

Student Number

Knox Grammar School

2014

Trial Higher School Certificate Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Subject Teachers Mr I Bradford Mr D Sedgman

Setter

Mr M Vuletich

This paper MUST NOT be removed from the examination room

Number of Students in Course: 34

Total Marks – 100

Section I 10 Marks

- Answer Questions 1 to 10
- Use the Multiple Choice Answer Sheet

Section II 90 Marks

- Answer Questions 11 to 16
- All questions are worth 15 marks
- Answer each question in a separate Writing Booklet.

This page has been left intentionally blank

Section I

10 Marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1. Which of these ellipses has foci $(0, \pm 3)$?
 - A) $8x^2 + y^2 = 8$ C) $16x^2 + 25y^2 = 400$ B) $5x^2 + 4y^2 = 20$ D) $25x^2 + 16y^2 = 400$
- 2. Find $\int \cot x \, dx$

A)
$$-\csc^2 x + c$$
 B) $-\ln(\csc x) + c$ C) $\frac{1}{2}\cot^2 x + c$ D) $\ln(\sec x) + c$

- 3. The speed of a particle moving in a horizontal circle with radius 6 cm is 48π cm s⁻¹.
 How many revolutions per second does this particle make?
 A) 4 B) 240 C) 480 D) 480π
- 4. The polynomial equation $x^3 2x^2 + 3 = 0$ has roots α , β and γ . What is the value of $\alpha^3 + \beta^3 + \gamma^3$?

A)
$$-2$$
 B) -1 C) -8 D) 8

5. Evaluate
$$\int_{1}^{e} \frac{dx}{x\sqrt{1+(\ln x)^{2}}}$$
.
A) $-\frac{\pi}{4} + \tan^{-1}e$ B) $\ln\left(\frac{e+\sqrt{e^{2}+1}}{1+\sqrt{2}}\right)$ C) $\frac{\pi}{4}$ D) $\ln(1+\sqrt{2})$

6. What is the simplest expression of

$$\operatorname{Arg}\left(\frac{1}{1+\mathrm{i}}\right) + \operatorname{Arg}\left(\frac{1}{(1+\mathrm{i})^2}\right) + \operatorname{Arg}\left(\frac{1}{(1+\mathrm{i})^3}\right) + \dots + \operatorname{Arg}\left(\frac{1}{(1+\mathrm{i})^{20}}\right)?$$

A) $-\frac{\pi}{2}$ B) $-\frac{\pi}{4}$ C) $\frac{\pi}{4}$ D) $\frac{\pi}{2}$

7. The Argand diagram below shows the complex numbers α and αz^2 .

Which of the following best represents the positions of z and α ?

8. The diagram shows a shape made by 13 points.

How many triangles can be made with these points as vertices?

- A) ${}^{13}C_3 3^5C_3 3$ C) ${}^{13}C_3 - 3^5C_3 - 4$ B) ${}^{13}C_3 - 2^5C_3 - 4$ D) ${}^{13}C_3 - 3^5C_3 - 5$
- 9. The base of a solid is the region bounded by the parabola $x = 4y y^2$ and the y axis. Vertical cross sections are right angled isosceles triangles perpendicular to the x axis as shown.

Which integral represents the volume of this solid?

A)
$$\int_{0}^{4} 2\sqrt{4-x} \, dx$$
 B) $\int_{0}^{4} \pi (4-x) \, dx$ C) $\int_{0}^{4} (8-2x) \, dx$ D) $\int_{0}^{4} (16-4x) \, dx$

End of Section I

Section II

90 Marks Attempt Questions 11-16 Allow about 2 hours and 45 minutes for this section

Answer each question in a separate writing booklet. Extra writing booklets are available.

All necessary working should be shown in every question.

Questi	ion 11	(15 marks) Use a SEPARATE writing booklet	Marks
(a)	The co	omplex number z is given by $z = -\sqrt{3} + i$.	
	(i)	Express z in modulus argument form.	2
	(ii)	Hence show that $z^7 + 64z = 0$	2
(b)	Find v	alues A, B and C such that:	
	$\overline{\left(2-x\right)}$	$\frac{8(1-x)}{{}^{2})(2-2x+x^{2})} = \frac{A-Bx}{(2-2x+x^{2})} - \frac{Cx}{(2-x^{2})}$	3
(c)	Factor	ise $z^2 + 4iz + 5$ over the complex field.	1
(d)	Using	the substitution $x = 2\sin\theta$, show that	4
	$\int_{-1}^{\sqrt{3}} \frac{1}{\sqrt{4}}$	$\frac{x^2}{1-x^2}dx = \pi - \sqrt{3}$	

(e) Sketch the region in the Argand diagram defined by $z\overline{z} + 2(z + \overline{z}) \le 0$ 3

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int \frac{dx}{1 + \sin x + \cos x}$. 3

(b) Consider the equation $z^3 + mz^2 + nz + 6 = 0$, where *m* and *n* are real. It is known that 1-i is a root of the equation. Find the values of *m* and *n*.

