15 is continued on the next page

AB is an arc of a circle centre *C* and radius *R*. A surface is formed by rotating the arc *AB* through one revolution about the y-axis. A light, inextensible string of length l, $l \leq R$, is attached to point *A*, and a particle of mass *m* is attached to the other end. The particle is set in motion, tracing out a horizontal circle on the surface with constant angular velocity ω radians per second, while the string stays taught.

i) Explain why, when the particle is in position P shown on the diagram, the direction of the force N exerted by the surface on the particle is towards C.
ii) If the string makes an angle
$$\theta$$
 with the vertical, show that $\angle ACP = 2\theta$.
iii) Show on a diagram the tension force T, the force N and the weight force of magnitude mg acting on the particle, indicating their direction in terms of θ .
iv) Show that
 $T \cos \theta + N \sin 2\theta = mg$
 $T \sin \theta - N \cos 2\theta = m l \sin \theta \omega^2$

v) Show that

$$N = m l \sin \theta \left(\frac{g}{l} \sec \theta - \omega^2 \right) .$$
¹

vi) Deduce that there is a maximum value ω for the motion to occur as described, and write down this maximum value.

End of Question 15

Question 16		(15 marks) Use a SEPARATE writing booklet	
(a)	-	contains 10 black and 10 blue marbles. Six marbles are selected ut replacement.	
	(i)	Calculate the probability that exactly three marbles selected are blue, giving your answer correct to three decimal places.	1
	(ii)	Hence, or otherwise, calculate the probability that more than three of the marbles selected are blue, giving your answer correct to three decimal places.	2
(b)	(i)	Find an expression for the limiting sum of infinite geometric series $1+z+z^2+$ for $ z <1$	1
	(ii)	Given that complex number $z = \frac{1}{2}(\cos\theta + i\sin\theta)$, use your answer in part (i) to show that the imaginary part of $1 + z + z^2 +$ is $\frac{2\sin\theta}{5 - 4\cos\theta}$.	3
	(iii)	Find an expression for $1 + \frac{1}{2}\cos\theta + \frac{1}{2^2}\cos 2\theta + \frac{1}{2^3}\cos 3\theta + \dots$ in terms of $\cos\theta$	2
(c)	(i)	Find $\lim_{n \to \infty} \left[\tan^{-1}(n+1) + \tan^{-1}(n) \right]$.	1
	(ii)	Show that $\tan^{-1}(n+1) - \tan^{-1}(n-1) = \tan^{-1}\left(\frac{2}{n^2}\right)$, where <i>n</i> is a positive integer.	2

(iii) Hence show that
$$\lim_{n \to \infty} \sum_{j=1}^{n} \tan^{-1} \left(\frac{2}{j^2} \right) = \frac{3\pi}{4}$$
 3

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE :
$$\ln x = \log_e x, \quad x > 0$$

