

Student Number

Knox Grammar School

2014

Trial Higher School Certificate Examination

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Subject Teachers

Mr I Bradford
Mr D Sedgman

Total Marks - 100

Section I 10 Marks

- Answer Questions 1 to 10
- Use the Multiple Choice Answer Sheet

Section II 90 Marks

- Answer Questions 11 to 16
- All questions are worth 15 marks
- Answer each question in a separate

Writing Booklet.

Setter

Mr M Vuletich

This paper MUST NOT be removed from the examination room

Number of Students in Course: 34

This page has been left intentionally blank

Section I

10 Marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1. Which of these ellipses has foci $(0, \pm 3)$?
A) $8 x^{2}+y^{2}=8$
B) $5 x^{2}+4 y^{2}=20$
C) $16 x^{2}+25 y^{2}=400$
D) $25 x^{2}+16 y^{2}=400$
2. Find $\int \cot x d x$
A) $-\operatorname{cosec}^{2} x+c$
B) $-\ln (\operatorname{cosec} x)+c$
C) $\frac{1}{2} \cot ^{2} x+c$
D) $\ln (\sec x)+c$
3. The speed of a particle moving in a horizontal circle with radius 6 cm is $48 \pi \mathrm{~cm} \mathrm{~s}^{-1}$.

How many revolutions per second does this particle make?
A) 4
B) 240
C) 480
D) 480π
4. The polynomial equation $x^{3}-2 x^{2}+3=0$ has roots α, β and γ.

What is the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$?
A) -2
B) -1
C) -8
D) 8
5. Evaluate $\int_{1}^{e} \frac{d x}{x \sqrt{1+(\ln x)^{2}}}$.
A) $-\frac{\pi}{4}+\tan ^{-1} \mathrm{e}$
B) $\ln \left(\frac{\mathrm{e}+\sqrt{\mathrm{e}^{2}+1}}{1+\sqrt{2}}\right)$
C) $\frac{\pi}{4}$
D) $\ln (1+\sqrt{2})$
6. What is the simplest expression of
$\operatorname{Arg}\left(\frac{1}{1+\mathrm{i}}\right)+\operatorname{Arg}\left(\frac{1}{(1+\mathrm{i})^{2}}\right)+\operatorname{Arg}\left(\frac{1}{(1+\mathrm{i})^{3}}\right)+\ldots+\operatorname{Arg}\left(\frac{1}{(1+\mathrm{i})^{20}}\right)$?
A) $-\frac{\pi}{2}$
B) $-\frac{\pi}{4}$
C) $\frac{\pi}{4}$
D) $\frac{\pi}{2}$
7. The Argand diagram below shows the complex numbers α and αz^{2}.

Which of the following best represents the positions of z and α ?
A)

C)

B)

D)

8. The diagram shows a shape made by 13 points.

How many triangles can be made with these points as vertices?
A) ${ }^{13} \mathrm{C}_{3}-3^{5} \mathrm{C}_{3}-3$
B) ${ }^{13} \mathrm{C}_{3}-2{ }^{5} \mathrm{C}_{3}-4$
C) ${ }^{13} \mathrm{C}_{3}-3^{5} \mathrm{C}_{3}-4$
D) ${ }^{13} \mathrm{C}_{3}-3^{5} \mathrm{C}_{3}-5$
9. The base of a solid is the region bounded by the parabola $x=4 y-y^{2}$ and the y axis.

Vertical cross sections are right angled isosceles triangles perpendicular to the x axis as shown.

Which integral represents the volume of this solid?
A) $\int_{0}^{4} 2 \sqrt{4-x} d x$
B) $\int_{0}^{4} \pi(4-x) d x$
C) $\int_{0}^{4}(8-2 x) d x$
D) $\int_{0}^{4}(16-4 x) d x$
10. Which of the following shows the graph of $\mathrm{y}=x \cot x$?

End of Section I

Section II

90 Marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Answer each question in a separate writing booklet. Extra writing booklets are available.
All necessary working should be shown in every question.
Question 11 (15 marks) Use a SEPARATE writing booklet
(a) The complex number z is given by $z=-\sqrt{3}+i$.
(i) Express z in modulus argument form.
(ii) Hence show that $z^{7}+64 z=0$
(b) Find values A, B and C such that:

$$
\frac{8(1-x)}{\left(2-x^{2}\right)\left(2-2 x+x^{2}\right)}=\frac{A-B x}{\left(2-2 x+x^{2}\right)}-\frac{C x}{\left(2-x^{2}\right)}
$$

(c) Factorise $z^{2}+4 i z+5$ over the complex field.
(d) Using the substitution $x=2 \sin \theta$, show that

$$
\int_{-1}^{\sqrt{3}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x=\pi-\sqrt{3}
$$

(e) Sketch the region in the Argand diagram defined by $z \bar{z}+2(z+\bar{z}) \leq 0$

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet
(a) Use the substitution $t=\tan \frac{x}{2}$ to evaluate $\int \frac{d x}{1+\sin x+\cos x}$.
(b) Consider the equation $z^{3}+m z^{2}+n z+6=0$, where m and n are real.