(c) The area bounded by the curve
$$y = \sec^2 x$$
, the *x*-axis, 4

$$x = \frac{\pi}{4}$$
 and $x = \frac{\pi}{3}$ is rotated about the line $x = \pi$ to form a solid.

Use the method of cylindrical shells to find the volume of the solid.

Question 12 continues on page 8

Question 12 (continued)

(d) The points $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right)$, where $|p| \neq |q|$, lie on the rectangular hyperbola with equation $xy = c^2$.

The tangent to the hyperbola at P intersects the x-axis at A and the y-axis at B. Similarly, the tangent to the hyperbola at Q intersects the x-axis at C and the y-axis at D.

(i)	Show that the equation of the tangent at <i>P</i> is $x + p^2y = 2cp$.	2
(ii)	Show that A , B and O are on a circle with centre P .	2
(iii)	Prove that BC is parallel to PO.	1

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) (i) Let
$$I_n = \int_0^1 x^n \sqrt{1 - x^3} \, dx$$
 for $n \ge 2$. Show that:

$$I_n = \frac{2n - 4}{2n + 5} \times I_{n-3} \text{ for } n \ge 5$$

(ii) Hence find
$$I_8$$
 2

(b) The graph of a certain function y = f(x) is shown below.

Sketch the following curves:

(i)
$$y = \frac{1}{f(x)}$$

(ii) $y = \ln [1 - f(x)]$

(ii)
$$y = \ln [1 - f(x)]$$
 2

(iii)
$$y^2 = 1 + f(x)$$
 2

Question 13 continues on page 10

Question 13 (continued)

(c) Two circles C_1 and C_2 meet at P and S. Points A and R lie on C_1 and points B and Q lie on C_2 . AB passes through S and AR produced meets BQ produced at C, as shown in the diagram.

- (i) Prove that $\angle PRA = \angle PQB$.
- (ii) Prove that the points P, R, Q and C are concyclic.

End of Question 13

2

Question 14 (15 marks) Use a SEPARATE writing booklet

(a)

PQ is a smooth vertical rod. Particle A of mass m is attached to a point P by a string of length l and A is also attached by a second string of length l to a smooth ring B of mass M which is free to slide on the rod PQ without friction. A is set in motion in a horizontal circle about PQ with constant angular velocity ω . B is in equilibrium.

 T_1 and T_2 are the tensions in the strings *AP* and *AB* respectively when *AP* makes an angle θ with the vertical.

(ii) Hence show that
$$T_1 - T_2 = \frac{mg}{\cos\theta}$$
, $T_1 + T_2 = ml\omega^2$ and $T_2 = \frac{Mg}{\cos\theta}$. 2

(iii) Deduce that
$$d = \frac{2g}{\omega^2} \left(1 + 2\frac{M}{m} \right)$$
. 2

Question 14 continues on page 12

Question 14 (continued)

- (b) A particle's resistance to motion in a medium is proportional to mv^2 where m is the particle's mass and v is its velocity at time t.
 - (i) Initially the particle is projected downwards in the medium where the speed of projection is equal to the terminal velocity V_T .

Show that
$$V_T^2 = \frac{g}{k}$$
 where k is the constant of proportionality.

The particle is now projected vertically <u>upwards</u> in the same medium.

(ii) Show that
$$x = \frac{V_T^2}{2g} \ln\left(\frac{2V_T^2}{V_T^2 + v^2}\right)$$
. 2

(iii) Hence show that
$$H = \frac{V_T^2 \ln 2}{2g}$$
 where *H* represents the particle's maximum height above its point of projection.