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
1-B2-D3.A4.C5.C		$6 \cdot \int \frac{2}{2c^2 + 4x + 13} dx$	
6. B 7. D 8 A 9. D 10 A		$= \int \frac{2}{2k^2 + 4k + q + 4} dx$	
Section I (solutions)		$= \int \frac{2}{(x+\nu)^{2}+3^{\nu}} dx$	
$\frac{1}{i}\frac{5}{i}=\frac{5}{i(-2+i)}$		$= \frac{2}{3} \tan^{-1}\left(\frac{2L+2}{3}\right) + C$. R
$= \frac{5}{-1-2i} \times \frac{-1+2i}{-1+2i}$		7. $a=4$, $b=3$ $b=et(e^{2}-1)$	
= -1+2i B		$e^{2} = \frac{25}{16} e^{2} = \frac{5}{4}$	
2. $\Delta V = 2\pi x y \cdot A x$		S(tai, 0) = S(t5, 0)	D
$y = \sqrt{sc - i^2} - x^{\nu}$		8. $m_{00} \times m_{00} = -1$	
$V = \int_{0}^{\sqrt{5}} 2\pi x \left(\sqrt{3c - x^2} - x^2 \right) dx$		$\frac{b + a \cdot \alpha}{a \sec \alpha} \times \frac{b + a \cdot \theta}{a \sec \theta} = -1$	
3. By inspection since		$\therefore sin x sin \theta = -\frac{a^{1}}{b^{1}} = -\frac{a^{1}}{b}$	
$f(x) \ge 0$ A 4 Let $y = x^{\frac{1}{2}}$		9. Since 3ti is a roet . 3-i also a roet (P(Z)	
$y^{\frac{2}{2}} + 3y = -4$ $\Rightarrow y^{\frac{2}{2}} = -3y - 4$		has real ar-efficients). 2-62+18 is a factor	
expanding on squaring gives		and Exp2 = -10 so D	
$\frac{y^{3} - 9y^{2} - 24y - 16 = 0}{5}$ 5. $\frac{5}{x^{2}} = \frac{6}{x^{2}} - \frac{10}{x^{2}}$		$\begin{bmatrix} 10 & x^3 + y^3 x = y^2 \\ 3x^2 + y^3 + x + 3y^2 & dy = 2y \end{bmatrix}$	die
$\frac{1}{2}\sqrt{\frac{1}{2}} = -3x^{2} + 10x^{2} + 0$		$3x^{2} + y^{3} + x \cdot 3y^{3} \cdot \frac{dy}{dx} = 2y$ $dy = 3x^{2} + y^{3}$	dy an
at $v=0$, $x=1$, $c=-7$ $x^{2}=\frac{2}{x^{2}}(-3+10x-7x)$	2)	$\frac{dy}{dx} = \frac{3x^2 + y^3}{2y - 3xy^2}$	
$v = \pm \frac{1}{2} \sqrt{\frac{1}{2} + 10x - 7x^2}$	_	.: A	

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\frac{Qvestion 11}{(e) 2^{2} + ii} = (4-2i)^{2} + 3-i$ $= 12 - 16i + 3 - i$ $= 15 - 17i$	//	d);) -13	
(b) $a_{TT}(z-2) - a_{TT}(z) = \frac{\pi}{2}$ $b_{TT}(z-2) - a_{TT}(z) = \frac{\pi}{2}$ $b_{TT}(z) - a_{TT}(z) = \frac{\pi}{2}$ $b_{TT}(z) - a_{TT}(z) = \frac{\pi}{2}$ $b_{TT}(z) - a_{TT}(z) = \frac{\pi}{2}$ $b_{TT}(z) - a_{TT}(z) = \frac{\pi}{2}$		$-5\overline{3} - i = 2 \operatorname{cis}\left(\frac{7\pi}{6}\right)$ or equivalent.	
i) So locus is semicircle		$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \left(1\right) \\ \left(-1\right) \\ \end{array} &= \left[2 \\ cis \\ cis \\ (7\pi) \\ \end{array}\right]^{6} \\ \end{array} \\ \begin{array}{l} = 2 \\ cis \\ (7\pi) \\ \end{array} \\ \begin{array}{l} \left(7\pi\right) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \left(7\pi\right) \\ \end{array} \\ \begin{array}{l} \left(7\pi\right) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \left(7\pi\right) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \left(7\pi\right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \left(7\pi\right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \left(7\pi\right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \left(7\pi\right) \\ \end{array} \\ $	
cente (1,0), radius 1 unit $y = \sqrt{1 - (x - 1)^{2}}$ $y = \sqrt{2x - x^{2}}$, ceny = 1 $y = (x - 1)^{2}$, $y^{2} = 1$, ung (1) 1) 1)		e) $\frac{1}{y} = [x(x-y)]$	
$C = \frac{1}{2}$		$f) = \frac{1}{2} \int \frac{1}{4 \sec^2 \theta} \frac{1}{4 \tan^2 \theta}$	e
$C) \int \sin x (\cos x)^{-3} dx$ = $-\int -\sin x (\cos x)^{-3} dx$		$= \frac{i}{4} \int \cos \theta d\theta \sqrt{\frac{2}{2}} \sqrt{\frac{2}{4}}$ $= \frac{1}{4} \sin \theta + c$ $= \frac{\sqrt{2c^2 - 4}}{4x} + c \sqrt{\frac{2}{4x}}$	4