It is known that $1-i$ is a root of the equation. Find the values of m and n.
(c) The area bounded by the curve $\mathrm{y}=\sec ^{2} x$, the x-axis, 4 $x=\frac{\pi}{4}$ and $x=\frac{\pi}{3}$ is rotated about the line $x=\pi$ to form a solid.

Use the method of cylindrical shells to find the volume of the solid.

Question 12 (continued)
(d) The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$, where $|p| \neq|q|$, lie on the rectangular hyperbola with equation $x y=c^{2}$.

The tangent to the hyperbola at P intersects the x-axis at A and the y-axis at B. Similarly, the tangent to the hyperbola at Q intersects the x-axis at C and the y-axis at D.

(i) Show that the equation of the tangent at P is $x+p^{2} y=2 c p$.
(ii) Show that A, B and O are on a circle with centre P.
(iii) Prove that $B C$ is parallel to $P Q$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet
(a) (i) Let $I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x^{3}} d x$ for $n \geq 2$. Show that:

$$
I_{n}=\frac{2 n-4}{2 n+5} \times I_{n-3} \text { for } n \geq 5
$$

(ii) Hence find I_{8}
(b) The graph of a certain function $y=f(x)$ is shown below.

Sketch the following curves:
(i) $y=\frac{1}{f(x)}$
(ii) $y=\ln [1-f(x)]$
(iii) $y^{2}=1+f(x)$

Question 13 (continued)
(c) Two circles \mathcal{C}_{1} and \mathcal{C}_{2} meet at P and S. Points A and R lie on \mathcal{C}_{1} and points B and Q lie on $\mathcal{C}_{2} . A B$ passes through S and $A R$ produced meets $B Q$ produced at C, as shown in the diagram.

(i) Prove that $\angle P R A=\angle P Q B$.
(ii) Prove that the points P, R, Q and C are concyclic.

Question 14 (15 marks) Use a SEPARATE writing booklet
(a)

$P Q$ is a smooth vertical rod. Particle A of mass m is attached to a point P by a string of length l and A is also attached by a second string of length l to a smooth ring B of mass M which is free to slide on the $\operatorname{rod} P Q$ without friction. A is set in motion in a horizontal circle about $P Q$ with constant angular velocity $\omega . B$ is in equilibrium.
T_{1} and T_{2} are the tensions in the strings $A P$ and $A B$ respectively when $A P$ makes an angle θ with the vertical.
(i) Draw diagrams showing the forces acting on each of A and B.
(ii) Hence show that $T_{1}-T_{2}=\frac{m g}{\cos \theta}, T_{1}+T_{2}=m l \omega^{2}$ and $T_{2}=\frac{M g}{\cos \theta}$.
(iii) Deduce that $d=\frac{2 g}{\omega^{2}}\left(1+2 \frac{M}{m}\right)$.

Question 14 (continued)
(b) A particle's resistance to motion in a medium is proportional to $m v^{2}$ where m is the particle's mass and v is its velocity at time t.
(i) Initially the particle is projected downwards in the medium where the speed of projection is equal to the terminal velocity V_{T}.

Show that $V_{T}^{2}=\frac{g}{k}$ where k is the constant of proportionality.
The particle is now projected vertically upwards in the same medium.
(ii) Show that $x=\frac{V_{T}^{2}}{2 g} \ln \left(\frac{2 V_{T}^{2}}{V_{T}^{2}+v^{2}}\right)$.
(iii) Hence show that $H=\frac{V_{T}^{2} \ln 2}{2 g}$ where H represents the particle's maximum height above its point of projection.
(iv) Show that during the particle's ascent $v=V_{T} \tan \left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right)$.
(v) Hence show that $\frac{2 V_{T}^{2}}{V_{T}^{2}+v^{2}}=1+\sin \left(\frac{2 g}{V_{T}} t\right)$.
(vi) If T is the time taken to achieve half its maximum height, show that $T=\frac{V_{T}}{2 g} \sin ^{-1}(\sqrt{2}-1)$.

End of Question 14

Question 15 ($\mathbf{1 5}$ marks) Use a SEPARATE writing booklet
(a) (i) If $0 \leq a \leq b$ show that $\frac{a}{1+a} \leq \frac{b}{1+b}$
(ii) Hence or otherwise show that $\frac{a}{1+a} \leq \frac{b}{1+b}+\frac{c}{1+c}$ where $a \leq b+c$ and 2 $a, b, c \geq 0$
(b) An urn contains 5 balls numbered from 1 to 5 . A ball is chosen at random and its number is noted. The ball is then returned to the urn. This is done a total of five times.
(i) What is the probability that each ball is selected exactly once?
(ii) What is the probability that at least one ball is not selected?
(iii) What is the probability of obtaining $1,1,2,3,4$ in any order?
(iv) What is the probability that exactly one of the balls is not selected?
(c)