(iv) Show that during the particle's ascent
$$v = V_T \tan\left(\frac{\pi}{4} - \frac{g}{V_T}t\right)$$
. 2

(v) Hence show that
$$\frac{2V_T^2}{V_T^2 + v^2} = 1 + \sin\left(\frac{2g}{V_T}t\right)$$
. 2

(vi) If *T* is the time taken to achieve *half* its maximum height, show that $T = \frac{V_T}{2g} \sin^{-1} \left(\sqrt{2} - 1\right).$

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet

(a) (i) If
$$0 \le a \le b$$
 show that $\frac{a}{1+a} \le \frac{b}{1+b}$ 2

(ii) Hence or otherwise show that
$$\frac{a}{1+a} \le \frac{b}{1+b} + \frac{c}{1+c}$$
 where $a \le b+c$ and 2
 $a,b,c \ge 0$

(b) An urn contains 5 balls numbered from 1 to 5. A ball is chosen at random and its number is noted. The ball is then returned to the urn. This is done a total of five times.

- (iii) What is the probability of obtaining 1,1,2,3,4 in any order? 1
- (iv) What is the probability that exactly one of the balls is not selected? 2

(c)

S is the focus of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, $a \neq b$, which lies on the positive x-axis. R is a point on the auxiliary circle of the hyperbola such that R lies in the first quadrant and SR is tangent to the auxiliary circle. The eccentricity of the hyperbola is e and $\angle ROS = \alpha$.

(i) Show that *R* lies on a directrix of the hyperbola. 1

(ii) Show that SR has equation
$$y = -\frac{1}{\sqrt{e^2 - 1}} (x - ae)$$
. 1

(iii) If SR meets the hyperbola at the point $(a \sec \theta, b \tan \theta)$, show that $e^2(2-e^2)\sec^2\theta - 2e\sec\theta + \{e^2 + (e^2-1)^2\} = 0.$

(iv) By considering this as a quadratic equation in $\sec \theta$, deduce that *SR* intersects the hyperbola in two distinct points *P* and *Q*, lying on the same branch of the hyperbola if $e^2 < 2$ and lying on opposite branches if $e^2 > 2$.

End of Question 15

(a) The *n*th Fermat number, F_n , is defined by $F_n = 2^{2^n} + 1$ for n = 0, 1, 2, 3..., 4 where 2^{2^n} means 2 raised to the power of 2^n .

Prove by mathematical induction, that for all positive integers:

$$F_0 \times F_1 \times F_2 \times \ldots \times F_{n-1} = F_n - 2$$

- (b) A coin is tossed six times. What is the probability that there will be more tails on the first three of the six throws than on the last three throws?
- (c) Let $x = \cos \theta + i \sin \theta$ for $0 < \theta < 2\pi$, and let *n* be a positive integer.

(i) Show that
$$x^k + \frac{1}{x^k} = 2\cos k\theta$$
, for any positive integer k. 2

(ii) Show that

$$\left(x + \frac{1}{x}\right)^{2n} = \left(x^{2n} + \frac{1}{x^{2n}}\right) + \binom{2n}{1} \left(x^{2n-2} + \frac{1}{x^{2n-2}}\right) + \binom{2n}{2} \left(x^{2n-4} + \frac{1}{x^{2n-4}}\right) + \dots + \binom{2n}{n-1} \left(x^2 + \frac{1}{x^2}\right) + \binom{2n}{n}.$$
3

(iii) Deduce that

(iv)

Hence show that
$$2^{2n-1}\cos^{2n}\theta = \cos 2n\theta + {\binom{2n}{1}}\cos(2n-2)\theta + {\binom{2n}{2}}\cos(2n-4)\theta + \dots + {\binom{2n}{n-1}}\cos 2\theta + \frac{1}{2}{\binom{2n}{n}}.$$
Hence show that
$$\int_{0}^{2\pi}\cos^{2n}\theta \,d\theta = \frac{\pi}{2^{2n-1}}{\binom{2n}{n}}.$$

End of Paper

3

1

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE :
$$\ln x = \log_e x, \quad x > 0$$