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Suggested Solution (s) $ \begin{array}{c} $		and $PS' = ePM'$ $= e(acost + \frac{a}{e})$ $= a(1 + ecost)$ $= a(1 + ecost)$ $= a(1 + ecost)$ $= a(1 + ecost)$ $= ii) Normal at P meets x-axis at y=0, x = (a^2-b^2)cost$ $= a(1-e^2)$ $= a^2e^2cost$ $= ae^2cost$	
$= \int_{0}^{1} \frac{2}{t^{2}+2t+1} dt = \int_{0}^{1} \frac{2}{2(t+1)^{2}} dt$		$\int G(ae^{2}\cos\theta, 0) \text{with}$ $S(ae, 0) + S'(-ae, 0)$ $\int GS = ae - ae^{2}\cos\theta$ $\int GS' = ae + ae^{2}\cos\theta$ $\int So GS = \frac{ae - ae^{2}\cos\theta}{ae + ae^{2}\cos\theta}$	
$= -2[(t+i)^{-}]'_{0}$ = -2(-t-i) = 1 /		$= \frac{1 - e \cos \theta}{1 + e \cos \theta} \int \frac{1}{P_{S'}} = \frac{P_{S}}{P_{S'}} as required$ $c) I_{n} = \int_{-\infty}^{0} x (1 - x)^{2} dx$	
b)i) Let M and M be the feet of the perpendice from P to the directrices $x = \frac{e}{e}$ and $x = -\frac{e}{e}$ Since PS = ePM $= e(\frac{e}{e} - a\cos\theta)$ $= a(i - e\cos\theta)V$	د t ه ر	$= \frac{x^{2}(\ln n)}{2} - \frac{1}{2} \int_{1}^{2} \frac{1}{2} \int_{1}^{2} \frac{x^{2}}{\sqrt{1 + 1}} \frac{x^{2}}{\sqrt{1 + 1}} = \frac{x^{2}}{2} \int_{1}^{2} \frac{1}{\sqrt{1 + 1}} \frac{x^{2}}{\sqrt{1 + 1}} \frac{x^{2}}{\sqrt{1 + 1}} = \frac{x^{2}}{2} \int_{1}^{2} \frac{1}{\sqrt{1 + 1}} \frac{1}{\sqrt{1 + 1}} \frac{x^{2}}{\sqrt{1 + 1}} \frac{1}{\sqrt{1 + 1}}$	$\frac{n(lnn)}{x}$