S is the focus of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, a \neq b$, which lies on the positive x-axis. R is a point on the auxiliary circle of the hyperbola such that R lies in the first quadrant and $S R$ is tangent to the auxiliary circle. The eccentricity of the hyperbola is e and $\angle \mathrm{ROS}=\alpha$.
(i) Show that R lies on a directrix of the hyperbola.
(ii) Show that $S R$ has equation $y=-\frac{1}{\sqrt{e^{2}-1}}(x-a e)$.
(iii) If $S R$ meets the hyperbola at the point $(a \sec \theta, b \tan \theta)$, show that $e^{2}\left(2-e^{2}\right) \sec ^{2} \theta-2 e \sec \theta+\left\{e^{2}+\left(e^{2}-1\right)^{2}\right\}=0$.
(iv) By considering this as a quadratic equation in $\sec \theta$, deduce that $S R$ intersects the hyperbola in two distinct points P and Q, lying on the same branch of the hyperbola if $e^{2}<2$ and lying on opposite branches if $e^{2}>2$.

End of Question 15

Question 16 ($\mathbf{1 5}$ marks) Use a SEPARATE writing booklet
(a) The nth Fermat number, F_{n}, is defined by $F_{n}=2^{2^{n}}+1$ for $n=0,1,2,3 \ldots$, where $2^{2^{n}}$ means 2 raised to the power of 2^{n}.

Prove by mathematical induction, that for all positive integers:

$$
F_{0} \times F_{1} \times F_{2} \times \ldots \times F_{n-1}=F_{n}-2
$$

(b) A coin is tossed six times. What is the probability that there will be more tails on the first three of the six throws than on the last three throws?
(c) Let $x=\cos \theta+i \sin \theta$ for $0<\theta<2 \pi$, and let n be a positive integer.
(i) Show that $x^{k}+\frac{1}{x^{k}}=2 \cos k \theta$, for any positive integer k.
(ii) Show that

3

$$
\begin{gathered}
\left(x+\frac{1}{x}\right)^{2 n}=\left(x^{2 n}+\frac{1}{x^{2 n}}\right)+\binom{2 n}{1}\left(x^{2 n-2}+\frac{1}{x^{2 n-2}}\right)+\binom{2 n}{2}\left(x^{2 n-4}+\frac{1}{x^{2 n-4}}\right)+ \\
\ldots+\binom{2 n}{n-1}\left(x^{2}+\frac{1}{x^{2}}\right)+\binom{2 n}{n}
\end{gathered}
$$

(iii) Deduce that

$$
\begin{gathered}
2^{2 n-1} \cos ^{2 n} \theta=\cos 2 n \theta+\binom{2 n}{1} \cos (2 n-2) \theta+\binom{2 n}{2} \cos (2 n-4) \theta+ \\
\ldots+\binom{2 n}{n-1} \cos 2 \theta+\frac{1}{2}\binom{2 n}{n}
\end{gathered}
$$

(iv) Hence show that $\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=\frac{\pi}{2^{2 n-1}}\binom{2 n}{n}$.

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Suggested Solution (s)				Com- ments
1.D	2. B	3. A	4. B	5.D
6. A	7. C	8.C	9.C	10.D

1. D
$25 x^{2}+16 y^{2}=400$ is equivalent to $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ which has its foci on the y axis.
$e^{2}=1-\frac{16}{25}=\frac{9}{25}$, so $\mathrm{e}=\frac{3}{5}$
focal length is ae, ae $=5 \times \frac{3}{5}=3$
So foci are $(0, \pm 3)$
2. B

$$
\begin{aligned}
\int \cot x d x & =\int \frac{\cos x}{\sin x} d x \\
& =\ln (\sin x)+c \\
& =\ln \left(\frac{1}{\operatorname{cosec} x}\right)+c \\
& =\ln 1-\ln (\operatorname{cosec} x)+c \\
& =-\ln (\operatorname{cosec} x)+c
\end{aligned}
$$

3. \mathbf{A}

As $v=r \omega$ then
$48 \pi=6 \omega$ that is $\omega=8 \pi \mathrm{rad} / \mathrm{s}$
Now, the angular velocity is 8π and as each revolution is 2π radians then the particle makes 4 revolutions per second.
4. B

$$
\begin{aligned}
& \mathrm{x}^{3}-2 \mathrm{x}^{2}+3=0 \text { that is } \mathrm{x}^{3}-2 \mathrm{x}^{2}+0 \mathrm{x}+3=0 \\
& \text { This means } \alpha+\beta+\boldsymbol{\alpha}=2 \\
& \\
& \qquad \alpha+\beta \boldsymbol{\gamma}+\boldsymbol{\alpha}=0 \text { and } \alpha \beta \boldsymbol{\gamma}=-3
\end{aligned}
$$

Now as α is a solution of the equation then

$$
a^{3}-2 a^{2}+3=0, \text { so } a^{3}=2 a^{2}-3
$$

Similarly, $\beta^{3}=2 \beta^{2}-3 \& \gamma^{3}=2 \gamma^{2}-3$
Therefore,
$\alpha^{3}+\beta^{3}+\gamma^{3}=2\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-9$
But $(\alpha+\beta+\gamma)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+$

$$
2(\alpha \beta+\beta \gamma+a \gamma)
$$

So $(2)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2(0)$
that is $\alpha^{2}+\beta^{2}+\gamma^{2}=4$
Hence, $a^{3}+\beta^{3}+\gamma^{3}=2(4)-9=-1$