2014 Year 12 Mathematics Extension 2 HSC Task 4 Trial HSC Solutions

Suggested Solution (s)	Com-	Suggested Solution (s)	Commen
	ments		ts
1. D 2. B 3. A 4. B 5. D 6. A 7. C 8. C 9. C 10. D 1. D		5. D $u = \ln x, \therefore du = \frac{dx}{x}$	
$25x^{2} + 16y^{2} = 400$ is equivalent to $\frac{x^{2}}{16} + \frac{y^{2}}{25} = 1$ which has its foci on the y axis. $e^{2} = 1 - \frac{16}{25} = \frac{9}{25}$, so $e = \frac{3}{5}$ focal length is ae, $ae = 5 \times \frac{3}{5} = 3$ So foci are $(0, \pm 3)$		$\int_{1}^{e} \frac{dx}{x\sqrt{1+\ln^{2} x}}$ $= \int_{0}^{1} \frac{du}{\sqrt{1+u^{2}}} = \left[\ln(u+\sqrt{1+u^{2}})\right]_{0}^{1}$ $= \ln(1+\sqrt{2}) - \ln 1$	
2 D		$= \ln\left(1 + \sqrt{2}\right)$	
2. B $\int \cot x dx = \int \frac{\cos x}{\sin x} dx$ $= \ln(\sin x) + c$ $= \ln(\frac{1}{cosec x}) + c$ $= \ln 1 - \ln(\csc x) + c$ $= -\ln(\csc x) + c$ 3. A As v = r ω then $48\pi = 6\omega$ that is $\omega = 8\pi$ rad/s Now, the angular velocity is 8π and as each revolution is 2π radians then the particle makes 4 revolutions per second.		6. A Arg $\left(\frac{1}{1+i}\right) = \operatorname{Arg} 1 - \operatorname{arg}(1+i) = 0 - \frac{\pi}{4} = -\frac{\pi}{4}$ Arg $\left(\frac{1}{(1+i)^2}\right) = \operatorname{Arg} 1 - \operatorname{arg}(1+i)^2 = 0$ $2 \times \frac{\pi}{4} = -\frac{\pi}{2}$ Arg $\left(\frac{1}{(1+i)^{20}}\right) = \operatorname{Arg} 1 - \operatorname{arg}(1+i)^{20} = 0$ $20 \times \frac{\pi}{4} = -\frac{20\pi}{4}$ Let S = Arg $\left(\frac{1}{1+i}\right) + \operatorname{Arg}\left(\frac{1}{(1+i)^2}\right) + \dots +$	
4. B $x^{3}-2x^{2}+3=0 \text{ that is } x^{3}-2x^{2}+0x+3=0$ This means $\alpha + \beta + \gamma = 2$ $\alpha\beta + \beta\gamma + \alpha\gamma = 0 \text{ and } \alpha\beta\gamma = -3$ Now as α is a solution of the equation then $\alpha^{3}-2\alpha^{2}+3=0$, so $\alpha^{3}=2\alpha^{2}-3$ Similarly, $\beta^{3}=2\beta^{2}-3$ & $\gamma^{3}=2\gamma^{2}-3$ Therefore, $\alpha^{3}+\beta^{3}+\gamma^{3}=2(\alpha^{2}+\beta^{2}+\gamma^{2})-9$ But $(\alpha + \beta + \gamma)^{2} = \alpha^{2}+\beta^{2}+\gamma^{2}+\gamma^{2}+2(0)$ that is $\alpha^{2}+\beta^{2}+\gamma^{2}=4$ Hence, $\alpha^{3}+\beta^{3}+\gamma^{3}=2(4)-9=-1$		Arg $\left(\frac{1}{(1+i)^{20}}\right)$ = $-\frac{\pi}{4} - \frac{2\pi}{4} - \frac{3\pi}{4} - \frac{20\pi}{4}$ = $-\frac{\pi}{4} (1+2+3+\cdots +20)$ (This is an Arithmetic Series with 20) terms, the first is $a = 1$ and the last being 20, so the sum is $\frac{20}{2}(1+20) = 210$) Therefore, $S = -\frac{\pi}{4} (210) = -52\frac{1}{2}\pi$. But an Arg is always between $-\pi$ and π Hence, $S = 26$ revolutions $-\frac{\pi}{2} = -\frac{\pi}{2}$	