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
a)		$= -\frac{1}{k}\int dv + \frac{q}{k^2}\int \frac{k}{g+kv}d$	
3 2 2		$= -\frac{V}{k} + \frac{9}{k^2} \ln(9 + kN) + C$	
		at $x=0$ $V=U$ $C = \frac{U}{k} - \frac{9}{k^2} ln(g+k)$) /
lit ary (2) = 6		$\therefore x = \frac{U}{k} - \frac{Y}{k} - \frac{9}{k} \left[\ln \left(\frac{g}{k} + k \right) \right]$ $- \ln \left(\frac{g}{k} \right)$	
$a_{ry}(2+1) = \frac{4}{2}$		$x = \frac{1}{k}(v - v) - \frac{9}{k^2} \left[\ln(\frac{9+1}{g+1}) - \frac{9}{k^2} \right]$	
(diagonal of rhombus) v bisects the angle		i) Max Height x=H when V=	0
So 2 arg(z+1) = E / and equating		$\therefore x = \frac{1}{k}U - \frac{g}{k}\left[\ln\left(\frac{g+kU}{g}\right)\right]$	
$2 \operatorname{arg}(z+i) = \operatorname{arg}(z)$		$\frac{dv}{dt} = -g - kv$	
Guestion 13		$\frac{dt}{dv} = \frac{-1}{g + kv}$	
(a) i) het $v dv = -g - kv$ dx $= -v$		$\dot{t} = \int_{g+kv}^{-1} dv$	
$\frac{dx}{dv} = \frac{-v}{g+kv}$		$= -\frac{i}{k} \int \frac{k}{g + kv} dv$ so $t = -\frac{i}{k} \ln(g + kv) + cv$	
$\int \frac{dv}{g + kv} dv = \int \frac{-v}{g + kv} dv = v$		of $xt = 0$, $v = U$ is $c = \frac{1}{E} ln($	+kV)
$= -\frac{i}{k} \int \frac{g + kv - g}{g + kv} dv$		$t = \frac{1}{k} \ln \left(\frac{g + k U}{g + k V} \right) v$ at Max height $V = 0$	1
$= -\frac{1}{k}\int I - \frac{9}{9+k\sqrt{dV}} dV$		$T = \frac{1}{k} \ln \left(\frac{g + k U}{g} \right) v$	

(4)

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
b) For AB to be tangential to circle thru RCE, need to show LABE = LBCE.		c) i) $x \cdot y = 16$ $\frac{d}{dx}(x \cdot y) = 0$ $x \cdot \frac{dy}{dx} + y = 0$	
$ \begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & & &$	L ABF) √ 2~)	$\frac{dy}{dx} = -\frac{4}{x}$ $\frac{dy}{dx} = -\frac{4}{x}$ $\frac{dy}{dx} = -\frac{4}{x}$ $\frac{dy}{dx} = -\frac{4}{x}$	
$LFBD = \pi - (2\alpha + 2\beta) (L)$ $ef L$ $Also LAFE = \alpha + \beta (Ve-t, o_{FP}).$		$= -\frac{1}{\rho^2}$ $= -\frac{1}{\gamma} \left(x - 4\rho \right)$)
$-LFED = 2\alpha + \beta (Ext. L + \Delta F)$ $-LBCE = \Pi - (\Pi - (2\alpha + 2\beta)) - b$	×+B)	$p^{2}y - 4p = -x + 4p$ $\therefore x + p^{2}y = 8p$	
$= \pi - \pi + 2\alpha + 2\beta - 2\alpha - 2\alpha - 2\beta = \beta$ $\therefore LABE = LBCE$	- P	ii) Similarly x+q y = 8q For taget at Q.	
se AB is tagential as argh made between / tangent and chand BE		subtracting: $(p^{2} - q^{2})y = 8(p - \gamma)$ $\therefore y = \frac{8}{p + q}$	
is equal to agle in the alternate segment.		$SO = X + \frac{8f^{2}}{prq} = \frac{8p}{prq}$ $x = \frac{8f^{2} + 8fq - 8p^{2}}{prq}$ $= \frac{8fq}{prq}$	
		$ = T\left(\frac{8\rho_{4}}{\rho_{r}\gamma}, \frac{2}{\rho_{r}\gamma}\right) $	

