

## Knox Grammar School

## 2016

Trial Higher School Certificate Examination

Name: $\qquad$
Teacher:

## Year 12 Extension 2 <br> Mathematics

## General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- The official BOSTES Reference Sheet is provided
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.


## Section I ~ Pages 3-6

- 10 marks
- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II ~ Pages 7-13

- 90 marks
- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Teachers:
Mr Bradford (Examiner)
Ms Yun

Write your name on the front cover of each answer booklet
This paper MUST NOT be removed from the examination room.
Number of Students in Course: 26

## BLANK PAGE

## Section I

## 10 marks

Attempt questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 Which graph best represents the curve $y^{2}=x^{2}-2 x$.
(A)

(B)

(C)

(D)

$2 \quad$ What value of $z$ satisfies $z^{2}=7-24 i$ ?
(A) $4-3 i$
(B) $-4-3 i$
(C) $3-4 i$
(D) $\quad-3-4 i$

3 The Argand diagram shows the complex numbers $w, z$ and $u$, where $w$ lies in the first quadrant, $z$ lies in the second quadrant and $u$ lies on the negative real axis.


Which statement could be true?
(A) $u=z w$ and $u=z+w$
(B) $u=z w$ and $u=z-w$
(C) $z=u w$ and $u=z+w$
(D) $z=u w$ and $u=z-w$

4
If $y=x^{2}$ then $\int x d y=$
(A) $2 y^{3 / 2}+C$
(B) $\frac{2}{3} x^{3 / 2}+C$
(C) $2 y^{3}+C$
(D) $\frac{2}{3} x^{3}+C$

5 The angular speed of a disc of radius 5 cm is 10 revolutions per minute. What is the speed of a mark on the circumference of the disc?
(A) $50 \mathrm{~cm} \mathrm{~min}^{-1}$
(B) $\frac{1}{2} \mathrm{~cm} \mathrm{~min}^{-1}$
(C) $100 \pi \mathrm{~cm} \mathrm{~min}^{-1}$
(D) $\frac{1}{4 \pi} \mathrm{~cm} \mathrm{~min}^{-1}$

6 A particle is moving along a straight line so that initially its displacement is $x=1$, its velocity is $v=2$, and its acceleration is $a=4$.
Which is a possible equation describing the motion of the particle?
(A) $\quad v=2 \sin (x-1)+2$
(B) $\quad v=2+4 \log _{e} x$
(C) $v^{2}=4\left(x^{2}-2\right)$
(D) $\quad v=x^{2}+2 x+4$

7 The numbers $1,2, \ldots n$, for $n \geq 4$, are randomly arranged in a row.
What is the probability that the number 1 is somewhere to the left of the number 2 ?
(A) $\frac{1}{2}$
(B) $\frac{1}{n}$
(C) $\frac{1}{2(n-2)!}$
(D) $\frac{1}{2(n-1)!}$

8 A hostel has four vacant rooms. Each room can accommodate a maximum of four people. In how many different ways can six people be accommodated in the four rooms?
(A) 4020
(B) 4068
(C) 4080
(D) 4096

9 Which expression is equal to $\int \frac{1}{1-\sin x} d x$ ?
(A) $\tan x-\sec x+c$
(B) $\tan x+\sec x+c$
(C) $\log _{e}(1-\sin x)+c$
(D) $\frac{\log _{e}(1-\sin x)}{-\cos x}+c$

10 Which integral is necessarily equal to $\int_{-a}^{a} f(x) d x$ ?
(A) $\quad \int_{0}^{a} f(x)-f(-x) d x$
(B) $\quad \int_{0}^{a} f(x)-f(a-x) d x$
(C) $\quad \int_{0}^{a} f(x-a)+f(-x) d x$
(D) $\quad \int_{0}^{a} f(x-a)+f(a-x) d x$

## Section II

## 90 marks

Attempt questions 11-16
Allow about 2 hours 45 minutes for this section
Answer each question in a separate writing booklet. Extra writing booklets are available.
All necessary working should be shown in every question.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) The diagram shows the graph of the function $y=f(x)$.


Draw separate one-third page sketches of the graphs of the following:
(i) $y=-f(x)$
(ii) $\quad y=|f(x)|$
(iii) $y=\frac{1}{f(x)}$
(iv) $\quad y=(f(x))^{2}$

Question 11 (continued)
(b) (i) Sketch the region in the complex plane where the inequalities $|z-i| \leq 2$ and $0 \leq \operatorname{Arg}(z-1) \leq \frac{3 \pi}{4}$ hold simultaneously.
(ii) What is the minimum value of $|z|$ ?
(iii) What is the value of $\operatorname{Arg}(|z|)$ ? Give reasons for your answer.
(iv) What is the maximum value of $\operatorname{Arg}(z)$ ?