2014 Year 12 Mathematics Extension 2 Task 4 Trial HSC SOLUTIONS

Suggested Solution (s)			
Question II	$(d) x = 2\sin\theta x = -1, \ \theta = -\frac{\pi}{6}$	1	
(a) i) $2c_{15}\frac{5\pi}{6}$	$\frac{dx}{d\theta} = 2\cos\theta x = 5\overline{3}, \theta = \frac{\pi}{3}$	¥	
(i) $z^7 + 64 z$ /	So $\int \sqrt{3} \frac{x^2}{x^2} dx$		
$= 2^{7} cis \frac{35\pi}{6} + 64 (2 cis \frac{5\pi}{6})^{4} (D MT)$	→-1 ↓4 - x ²		
$= 128\left(\operatorname{Cis}\left(-\frac{\pi}{6}\right) + \operatorname{Cis}\left(\frac{5\pi}{6}\right)\right)$	$= \int_{-\frac{\pi}{2}}^{3} \frac{4\sin^2\theta}{16\pi^2} \cdot 2\cos\theta \cdot d\theta$		
$= 128 \left(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} + \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$	6 14(1- Sinte		
$= 129 \left(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} - \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)^{1}$	= $4\int_{-\pi}^{3} \frac{\sin^2\theta}{\cos^2\theta} \cos^2\theta d\theta V$		
$= 122 \times 0$ $as sin \Theta = sin (180-0)$			
-0 $\sin(-\theta) = -\sin \theta$	$=4\int_{1}^{3}\frac{1}{2}-\frac{1}{2}\cos 2\theta d\theta \sqrt{\frac{1}{2}}$		
(0)(10-0)=-(0)0			
(6) Let $g(1-x) \equiv (A - Bx)(2 - x^2) -$	$= 2 \left[0 - \frac{1}{2} \sin 2\theta \right] \frac{\pi}{8} e^{1/2}$	aluation	
$C_{2} \left(2 - 2x + x^{2}\right)$	$= 2 \int_{2}^{\frac{\pi}{2}} - \frac{1}{2} \sin \frac{2\pi}{3} - (-\frac{\pi}{2} - \frac{1}{2} \sin (-\frac{\pi}{2}))$	F)]	
x=0 $g=2A$ $A=4$	= 2 [= - [= - [=]		
y = 1 0 = # - B - C	= T-13		
x = -1 $16 = 4 + B + 5C$	(c) $2\overline{7} + 2(2+2) \leq 0$		
0-2 $B+5c = 12$ $-2-4c = -8$ $(-c = 2)$ $R = 2$	If = x + iy		
A = 4 R = 2, C = 2	(x+iy)(x-iy)+2(x+iy+x-	iy) 50	
$(c) = \frac{2}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3} $	x2+y2+4x 50		
= (7 + 5i)(2 - i) / 2 / 5i	$x^{2} + 4x + 4 + y^{2} \le 4$		
	$(2L+2)^{2} + y^{2} \leq 4$		
		aoram	
		→	
		יזנ	

۰.

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 12 (a) $t = \tan\left(\frac{2t}{2}\right)$ $dx = \frac{2dt}{1+t^2}$ $\int \frac{dx}{1+\sin x + \cos x}$ $= \int \frac{1}{1+\frac{2t}{1+t^2}} \cdot \frac{2d}{1+t^2}$ $= \int \frac{2}{1+\frac{2t}{1+t^2}} \cdot \frac{1-t^2}{1+t^2} \cdot \frac{2d}{1+t^2}$ $= \int \frac{2}{1+t^2+2t+1-t^2} dt$		$Cuppende bound (5)$ (c) (x,y) T T T $Using method of cylindrid shells: AV = 2\pi (\pi - x) y Sx V = 2\pi (\pi - x) y Sx V = 2\pi \int_{T}^{T} (\pi - x) \cdot sec^{2}x dx = 2\pi^{2} \int_{T}^{T} \frac{\pi}{3} sec^{2}x dx - \frac{\pi}{4} = 2\pi^{2} \int_{T}^{T} \frac{\pi}{4} sec^{2}x dx - \frac{\pi}{4}$	d) d_{3c}

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
(d) i) $Xy = c^{2}$ $\frac{d}{dx}(xy) = 0$ $\frac{d}{dx}(xy) = 0$ $\frac{d}{dx} = -\frac{4}{y}$ $\frac{d}{$		(iii) Similarly QD = QC Thus $\frac{AP}{AB} = \frac{DQ}{QC} = \frac{L}{2}$ $\therefore AD PQ Bc$ (Intercepts on transversals cut by parallel lines are in the same ratio).	