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
iii) $N/q_{1}s$) $p+q=2$ $A=T$ $\chi = \frac{8pq}{p+q}$ ad $y = \frac{8}{p+q}$ s_{1} $y = 4$ but if $p_{1}q_{1}>0$ jM $\chi = \frac{8q_{1}}{p+q} > 0$ ad since $p+q=2^{p+q}pq=2p-p^{2}$ Locus = f - y=4, $od = 2$		$\begin{array}{c} b) \ i) \\ y' = \frac{x^3}{x^2 - 4} \\ = x + \frac{4x}{x^2 - 4} \\ y' = \frac{x^3 - 4}{x^2 - 4} \\ y' = \frac{x + \frac{4x}{x^2 - 4}}{x^2 - 4} \\ y' = \frac{x + \frac{4x}{x^2 - 4}}{(x^2 - 4)^{1/2}} \end{array}$	x x $4sc$ $(+sc)$ $(+sc)$ $(+sc)$ $(+sc)$ $5tat pts x$ $Asymptoks$ $x = t2$ $Asymptoks$ $y = sc x$
Question 14 a) (at $\frac{x^{2}-2x-3}{(x+2)(x^{2}+1)} = \frac{a}{x+2} + \frac{b}{x}$ $\frac{x^{2}-2x-3}{(x+2)(x^{2}+1)} = \frac{a}{x+2} + \frac{b}{x}$ (at $x = -2$) $5 = 5a \Rightarrow a = -2a$ (at $x = -2$) $5 = 5a \Rightarrow a = -2a$ (at $x = -2$) $5 = -2a \Rightarrow a = -2a$ (at $x = -2a = -2a = -2a = -2a$ (b) $-2a = -2a = -2a = -2a$ (c) $-2a = -2a = -2a = -2a$ (c) $-2a = -2a = -2a = -2a$ (c) $-2a = -2a = -2a = -2a = -2a$ (c) $-2a = -2a = -2a = -2a = -2a = -2a$ (c) $-2a = -2a = $	$(x+\nu)$	$\frac{1}{(x^{2}-4)^{2}} = 0$ $x^{2}=0 = 11$ $x=0 \qquad x=\pm 2\sqrt{10}$ $y = \frac{(2\sqrt{5})^{2}}{8} = \frac{8 \times 55}{8} = 3\sqrt{5}$ $\int 5test Ptr (\pm 2\sqrt{5}, \pm 3\sqrt{5}) (0, 0)$ Asymptotes: $x \neq \pm 2$ $x \to \infty, y \to x^{\pm}$ $\int dd fraction \cdot \frac{1}{\sqrt{5}} (2\sqrt{5}, 3\sqrt{5})$ $\int \frac{1}{\sqrt{5}} (2\sqrt{5}, 3\sqrt{5}) (1)$ $\int \frac{1}{\sqrt{5}} (2\sqrt{5}, 3\sqrt{5}) (1)$	shope v

(6)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$= 2\left(0 - \left(\frac{63}{-3}\right)\right)$ $= 1/4 \times 0^{3} \sqrt{2}$	$\frac{x^{3}}{x^{2}-4} = k hai$ one solf. by inspection of graph: $-3.53 < k < 3.53$ C) i) $\int \int \frac{y}{2y} p$ $\int \frac{y}{2y} p$ $= \frac{1}{2} \times \frac{y}{2y} q$ $= \frac{1}{2} \times \frac{y}{2y} q$ $= \frac{1}{2} \times \frac{y}{2y} q$ $= \frac{1}{2} - 2x$ $= 2(6-x)$ i) $\int \frac{1}{2} - 2x = (6-x)^{2}$ ii) $\int \frac{1}{2} - 2x = (6-x)^{2}$ iii) $\int \frac{1}{2} - 2x = (6-x)^{2}$ iv for a field of the example o	y note Pli = 2(6+in 2nd/3=-in 2nd/3=-in 2nd/3=-in 2nd/3=-in 3=-in 3=	$=g$ $cd m=2 U_{1} = 3 \times 2^{v}$ $=20$ $c'. Statimult There for m=1, 2v$ Assume statement finite for m $i'_{1} U_{k-1} = (k+2) \cdot 2^{k-1}$ $U_{k} = (k+3) \cdot 2^{k}$ $blu m = k+1$ $U_{m} = V_{k+1}$ $= 4 U_{k+1-1} - 4 U_{k+1} - v$ $= 4 U_{k} - 4 U_{k-1}$ $= 4 (k+3) 2^{k} - 4 (k+2) 2^{k}$ $= (4k+1v) \cdot 2^{k} - 2 (k+2)$ $= 2k \cdot 2^{k} - 8 \cdot 2^{k}$ $= k \cdot 2^{k+1} + 4 \cdot 2^{k+1}$ $= (k+4) \cdot 2^{k} + 1$ $= (n+3) \cdot 2^{n} Aon$	=k, n=k-1 2k