Suggested Solution (s)	Commen ts
5. D $\begin{aligned} & u=\ln x, \therefore d u=\frac{d x}{x} \\ & \\ & \int_{1}^{e} \frac{d x}{x \sqrt{1+\ln ^{2} x}} \\ & =\int_{0}^{1} \frac{d u}{\sqrt{1+u^{2}}}=\left[\ln \left(u+\sqrt{1+u^{2}}\right)\right]_{0}^{1} \\ & \\ & =\ln (1+\sqrt{2})-\ln 1 \\ & \\ & \end{aligned}$ 6. A $\begin{aligned} & \operatorname{Arg}\left(\frac{1}{1+\mathrm{i}}\right)=\operatorname{Arg} 1-\arg (1+\mathrm{i})=0-\frac{\pi}{4}=-\frac{\pi}{4} \\ & \operatorname{Arg}\left(\frac{1}{(1+\mathrm{i})^{2}}\right)=\operatorname{Arg} 1-\arg (1+\mathrm{i})^{2}=0- \\ & 2 \times \frac{\pi}{4}=-\frac{\pi}{2} \\ & \operatorname{Arg}\left(\frac{1}{(1+i)^{20}}\right)=\operatorname{Arg} 1-\arg (1+\mathrm{i})^{20}=0- \\ & 20 \times \frac{\pi}{4}=-\frac{20 \pi}{4} \end{aligned}$ Let $S=\operatorname{Arg}\left(\frac{1}{1+i}\right)+\operatorname{Arg}\left(\frac{1}{(1+i)^{2}}\right)+\ldots+$ $\begin{aligned} \operatorname{Arg} & \left(\frac{1}{(1+\mathrm{i})^{20}}\right) \\ & =-\frac{\pi}{4}-\frac{2 \pi}{4}-\frac{3 \pi}{4} \ldots \ldots \ldots-\frac{20 \pi}{4} \\ & =-\frac{\pi}{4}(1+2+3+\cdots \ldots+20) \end{aligned}$ (This is an Arithmetic Series with 20 terms, the first is $a=1$ and the last being 20, so the sum is $\left.\frac{20}{2}(1+20)=210\right)$ Therefore, $S=-\frac{\pi}{4}(210)=-52 \frac{1}{2} \pi$. But an Arg is always between $-\pi$ and π Hence, $S=26$ revolutions $-\frac{\pi}{2}=-\frac{\pi}{2}$	

7. C
$\operatorname{Arg}\left(\alpha z^{2}\right)=\operatorname{Arg}(\alpha)+2 \operatorname{Arg}(z)$
So option A is not correct as $\operatorname{Arg}\left(\boldsymbol{a z} \mathbf{z}^{2}\right)$ in the diagram is incorrect.
$\operatorname{Mod}\left(a z^{2}\right)=\bmod (a) \times(\bmod (z))^{2}$ and $\bmod (\alpha)=1$ this means
$\operatorname{Mod}\left(\alpha z^{2}\right)=(\bmod (z))^{2}$ but $\operatorname{Mod}\left(\alpha z^{2}\right)<1$
Hence $(\bmod (z))^{2}<1$
and so $(\bmod (z))^{2}<\bmod (z)$
Only the diagram in option C satisfies this condition.
8. C^{\prime}

13 points can form combinations of 3 in
${ }^{13} \mathrm{C}_{3}$ ways.
But 5 points in a straight line cannot form a triangle, and there are 3 such lines. So 3 $\times{ }^{5} C_{3}$
must be subtracted from the total.
Also 3 points in a straight line cannot form a triangle, and there are 4 such lines.
So $4 \times{ }^{3} \mathrm{C}_{3}=4$ must be subtracted from the total,
Hence, the total number of triangles that can be formed is
${ }^{13} C_{3}-3^{5} C_{3}-4$.
9. C

The area of 1 cross section $=\frac{1}{2}\left(y_{2}-y_{1}\right)^{2}$
Find an expression for y_{1} and y_{2} in terms of x .
$x=4 y-y^{2}$ so $y^{2}-4 y+x=0$
Hence $y=\frac{4 \pm \sqrt{16-4 x}}{2}$

$$
\begin{aligned}
& =\frac{4 \pm 2 \sqrt{4-x}}{2} \\
y & =2 \pm \sqrt{4-x}
\end{aligned}
$$

So $y_{2}=2+\sqrt{4-x}$ and $y_{1}=2$
$-\sqrt{4-x}$
Hence $y_{2}-y_{1}=2 \sqrt{4-x}$
The area of a cross section $=\frac{1}{2}$
$(2 \sqrt{4-x})^{2}$

$$
=2(4-x)
$$

So the volume $=\int_{0}^{4}(8-2 x) d x$
10. D

The graph of $\mathrm{y}=\mathrm{x} \cot \mathrm{x}$ can be found using the
"multiplication of ordinates" method
Alternatively as $y=\cot x$ and $y=x$ are both
odd functions, $\mathrm{y}=\mathrm{x} \cot \mathrm{x}$ must be even.
From the four options provided only D represents
an even function.