2014 Year 12 Mathematics Extension 2 Unit Task 4 Trial HSC SOLUTIONS

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 13 (a) (i) Let $I_n = \int_{-\infty}^{\infty} x^2 (1 - x^3)$	[±] dx	$\int_{5} I_{5} = \frac{10-4}{10+5} \cdot I_{2}$	
where $u = x^{n-2}$ $v' = x^{2}(1-x^{3})$		$= \frac{6}{15} \times \frac{1}{9}$	
$\mu' = (n-2) x^{-1} x^{-1} = -\frac{2}{q} (1-\frac{1}{q}) x^{-1} = \sqrt{\frac{2}{q}} x^{-2} + \frac{2}{q} x^{-$	-x ⁻)	$I_{g} = \frac{16 - 4}{11 + 5} \cdot \overline{1}_{5}$	
$ = \frac{1}{9} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + \frac{2}{9} \left(\frac{n-2}{2} \right) \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right)$	$(x^3)^{\frac{3}{2}} dx$	$= \frac{12}{21} \times \frac{4}{45}$	
$= \frac{2}{q}(n-1) \int_{x}^{1} \frac{1}{(1-x^{3})(1-x^{3})} (1-x^{3})(1-x^{3})$	x ²) ² dr	$=\frac{16}{315}$ (b)	
$=\frac{2}{9}(n-2) \begin{cases} \int_{0}^{1} x^{n-3} (1-x^{3})^{\frac{1}{2}} dx \end{cases}$			asymptotes shape
$-\int_{0}^{1} x^{m} (1-$	23) ¹ dsc		
$=\frac{1}{9}(n-2) \ge I_{n-2} - I_n \le$		(ii) 471 1	
$ \frac{I_{n} + \frac{1}{q}(n-1)I_{n}}{gI_{n} + (2n-1)I_{n}} = \frac{1}{q}(n-1)I_{n} = \frac{1}{q}(n-$	(-2) = 1 - 3 (-3) = 1 - 3		shope.
$(2n+5)I_n = (2n-4)I$	n-3	4 pr 1	
$ I_n = \frac{2n - 4}{2n + 5} I_{n - 3}$	v progr		Vasjmptotes Vshape
$ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ = -\frac{1}{4} \left[\left(1 - 2^{3} \right)^{2} d_{n} \\ \\ \end{array} \right] $			
$=\frac{2}{9}$			

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 13 (Continued) (c)G)Let LPRA = X LPSA = X (L's at circum. subtended by arc PA are equal)			
: LPSB=180-& (Adjacent supplementary L's On a straight line) : LPQB=& (Opp. L's of	/		
i) LPRA = LPQB (Adjacent supplementary	ary)		
L'S on a straight line) LPQC = 180 - a (Adjacent Supplemention L's un a straight line) Since LPRC = LPQC			
by PC, which means P, R, Q and C are concycl			

2014 Year 12 Mathematics Extension 2 HSC Task 4 Trial HSC Solutions

Ċ.

.

Suggested Solution (s)	Comments
(b) (i) Downwards	
l+ Img Imkv ²	
. mix = mg-mkv is resultant force	
At terminal velocity $\dot{x} = 0$.	
$kV_{7}^{2} = g$ $V_{7}^{2} = -9$	
ii) Upwards	
T+ Jung Junker?	
- i misi = -mg-mlev is resultant forse	
$\frac{dv}{dx} = -(g+kv^2)$	
$\frac{dx}{dv} = \frac{-v}{g+kv^2}$	
$x = -\frac{1}{2k}\int \frac{2kv}{g+kv^2} dv$	
at $x = 0$, $v = V_T$ $c = \frac{1}{k} \ln (g + k v_T^2) + C$	
So $x = \frac{1}{2kr} \ln \frac{g + krV_T^2}{g + krV_T} = g = krV_T^2$	
$= \frac{1}{2kr} \ln \frac{kV_{T}^{2} + krV_{T}^{2}}{kV_{T}^{2} + kr^{2}} ad \frac{1}{kr} = \frac{V_{T}^{2}}{g}$	
$= \frac{V_{\tau}}{2g} \ln \left(\frac{2V_{\tau}}{V_{\tau}^{2} + v^{2}} \right)$	

Suggested Solution (s)	Comments
iii) At maximum height x = H, v = 0	
$H = \frac{V_r^2}{\frac{2g}{g}} \ln \left(\frac{2V_r^2}{V_r^2 + 0} \right)$	
$=\frac{V_{T}^{2}}{2g}\ln\left(2V_{T}^{2}\right)$	
IV/ Starting with je = - (g + kv2)	
$\frac{dt}{dv} = \frac{-1}{k(\frac{q}{k} + \sigma^2)}$	
$\therefore t = -\frac{1}{k} \int \frac{1}{V_{+}^{2} + N^{2}} dV$	
$= -\frac{1}{k} \cdot \frac{1}{V_{+}} + an'\left(\frac{V_{+}}{V_{+}}\right) + C$	
at $t = 0$ $v = V_{T}$ $C = \frac{1}{1 + 1} + \frac{1}{1 + 1} + \frac{1}{1 + 1}$	
So $t = \frac{1}{kV_T} \left(\frac{\pi}{4} - \frac{1}{V_T} \right)$	
$-\cdot tan'\left(\frac{v}{v_T}\right) = \frac{\pi}{4} - kv_T t$	
v = vtan (=-kv+t) but kv=	9
:, $V = V_T \tan \left(\frac{\pi}{V_T} - \frac{9}{V_T} t \right)$ as required	۲r