Give your answer in radians, correct to two decimal places.

Question 12 (15 marks) Use a SEPARATE writing booklet
(a) (i) Find real numbers $a, b$ and $c$ such that

$$
\frac{7 x+4}{\left(x^{2}+1\right)(x+2)}=\frac{a x+b}{x^{2}+1}+\frac{c}{x+2}
$$

(ii) Hence find $\int \frac{7 x+4}{\left(x^{2}+1\right)(x+2)} d x$
(b) Let $\alpha=-\sqrt{3}+i$.
(i) Express $\alpha$ in modulus-argument form.

2
(ii) Hence find the least positive integer $n$ for which $\alpha^{n}$ is purely real.
(c) By taking slices perpendicular to the axis of rotation, find the volume of the solid formed when the region bounded by the curves $y=2 x^{3}$ and $y=2 \sqrt{x}$ is rotated about the $x$-axis. Explain your reasoning carefully by sketching the curves and using sigma notation.
(d) The expression $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\ldots}}}}$ has a limit $L$. Find the exact value of $L$. Explain your reasoning carefully.

Question 13 (15 marks) Use a SEPARATE writing booklet
(a) Let $\alpha, \beta$ and $\gamma$ be roots of the equation $x^{3}+x^{2}-2 x-5=0$. For the following questions, give your answers in the form $a x^{3}+b x^{2}+c x+d=0$ where the coefficients $a, b, c$ and $d$ are integers.
(i) Find a polynomial equation with integer coefficients whose roots are $\alpha-2, \beta-2$ and $\gamma-2$.
(ii) Find a polynomial equation with integer coefficients whose roots are $\alpha^{2}, \beta^{2}$ and $\gamma^{2}$.
(b) Solve the equation $x^{4}+x^{2}+6 x+4=0$ over the complex field given that it has a rational zero of multiplicity 2 .
(c) Find the values of real numbers $p$ and $q$ such that $1-i$ is a root of the equation $z^{3}+p z+q=0$.
(d) (i) Using the identity $(p+q)^{2}=(p-q)^{2}+4 p q$, show that for $p, q>0$

$$
\frac{(p+q)}{2} \geq \sqrt{p q}
$$

(ii) Hence show that if $p, q, r$ and $s$ are greater than zero then

$$
\begin{equation*}
\frac{p+q+r+s}{4} \geq \sqrt[4]{p q r s} \tag{2}
\end{equation*}
$$

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) Consider the hyperbola with the equation $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$.
(i) What is the eccentricity of the hyperbola?
(ii) Find the coordinates of the foci and $x$-intercepts of the hyperbola.
(b)


The point $P$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $a>b>0$. The tangent at P meets the tangents at the ends of the major axis at R and T .
(i) Use the parametric representation of an ellipse to show the equation of the tangent is $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$.
(ii) Show that RT subtends a right angle at the focus $S(a e, 0)$.
(c) By deriving the equation of the tangent, prove that the chord of contact of the tangents from the point $P\left(x_{0}, y_{0}\right)$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ has the equation $\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1$.

Question 15 (15 marks) Use a SEPARATE writing booklet
(a) A particle of mass $m$ is moving in a straight line under the action of a force $F$, where:

$$
F=\frac{m}{x^{3}}(6-10 x) .
$$

(i) Find $v^{2}$ in any position if the particle starts from rest at $x=1$.
(ii) At which other position does the particle come to rest?
(b) Two light inextensible strings $P Q$ and $Q R$ each of length $l$ are attached to a particle of mass $m$ at $Q$. The other ends $P$ and $R$ are fixed to two points in a vertical line such that $P$ is a distance $l$ above $R$. The particle describes a horizontal circle with constant angular speed $\omega$.

(i) Find the tension in the strings. 3
(ii) What value must $\omega$ be greater than in order for the strings to be tight?
(c) Find, correct to one decimal place, the angle at which a road must be banked so that a car may round a curve with a radius of 200 metres at $100 \mathrm{~km} / \mathrm{h}$ without sliding. Use a diagram and appropriate force equations in your solution.
(d) (i) Differentiate $\sin ^{n-1} \theta \cos \theta$ expressing the result in terms of $\sin \theta$ only.
(ii) Hence, or otherwise, deduce that if $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} \theta d \theta$, then

$$
I_{n}=\left(\frac{n-1}{n}\right) I_{n-2} \text { with } n \geq 2
$$

(iii) Hence find the exact value of $I_{4}$.