(b) Let
when,

$$
\left.\left\{\begin{array}{rl}
\text { When, } \\
x=0 \quad 8 \equiv 2 A \quad A=4 \\
x=1 & 0=4-B-C \tag{1}\\
x=-1 & B+C=4 \\
16=4+B+5 C
\end{array}\right\}(1)\right\}
$$

(c) $z^{2}+4 i z+5$

$$
\text { c) } \begin{aligned}
& z^{2}+4 i z+5 \\
= & (z+5 i)(z-i)
\end{aligned} \quad{ }^{z} X_{5 i}^{-i}
$$

2014 Year 12 Mathematics Extension 2 Unit Task 4 Trial HSC SOLUTIONS

and $P(-3)=0$
so

$$
\begin{aligned}
-27+9-3 n+6 & =0 \\
3 n & =-12 \\
n & =-4
\end{aligned}
$$

or equivalat

2014 Year 12 Mathematics Extension 2 HSC Task 4 Trial HSC Solutions

ii) Sum of Radial forces at $A=m u w^{2}$

$$
\begin{align*}
T_{1} \sin \theta+T_{2} \sin \theta & =m \tau \omega^{2} \\
\therefore T_{1}+T_{2} & =\frac{m r \omega^{2}}{\sin \theta} \tag{i}\\
\therefore T_{1}+T_{2} & =m l \omega^{2}
\end{align*}
$$

$$
\text { but } \sin \theta=\frac{\tau}{l}
$$

$$
\left.\therefore l=\frac{\pi}{\sin \theta} \right\rvert\, V
$$

Vertical Forces at B are balanced

$$
\begin{aligned}
T_{2} \cos \theta & =M_{g} \\
T_{2} & =\frac{M_{9}}{\cos \theta}
\end{aligned}
$$

iii) Subtracted (i) od (ii) $2 T_{2}^{\cos \theta}=m \lambda w^{2}-\frac{m g}{\cos \theta}$

$$
\begin{aligned}
\therefore \quad 2\left(\frac{M g}{\cos \theta}\right) & =m l \omega^{2}-\frac{\omega g}{\cos \theta} \\
2 M g & =m l \omega^{2} \cos \theta-m g \\
\int m l \omega^{2} & =g(m+2 m) \\
l \cos \theta & =g(1+2 M)
\end{aligned}
$$

but $\cos \theta=\frac{\frac{d}{2}}{l} \quad l \cos \theta=\frac{d}{2} \quad \quad l \cos \theta=\frac{g}{\omega^{2}}\left(1+\frac{2 M}{m}\right)$

At terminal $\ddot{x}=\underset{v_{2} \text { locity }}{ } \ddot{x}=0$.

$$
\begin{aligned}
\therefore k V_{T}^{2} & =g \\
V_{T}^{2} & =\frac{g}{k}
\end{aligned}
$$

ii) Upwards
$T+$
$\downarrow m g$ junk ${ }^{2}$
$\therefore m \ddot{x}=-m g-m k v^{2}$ is resultant force

$$
\begin{aligned}
\therefore \frac{v d v}{d x} & =-\left(g+k v^{2}\right) \\
\frac{d x}{d v} & =\frac{-v}{g+k v^{2}} \\
x & =-\frac{1}{2} \int \frac{2 k v}{g+k v^{2}} d v \\
\therefore x & =-\frac{1}{2 k} \ln \left(g+k v^{2}\right)+C
\end{aligned}
$$

at $x=0, v=V_{T} \quad \therefore \quad c=\frac{1}{k} \ln \left(g+k v_{T}^{2}\right)$
So

$$
\begin{aligned}
x & =\frac{1}{2 k} \ln \frac{g+k v_{T}^{2}}{g+k v^{2}} \quad g=k v_{T}^{2} \\
& =\frac{1}{2 k} \ln \frac{k v_{T}^{2}+k v_{T}^{2}}{k v_{T}^{2}+k v^{2}} \quad \text { ad } \frac{1}{k}=\frac{v_{T}^{2}}{g} \\
& =\frac{v_{T}^{2}}{2 g} \ln \left(\frac{2 v_{T}^{2}}{v_{T}^{2}+v^{2}}\right)
\end{aligned}
$$