2014 Year 12 Mathematics Extension 2 Task 4 Trial HSC SOLUTIONS

Suggested Solution (s)	Comments
(v) Algebraically and using trig identities	
$\frac{v}{v_r} = tan\left(\frac{\pi}{4} - \frac{9}{v_r}t\right)$	
$\frac{V}{V_{\tau}^{2}} = +\alpha n^{2} \left(\frac{\pi}{4} - \frac{9}{V_{\tau}} \star \right)$	
So $1 + \frac{3}{V_{1}^{2}} = 1 + \tan^{2}(\frac{4}{V_{1}} - \frac{9}{V_{1}}t)$	
$- 1 + \frac{7^{2}}{V_{T}^{2}} = \sec^{2}\left(\frac{4}{V_{T}} - \frac{9}{V_{T}}t\right)^{2}$	
$\frac{V_{+}^{2} + v^{2}}{V_{+}^{2}} = \sec^{2}\left(\frac{\pi}{4} - \frac{q}{V_{+}}t\right)$	
reciprocals $\frac{V_T^2}{\frac{1}{V_T}} = \cos^2\left(\frac{\pi}{V_T} - \frac{9}{V_T}k\right)$	
$= \frac{1}{2} + \frac{1}{2} \cos \left(2 \left(\frac{\pi}{4} - \frac{9\pi}{\sqrt{7}} \right) \right) \right)$	
$\frac{2V_{t}}{V_{t}^{2}+v^{2}} = 1 + \cos\left(\frac{\pi}{2} - \frac{2gt}{V_{t}}\right)$	
= $1 + \sin\left(\frac{2gt}{V_T}\right)$ as required.	
Alternatively,	
$x = \int V_r \tan \left(\frac{\pi}{4} - \frac{9}{v_r} t \right) dt$	
$= V_T \int \frac{\sin\left(\frac{\pi}{4} - \frac{9}{V_T} t\right)}{\cos\left(\frac{\pi}{4} - \frac{9}{V_T} t\right)} dt$	
$= V_{T} \times \frac{-V_{T}}{g} \times \frac{-\int -\sin\left(\frac{\pi}{2} - \frac{g}{2}\right) \frac{-g}{v_{T}}}{\cos\left(\frac{\pi}{2} - \frac{g}{2}\right)} dt$	

Suggested Solution (s)	Comments
$\int \log \log$	Comments Scorect Bracess
$V_{T} \frac{\ln 2}{4g} = \frac{V_{T}}{2g} \ln \left(\frac{2V_{T}}{V_{T}^{2} + V_{T}}\right) \text{ from part i}$	
$\frac{1}{2}\ln 2 = \ln \left(\frac{2v_{T}^{2}}{v_{T}^{2} + v_{T}}\right)$	
$\frac{2V_r}{V_r^2 + v_r} = 2\frac{1}{2} = 1 + \sin\left(\frac{2g}{V_r}t\right) \text{ from part}$	· v)
reorronging gives 1 = 29 sin (12-1)	