Question 16 (15 marks) Use a SEPARATE writing booklet
(a) Prove the following relationship for $n \geq 2$ using mathematical induction.

$$
n^{n+1}>n(n+1)^{n-1}
$$

(b) Suppose that $x \geq 0$ and $n$ is a positive integer.
(i) Show that $1-x \leq \frac{1}{1+x} \leq 1$.

2
(ii) Hence, or otherwise, show that $1-\frac{1}{2 n} \leq n \ln \left(1+\frac{1}{n}\right) \leq 1$.

2
(iii) Hence, explain why $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

1
(c) On polling day the ratio of the electoral votes in the three available booths $\mathrm{A}, \mathrm{B}$ and C was 5:4:3 respectively. The percentage of votes for Mr Turnbull in these booths was $30 \%, 60 \%$ and $50 \%$ respectively.

If ten voters were chosen at random, find the probability that Mr Turnbull gained at least eight votes. Give your answer correct to five decimal places.
(d) (i) Prove that $(a+b+c)^{2} \geq 3(a b+a c+b c)$.

Note that $a, b$ and $c$ are positive integers.
(ii) Hence or otherwise prove that for positive integers $x, y$ and $z$

$$
\begin{equation*}
x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2} \geq x y z(x+y+z) \tag{2}
\end{equation*}
$$

## End of paper

2016 Year 12 Mathematics Extension 2 Task 5 Trial HSC SOLUTIONS



2016 Year 12 Mathematics Extension 2 Task 5 Trial HSC SOLUTIONS

$\sqrt{ } \sqrt{ }$ correct answer with working $a=b=1_{j} c=-1$
$\checkmark$ meaningful frogners.


2016 Year 12 Mathematics Extension 2 Task 5 Trial HSC SOLUTIONS

| Suggested Solution (s) |
| :--- |
| Question 13: |
| (a)1) Let $x=\alpha-2 \Rightarrow \alpha=x+2$ |

$\alpha$ satisfies $x^{3}+x^{2}-2 x-5=0$

$$
\Rightarrow(x+2)^{3}+(x+2)^{2}-2(x+2)-5=0
$$

$$
\Rightarrow x^{3}+6 x^{2}+12 x+8+x^{2}+4 x+4-2 x-9=0
$$

$$
\Rightarrow x^{3}+7 x^{2}+14 x+3=0
$$

ii) Let $x=\alpha^{2} \Rightarrow \alpha= \pm \sqrt{x}$.

For convenience, chose $\alpha=\sqrt{x}$. $\alpha$ satisfies $x^{3}+x^{2}-2 x-5=0$

$$
\Rightarrow \quad x \sqrt{x}+x-2 \sqrt{x}-5=0
$$

$$
\Rightarrow \quad \sqrt{x}(x-2)=5-x
$$

$$
\Rightarrow \quad x(x-2)^{2}=(5-x)^{2}
$$

$$
\Rightarrow x^{3}-4 x^{2}+4 x=25-10 x+x^{2}
$$

$$
\Rightarrow \quad x^{3}-5 x^{2}+14 x-25=0
$$

(b) Let $P(x)=x^{4}+x^{2}+6 x+4$

$$
\Rightarrow P^{\prime}(x)=4 x^{3}+2 x+6
$$

Now $P^{\prime}(-1)=0$ le inspection.
Additionally, $P(-1)=0$. Conclude
from the multiple rout theorem that -1 is a root of multiplicity 2. It is also rational.

$$
\int_{0} x^{4}+x^{2}+6 x+4=\left(x^{2}+2 x+1\right) \times\left(a x^{2}+b x+c\right)
$$

for real nos. $a, b k c$. By inspection, Various $a=1 \& c=4$. Looking at the methods

Comments

For the latter quadratic factor:

$$
x^{2}-2 x+4=0 \Rightarrow(x-1)^{2}-(\sqrt{3} i)^{2}=0
$$

$$
\Rightarrow x=1 \pm i \sqrt{3}
$$

$\therefore$ pots are $-1(2), 1 \pm i \sqrt{3}$
(c) From Conjugate root theorem, $1+i$ is also a root of cubic eg'n. Let a be remaining root.