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\frac{Qlieshign 15}{(4) f(x) = x - ln(x+1)}$		$\frac{111}{4} = \frac{1}{4} \left(p + q + x + y \right)$	
$f'(x) = 1 - \frac{i}{x+i}$ $f''(x) = \frac{i}{(x+i)^{\nu}}$		$=\frac{1}{2}\left(\frac{p+q}{2}+\frac{x+y}{2}\right)$	
Noting $f'(0) = 0$ $f''(0) > 0$ (0,0) is a min stat. pt	\checkmark	$\frac{1}{2} \left(I \overline{\rho y} + I \overline{x y} \right)$ $\frac{1}{2} \int \overline{I \overline{\rho y} \cdot I \overline{x y}}$	
Noting f"(x) >> 0 for all x>. f(x) >> 0		$\geq (pqxy)^{\ddagger}$	
		iv) Replacing p, q, x, y with $\frac{k}{l}, \frac{l}{m}, \frac{m}{n}, \frac{m}{k}$	
(b) i) Since ABMIN ANMA BH = NM	•	$\frac{1}{4}\left(\frac{k}{l}+\frac{l}{m}+\frac{m}{n}+\frac{n}{k}\right) \right) \left(\frac{k}{l}\right)$	$\frac{1}{m} \frac{m}{n} \frac{n}{k}$
$\frac{1}{NM} = \frac{1}{MA}$ $\frac{1}{NM^2} = AM.MB$		$\frac{k}{l} + \frac{l}{m} + \frac{m}{m} + \frac{m}{k} \ge 4$	
$= \frac{p}{pq}$ $NM = \sqrt{pq}$ $B = 0.0 \text{ is dispersive}$		(c) (i) The normal force is at right angles to the tange to the circle and is therefor	e
i) AB = p+q is diameter <u>p+q</u> is radius Since Alage and		directed towards the circle's certe C. II) In BACP,	
Since NM_LAB. MN is always less than length of radius wal & Ote	V	LPAC = # - 0 (complimentary) = LAPC (AC=AP, Equal	y-axis (e).
$MN \leq \frac{p+q}{2}$ $\sqrt{pq} \leq \frac{p+q}{2}$		$\therefore LACP = \Pi - 2\left(\frac{\Pi}{2} - 4\right) (LSVM)$ $= 2\theta$	of D)

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\frac{1}{1}$		Vi) For the motion $N \ge 0$ $\frac{g \operatorname{sec} \theta}{L} - \omega^{2} \ge 0$ $\frac{1}{\omega} \le \sqrt{\frac{g}{2} \operatorname{suc} \theta}$	
IV) TSING N T CTCOSO NNSI	n2t	Max is Jaseco / Question 16	
Vertically forces are balanced Trast + Nsin 26 = mg		$(a); P(3bloc) = \frac{{}^{10}C_3 \times {}^{10}C_3}{{}^{10}C_6}$ $= 0.372 (3d.p)$	
Sem of redict Acres = making towe-ds centre of motion. Tsin & - Noos 20 = man		ii) $P(>3 \text{ blue})$ = $P(+b \text{lue}) + P(5 \text{ blue})$ r + P(6 blue)	
but sing = $\frac{T}{L}$ in $T = L \sin \theta$ $T \sin \theta = m L \sin \theta \omega^2 - V$ $0 \times \sin \theta - 0 \times \cos \theta$ gives	- (2)	$= \frac{1 - P(3 b l se)}{2} (sym}$ = 0.314 (3 d.p.) V	metry).
$N\sin 2\theta \sin \theta + N\cos 2\theta \cos \theta = m$	isind -mlsin lussaut)	$(b) i)$ $(cos \theta + \frac{1}{1-2} $	
$- N = m d \sin \theta \left(\frac{g \sec \theta}{L} \right)$			