Suggested Solution (s)			
iii) At maximum height $x=H, v=0$			

$$
\begin{aligned}
\therefore \quad H & =\frac{V_{T}^{2}}{2 g} \ln \left(\frac{2 V_{T}^{2}}{V_{T}^{2}+0}\right) \\
& =\frac{V_{T}^{2}}{2 g} \ln \left(2 V_{T}^{2}\right)
\end{aligned}
$$

iv) Starting with $\ddot{x}=-\left(g+k v^{2}\right)$

$$
\begin{aligned}
\frac{d t}{d v} & =\frac{-1}{k\left(\frac{A}{k}+v^{2}\right)} \\
\therefore t & =-\frac{1}{k} \int \frac{1}{V_{T}^{2}+v^{2}} d v \\
& =-\frac{1}{k} \cdot \frac{1}{V_{T}} \tan ^{-1}\left(\frac{v}{V_{T}}\right)+C
\end{aligned}
$$

at $t=0 \quad v=V_{T} \therefore C=\frac{1}{k V_{T}} \tan ^{-1}(1)=\frac{\pi}{4 k v_{T}}$

$$
\text { So } \begin{aligned}
& t=\frac{1}{k v_{T}}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{v}{V_{T}}\right)\right) \\
& \therefore \quad \tan ^{-1}\left(\frac{v}{V_{T}}\right)=\frac{\pi}{4}-k v_{T} t \\
& v=v_{T} \tan \left(\frac{\pi}{4}-k v_{T} t\right) \text { but } k v_{T}=\frac{g}{v_{T}} \\
& v
\end{aligned}
$$

$\therefore V=V_{T} \tan \left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right)$ as required

	Suggested Solution (s)
(v) Algebraically and using frig id	
$\frac{v}{V_{T}}$	$=\tan \left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right)$
$\frac{v^{2}}{V_{T}^{2}}$	$=\tan ^{2}\left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right)$

so $1+\frac{v^{2}}{V_{T}^{2}}=1+\tan ^{2}\left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right)$

$$
\begin{aligned}
\therefore 1+\frac{\gamma^{2}}{V_{T}^{2}} & =\sec ^{2}\left(\frac{\pi}{4}-\frac{9}{V_{T}} t\right) \\
\frac{V_{T}^{2}+V^{2}}{V_{T}^{2}} & =\sec ^{2}\left(\frac{\pi}{4}-\frac{9}{V_{T}} t\right)
\end{aligned}
$$

reciprocals

$$
\text { is } \left.\begin{array}{rl}
\frac{V_{T}^{2}}{V_{T}^{2}+v^{2}} & =\cos ^{2}\left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right) \\
& =\frac{1}{2}+\frac{1}{2} \cos \left(2\left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right) h\right. \\
\therefore \frac{2 V_{T}^{2}}{V_{T}^{2}+v^{2}} & =1+\cos \left(\frac{\pi}{2}-\frac{2 g}{V_{T}}\right) \\
& =1+\sin \left(\frac{2 g t}{V_{T}}\right) \text { as required. }
\end{array}\right\}
$$

Alternatively,

$$
\begin{aligned}
x & =\int V_{T} \tan \left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right) d t \\
& =V_{T} \int \frac{\sin \left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right)}{\cos \left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right.} d t \\
& =V_{T} \times \frac{-V_{T}}{g} \times-\int \frac{-\sin \left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right) \cdot \frac{g}{V_{T}}}{\cos \left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right)} d t
\end{aligned}
$$

Suggested Solution
$\therefore x=\frac{v_{T}{ }^{2}}{g} \ln \left[\cos \left(\frac{\pi}{4}-\frac{g}{v_{\tau}} t\right)\right]+C$
at $t=0, c=0 \therefore c=-\frac{V_{T}}{}{ }^{2} \ln \left(\frac{1}{\sqrt{2}}\right)$

$$
\therefore x=\frac{v_{T}^{2}}{g} \ln \left[\sqrt{2} \cos \left(\frac{\pi}{4}-\frac{g}{v_{T}} t\right)\right]
$$

Equating expressions for displacement

$$
\frac{V_{T}^{2}}{2 g} \ln \left[\frac{2 V_{T}^{2}}{V_{T}^{2}+v^{2}}\right]=\frac{V_{T}^{2}}{g} \ln \left[\sqrt{2} \omega_{1}\left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right)\right]
$$

log laws:

$$
\ln \left[\frac{2 v_{T}^{2}}{V_{T}^{2}+v^{2}}\right]^{\frac{1}{2}}=\ln \left[\sqrt{2} w \Delta\left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right)\right]
$$

equating subjects and squaring

$$
\begin{aligned}
\frac{2 V_{T}^{2}}{V_{t}^{2}+v^{2}} & =2 \cos ^{2}\left(\frac{\pi}{d}-\frac{g}{V_{T}} t\right) \\
& =2\left(\frac{1}{2}+\frac{1}{2} \cos \left[2\left(\frac{\pi}{4}-\frac{g}{V_{T}} t\right)\right]\right) \\
& =1+\cos \left(\frac{\pi}{2}-\frac{2 g}{V_{T}} t\right) \\
& =1+\sin \frac{2 g}{V_{T}} t \text { as required }
\end{aligned}
$$

vi) Noting $\frac{1}{2} H=\frac{V_{T}^{2} \ln 2}{4 g}$
$\therefore Y_{T}^{2} \frac{\ln 2}{4 g}=\frac{V_{T}^{2}}{2 g} \ln \left(\frac{2 v_{T}^{2}}{v_{T}^{2}+v^{2}}\right)$ from port i)

$$
\therefore \frac{1}{2} \ln 2=\ln \left(\frac{2 v_{T}^{2}}{v_{t}^{2}+v^{2}}\right)
$$