2014 Year 12 Mathematics Extension 2 Task 4 Trial HSC SOLUTIONS

Suggested Solution (s)	Comments
$\frac{y_{vestion 15}}{(a) i) \text{ since } a \le b}$ $a + ab \le b + ab$ $a + ab \le b + ab$ $a(1 + b) \le b(1 + a)$ $a = \frac{b}{1 + b}$ $a = \frac{b}{1 + b}$ $a = \frac{b}{1 + b + c}$	progres
(b) i) $P(E) = \frac{5}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5} = \frac{5!}{5^5} = \frac{24}{625}$ ii) $P(E) = 1 - \frac{5!}{5^5} = \frac{601}{625}$ iii) $\frac{5!}{2!} / 5^5 = \frac{12}{625}$ iv) Given that there can be also double 2's, 3's or 4's when one ball is not selected, there are $4 \times 5!$ ways of leaving out the five. As each of the other 2' numbers can be left out, there are $5 \times 4 \times 5!$ permulations of exactly one ball not being felected? $P(E) = (20 \times 5!) - 5=$	= <u>48</u>
(c)i) Since $S(ae_{1}c)$ secx = $\frac{\partial S}{\partial R} = \frac{ae}{a} = e$. At R_{1} , $x = acosd = \frac{a}{e}$ ii) $m_{0R} = fand = \sqrt{Sec^{2} - 1} = \sqrt{e^{2} - 1}$ $\therefore R_{1}$ lies on directric $r = SR_{1}$ is $y = -\frac{1}{\sqrt{e^{2} - 1}}$ (x-ae) $R_{1} = -\frac{1}{\sqrt{e^{2} - 1}}$ iii) $x = asec\theta$, $y = btan\theta$ is $b\sqrt{e^{2} - 1} = -(asec\theta - ae)$	/25
Squaring: $b(e^2-1)^2(se(^2\theta-2ese(\theta+e^2)))$ and since $\frac{b^2}{6^2} = (e^2-1)$ for $(e^2-1)^2(se(^2\theta-1)) = \beta e_1^2 - \beta - 2e se(\theta+e^2)$ Rearmoning leads to	avadratic.
iv) If SR is not a tangent to the hyperbola, the quadratic above will be two distinct real roots? So roots have same sign if $(2-e^2)>0$ is Product of Roots = $\frac{e^2 + (e^2 - 1)}{e^2 (2 - e^2)}$ and opposile sign if $(2-e^2) \times 0$ is	e ² <2

Suggested Solution (s)	Comments
Question 16	
(a) When $n = 1$, L.H.S = F, R.H.S = F, -2	
$= 2^{(2^{\circ})} + 1 = 2^{(2^{\circ})} + 1 - 2$	
= 3 = 3	
istatement is true when n=1.	
Assume the statement is true for n=k, some fixed positive	e .
$iq. F_b \times F_i \times F_2 \times \dots \times F_{k-1} = F_k - 2$	
When $m = k+1$, $L \cdot H \cdot S = F_0 \times F_1 \times F_2 \times \cdots \times F_{n-1}$	
= FoxF, x F_x x F + F + F + F + F + F + F + F + F + F	
= (Fk-2) × Fk by assumption V	
$= (F_k)^2 - 2F_k$	
$= (2^{2\frac{1}{4}}+1)^2 - 2(2^{2\frac{1}{4}}+1)$	
$= 2^{2 \times 2^{k}} + 2 \times 2^{2^{k}} + 1 - 2 \times 2^{2^{k}} - 2 \checkmark$	
$= 2^{2^{k+1}} + 1 - 2$	
$=(2^{2^{n}}+1)-2$	
= Fm-2 as required	
It statement is true for m=k, it has been proved true for r	= = +)
Since true for n=1, then proved true for n=2,3,4	
(b) Considering the first three and last three throws separate	17,
the are: Equal tails, More Tails, Less Tails V	
Taking $P(E_{qualTails}) = P(1H) + P(2H) + P(3H) + P(0H)$	
$= 9(\frac{1}{2})^{6} + 9(\frac{1}{2})^{6} + (\frac{1}{2})^{6} + (\frac{1}{2})^{6}$	
$=\frac{20}{64}$	
$P(\text{More tails in first 3 throws}) = \frac{1}{2} \times \left(1 - \frac{20}{64}\right)$	
$=$ $\frac{11}{32}$	

(iv)

$$\int_{0}^{1/2} 2^{2n-1} \cos^{2n} \theta \, d\theta = \int_{0}^{1/2} \cos 2n\theta + \binom{2n}{1} \cos (2n-2)\theta + \binom{2n}{2} \cos (2n-4)\theta + \dots + \binom{2n}{n-1} \cos 2\theta + \frac{1}{2}\binom{2n}{n} d\theta$$
Since $\int_{0}^{1/2} \cos k\theta \, d\theta = 0$ for all even integers k, all the integrals on the right hand side are zero except
for the constant term.

$$\int_{0}^{1/2} 2^{2n-1} \cos^{2n} \theta \, d\theta = \int_{0}^{1/2} \frac{1}{2}\binom{2n}{n} \, d\theta$$

$$= \left[\frac{1}{2}\binom{2n}{n}\right]_{0}^{1/2}$$

$$= \pi\binom{2n}{n}$$
Dividing both sides by 2^{2n-1} .

$$\int_{0}^{1/2} \cos^{2n} \theta \, d\theta = \frac{\pi}{2^{2n-1}}\binom{2n}{n}.$$