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 16 (continued)		(c) i) π <	
ii) <u> </u>			
$1 - \overline{z} = 1 - (\frac{1}{2}\cos\theta + \frac{1}{2}is)$	6)	ii) Let $\alpha = \tan^{-1}(n+1)$	
$= \frac{1}{1 + \frac{1}{2}} \times \frac{1 - \frac{1}{2}c}{1 + \frac{1}{2}c}$	056 + ± isi-	$\alpha' \beta = ton''(n-1)$	9
$= (1 - \frac{1}{2}\cos\theta) - \frac{1}{2}\sin\theta + \frac{1}{1 - \frac{1}{2}\cos\theta}$	$s \theta + \frac{1}{2} i s i$	+ + an (a-B)	
$= 1 - \frac{1}{2} \cos \theta + \frac{1}{2} \sin \theta$		= tanx - tang	
$(1-\frac{1}{2}\cos\theta)^{2}+\frac{1}{4}\sin^{2}\theta$		1 + tankton B	
$= \frac{1-\frac{1}{2}\cos\theta+\frac{1}{2}i\sin\theta}{2}$		= $(n+1) - (n-1) = 2$	\checkmark
1- cos 6 + 1 cos 6 + 1 sin 6		$1 + (n-1)(n+1) n^2$	
$= 1 - \frac{1}{2} \cos \theta + \frac{1}{2} \sin \theta /$		$(\alpha - \beta) = + \alpha n^{-1} \left(\frac{2}{n^2}\right)$	
$\frac{5}{4} - \cos \theta$,	$\begin{array}{c} 111 \\ 111 \\ \Xi \\ tan' \left(\frac{2}{y^{\prime}}\right) \end{array}$	
$I_m\left(\frac{1}{1-2}\right) = \frac{\frac{1}{2}S_{1-1}}{\frac{5}{2}-C_{1-2}} \times \frac{\frac{5}{2}}{\frac{5}{2}-C_{1-2}} \times \frac{1}{2}$	4	$= +an''\left(\frac{2}{1}\right) + +an''\left(\frac{2}{2}\right) + +an''\left(\frac{2}{3}\right)$	·)+
Ÿ	Ų	\cdots + tan' $\left(\frac{2}{(n-1)^2}\right)$ + tan' (
$= \frac{2 \text{ sm} \theta}{5 - 4 \text{ cs} \theta}$		= tan'(2) - tan'(0)	
$\frac{111}{111} + \frac{1}{2}\cos\theta + \frac{1}{2}\cos2\theta + \frac{1}{32}\cos\theta$	36+	$\begin{array}{c} + ta x^{-1}(3) - ta x^{-1}(1) \\ + ta x^{-1}(4) - ta x^{-1}(2) \end{array}$	•
is real part of 1-7 by t		+ tan (5) - tan (3)	
V		$+$ + + $n^{-1}(n^{-1}) - + a^{-1}(n^{-3})$,
$\mathcal{P}_{\varepsilon}\left(\frac{1}{1-\overline{z}}\right) = \frac{1-\frac{1}{2}\cos\theta}{\frac{5}{4}-\cos\theta}$	¥ - ¥	+ + + + + + + + + + + + + + + + + + +	
$=\frac{4-2\cos\theta}{5-4\cos\theta}$		$= - \tan^{-1}(0) - \tan^{-1}(1) + \tan^{-1}(n+1)$	
γ - 4ίος θ		$= 0 - \frac{\pi}{4} + \pi a \rightarrow n \rightarrow$	port(i)
	.1	$\lim_{n \to \infty} \frac{2}{j=1} \tan^{-1}\left(\frac{2}{j^2}\right) = \frac{3\pi}{4}$	
	(10)		