$\therefore \frac{2 v_{r}^{2}}{v_{r}^{2}+v^{2}}=2^{\frac{1}{2}}=1+\sin \left(\frac{2 g}{v_{r}} t\right)$ from part r)
rearranging gives $T=\frac{V_{T}}{2 g} \sin ^{-1}(\sqrt{2}-1)$

(b) i) $P(E)=\frac{5}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5}=\frac{5!}{5^{5}}=\frac{24}{625}$
ii) $P(E)=1-\frac{5!}{5^{5}}=\frac{601}{625} \checkmark$
iii) $\frac{5!}{2!} / 5^{5}=\frac{12}{625}$
iv) Given that there can be also double 2^{\prime}, 3^{\prime} s or 4^{\prime} s when one ball is not selected, there are $4 \times \frac{5}{2}$! ways of leaving out the five. As each of the other ${ }^{2}$! numbers can be left out, there are $5 \times 4 \times 5$! permulations of exactly one ball not being selected $\frac{2}{2}!\quad \therefore P(E)=\left(20 \times \frac{5}{2!}\right) \div J^{5}=\frac{48}{125}$
(c)i)Since $s(a e, 0)$ sec $\alpha=\frac{O S}{O R}=\frac{a e}{a}=e$. $A t R, x=a \cos \alpha=\frac{a}{e}$
ii) $m_{O R}=\tan \alpha=\sqrt{\sec ^{2} \alpha-1}=\sqrt{e^{2}-1} \quad \therefore \quad \therefore R$ lies on directrix

$$
\therefore S R \text { is } y=\frac{-1}{\sqrt{e^{2}-1}}\left(x-a_{e}\right) \quad \therefore m_{R S}=\frac{-1}{\sqrt{e^{2}-1}}
$$

iii) $x=\operatorname{asg} \theta, y=b \tan \theta \quad \therefore b \sqrt{e^{2}-1}=-(a \sec \theta-a e)$
squaring: $b^{2}\left(e^{2}-1\right) \tan ^{2} \theta=a^{2}\left(\sec ^{2} \theta-2 \operatorname{esec} \theta+e^{2}\right)$ ard since $\frac{b^{2}}{a^{2}}=\left(e^{2}-1\right)$ fop hyperbola $\left(e^{2}-1\right)^{2}\left(\sec ^{2} \theta-1\right)=\sec ^{2} \theta-2 e \sec \theta+e^{2}$ Rearranging leads to q vadratic.
iv) If $S R$ is not a tangent to the hyperbola, the quadratic above will have $\left.\begin{array}{l}\text { two distinct real roots. } \\ \text { Product of Root }=\frac{e^{2}+\left(e^{2}-1\right)^{2}}{2} \text { and opposite sign if if }\left(2-e^{2}\right)<0 \text { ie } e^{2} \mid>2\end{array}\right\}$
Product of Roots $\left.=\frac{e^{2}+\left(e^{2}-1\right)^{2}}{e^{2}\left(2-e^{2}\right)} \begin{array}{l}\text { so roots have same sign if }\left(2-e^{2}\right)>0 \text { ie } \\ \text { and opeosile sign if }\left(2-e^{2}<0\right. \\ \therefore \text { Same branch al } p \text { is } e^{2}<2\end{array}\right\}$
\therefore Same branch al p is $e^{2}<2$
\therefore opposite branch to P if $e^{2}>2$

Question 16
(a) When $n=1$, L.H.S $=F_{0}$

$$
=2^{\left(2^{0}\right)}+1
$$

$$
=3
$$

$$
\begin{aligned}
R \cdot H \cdot S & =F_{1}-2 \\
& =2^{\left(2^{\prime}\right)}+1-2 \\
& =3
\end{aligned}
$$

\therefore statement is true when $n=1$.
Assume the statement is true for $n=k$, some fixed positive

$$
\text { ie,. } F_{0} \times F_{1} \times F_{2} \times \ldots \times F_{k-1}=F_{k}-2
$$

When $n=k+1$, L.H.S $=F_{0} \times F_{1} \times F_{L} \times \ldots \times F_{n-1}$

$$
\begin{aligned}
& =F_{0} \times F_{1} \times F_{2} \times \ldots \times F_{k-1} \times F_{k} \\
& =\left(F_{k}-2\right) \times F_{k} \text { by assumption } \\
& =\left(F_{k}\right)^{2}-2 F_{k} \\
& =\left(2^{2^{k}}+1\right)^{2}-2\left(2^{2^{k}}+1\right) \\
& =2^{2 \times 2^{k}}+2 \times 2^{2^{k}}+1-2 \times 2^{2 k}-2 \\
& =2^{2^{k+1}}+1-2 \\
& =\left(2^{2^{n}}+1\right)-2 \\
& =F_{n}-2 \text { as required }
\end{aligned}
$$

It statement is true for $n=k$, it has been proved true for $n=k \rightarrow$,
Since trave for $n=1$, then proved true for $n=2,3,4 \ldots$.
(b) Considering the first three and last three throws separately',
the are: Equal tails, More Tails, Less Tails

Taking $P($ Equal Tails $)=P(1 \mathrm{H})_{6}+P(2 H)+P(3 H)+P(O H)$

$$
\begin{aligned}
& =9\left(\frac{1}{2}\right)^{6}+9\left(\frac{1}{2}\right)^{6}+\left(\frac{1}{2}\right)^{6}+\left(\frac{1}{2}\right)^{6} \\
& =\frac{20}{64}
\end{aligned}
$$

$$
\begin{aligned}
\therefore P(\text { More tails in first } 3 \text { throws }) & =\frac{1}{2} \times\left(1-\frac{20}{64}\right) \\
& =\frac{11}{32}
\end{aligned}
$$

(c) (i)

By DeMoivre's theorem,

$$
\begin{aligned}
& x^{k}=(\cos \theta+i \sin \theta)^{k}=\cos k \theta+i \sin k \theta \\
& x^{-k}=(\cos \theta+i \sin \theta)^{-k}=\cos (-k \theta)+i \sin (-k \theta)=\cos k \theta-i \sin k \theta \\
& x^{k}+x^{-k}=\cos k \theta+i \sin k \theta+\cos k \theta-i \sin k \theta
\end{aligned}
$$

$$
=2 \cos k \theta
$$

(ii)

$$
\begin{aligned}
&\left(x+\frac{1}{x}\right)^{2 n}=\binom{2 n}{0} x^{2 n}+\binom{2 n}{1} x^{2 n-2}+\binom{2 n}{2} x^{2 n-4}+\ldots+\binom{2 n}{n}+\ldots+\binom{2 n}{2 n-2} \frac{1}{x^{2 n-4}}+\binom{2 n}{2 n-1} \frac{1}{x^{2 n-2}}+\binom{2 n}{2 n} \frac{1}{x^{2 n}} \\
&=\binom{2 n}{0} x^{2 n}+\binom{2 n}{1} x^{2 n-2}+\binom{2 n}{2} x^{2 n-4}+\ldots+\binom{2 n}{n}+\ldots+\binom{2 n}{2} \frac{1}{x^{2 n-1}}+\binom{2 n}{1} \frac{1}{x^{2 n-2}}+\binom{2 n}{0} \frac{1}{x^{2 n}} \quad \sqrt{2} \text { ex passion } \\
&\left(x+\frac{1}{x}\right)^{2 n}=\binom{2 n}{0}\left(x^{2 x}+\frac{1}{x^{2 n}}\right)+\binom{2 n}{1}\left(x^{2 n-2}+\frac{1}{x^{2 n-2}}\right)+\binom{2 n}{2}\left(x^{2 n-4}+\frac{1}{x^{2 n-1}}\right)+\ldots+\binom{2 n}{n-1}\left(x^{2}+\frac{1}{x^{2}}\right)+\binom{2 n}{n} \quad\binom{2 n}{k} \quad \text { of of } \\
& \text { identify. }
\end{aligned}
$$

(iii).

Using the result from part $\mathrm{i}, x^{k}+\frac{1}{x^{k}}=2 \cos k \theta$ in the identity from part ii: $(2 \cos \theta)^{2 n}=\binom{2 n}{0}(2 \cos 2 n \theta)+\binom{2 n}{1}(2 \cos (2 n-2) \theta)+\binom{2 n}{2}(2 \cos (2 n-4) \theta)+\ldots+\binom{2 n}{n-1}(2 \cos 2 \theta)+\binom{2 n}{n}$

Dividing both sides by 2 :
$2^{2 n-1} \cos ^{2} \theta=\cos 2 n \theta+\binom{2 n}{1} \cos (2 n-2) \theta+\binom{2 n}{2} \cos (2 n-4) \theta+\ldots+\binom{2 n}{n-1} \cos 2 \theta+\frac{1}{2}\binom{2 n}{n}$
(iv)

$$
\int_{\theta}^{2 \pi} 2^{2 n-1} \cos ^{2 n} \theta d \theta=\int_{0}^{2 n} \cos 2 n \theta+\binom{2 n}{1} \cos (2 n-2) \theta+\binom{2 n}{2} \cos (2 n-4) \theta+\ldots+\binom{2 n}{n-1} \cos 2 \theta+\frac{1}{2}\binom{2 n}{n} d \theta
$$

Since $\int_{0}^{2 \pi} \cos k \theta d \theta=0$ for all even integers k, all the integrals on the right hand side are zero except for the constant term.
$\int_{0}^{2 \pi} 2^{2 n-1} \cos ^{2 \pi} \theta d \theta=\int_{0}^{2 \pi} \frac{1}{2}\binom{2 n}{n} d \theta$

$$
\begin{aligned}
& =\left[\frac{1}{2}\binom{2 n}{n} \theta\right]_{0}^{2 \pi} \\
& =\pi\binom{2 n}{n}
\end{aligned}
$$

Dividing both sides by $2^{2 n-1}$,

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=\frac{\pi}{2^{2 n-1}}\binom{2 n}{n} .
$$