$$
\begin{aligned}
\sum \text { roots }=0 & \Rightarrow(1+i)+(1-i)+\alpha=0 \\
& \Rightarrow 1--2
\end{aligned}
$$

$$
\Rightarrow \alpha=-2
$$

fo cubic is $(x-(1+i)(x-(1-i))(x+2)$

$$
\Rightarrow(x+2)\left(x^{2}-2 x+2\right)=0
$$

$\Rightarrow x^{3}-2 x+4=0$ whence

$$
p=-2 \& q=4
$$

(d)(i) As $p, q>0$, the $(p+q)^{2}=(p-q)^{2}+4 p q$ implies $(p+q)^{2} \geqslant 4 p q$ as $(p-q)^{2} \geqslant 0$
$\Rightarrow p+q \geqslant 2 \sqrt{p q}$ upon taking the positive sq. root of $\alpha=-2$
or $\frac{p+q}{2} \geqslant \sqrt{p q}$ as required
(ii) $\frac{p+q+r+s}{4}=\frac{\frac{p+q}{2}+\frac{r+s}{2}}{2}$
$\geqslant \sqrt{\left(\frac{p+q}{2}\right)\left(\frac{r+5}{2}\right)}$ using quad. factor


2016 Year 12 Mathematics Extension 2 Task 5 Trial HSC SOLUTIONS

| Suggested Solution (s) |  |
| :--- | :---: |
| Cleestion 14 Cont |  |
| (c) Let $Q\left(x_{1}, y_{1}\right) \& R\left(x_{2}, y_{2}\right)$ be distinct |  | points on the ellipse. We proceed to find the equation of the tangent at $Q$ as follows:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)=\frac{d}{d x}(1) \\
& \Rightarrow \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0 \\
& \Rightarrow d y / d x=-\frac{b^{2} x}{a^{2} y} \\
&=-\frac{b^{2} x_{1}}{a^{2} y_{1}} \text { at } Q .
\end{aligned}
$$

Eon of tangent is therefore:-

$$
\begin{aligned}
& y-y_{1}=\frac{-b^{2} x_{1}}{a^{2} y_{1}}\left(x-x_{1}\right) \\
\Rightarrow & a^{2} y_{1} y-a^{2} y_{1}^{2}=-b^{2} x_{1} x+b^{2} x_{1}^{2} \\
\Rightarrow & b^{2} x_{1} x+a^{2} y_{1} y=b^{2} x_{1}^{2}+a^{2} y_{1}^{2} \\
\Rightarrow & \frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}} \\
\Rightarrow & \frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=1 \text { as Q Q lies } \\
& \text { on ellipse }
\end{aligned}
$$

Similarly, the equation of the tangent at $R\left(x_{2}, y_{2}\right)$ is $\frac{x_{2} x}{a^{2}}+\frac{y_{2} y}{b^{2}}=1$. For the tangent at $Q$ to pass through $P$ we require
$\frac{x_{1} x_{0}}{a^{2}}+\frac{y_{1} y_{0}}{b^{2}}=1$. This eg
can be interpreted as follows:
$Q\left(x, y_{1}\right)$ lies on the line $\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1$
$W$ for Also, for the tan gent at $R$ to derivation fast through $p_{\text {ur e }}$ require:-
of tangents $\frac{x_{2} x_{0}}{a^{2}}+\frac{y_{2} y_{0}}{b^{2}}=1$. So $_{0}$
$W / V$ for $R\left(x_{2}, y_{2}\right)$ lies on the line complete proof.
$\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1$. As Q\&R
both satisfy $\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1$, the equation of the chord $P Q$ must be $\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1$, as reared.
Question 15:
(a) By Newtons $2 \sim 1$ Law:-

$$
F=m a \Rightarrow m a=\frac{m}{x^{3}}(6-10 x)
$$

\& $a=v \cdot \frac{d v}{d x}$. Consequently,

$$
\begin{aligned}
& v \cdot \frac{d v}{d x}=\frac{6-10 x}{x^{3}} \\
& \Rightarrow \int v \frac{d v}{d x} d x=\int\left(6 x^{-3}-10 x^{-2}\right) d x \\
& \Rightarrow \frac{1}{2} v^{2}=\frac{-3}{x^{2}}+\frac{10}{x}+C
\end{aligned}
$$

$\Rightarrow \frac{1}{2} v^{2}=\frac{x^{2}}{x}+c$
Sub $x=1 \& v=0 \Rightarrow c=-7 . \quad$ ye $a=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$

$$
\Rightarrow \frac{1}{2} v^{2}=\frac{-3}{x^{2}}+\frac{10}{x}-7
$$

$\int v \cdot \frac{d v}{d x} d x$ $=\int v d v$.
Equivalently,

$$
\begin{aligned}
& \frac{1}{2} v=\frac{x}{x}-1 . \frac{1}{x^{2}}+20 x-14 \sqrt{ } \\
& v^{2}=
\end{aligned}
$$

| Suggested Solution (s) |  |
| :--- | :---: |
| Question 15 cont. |  |
| a) (ii) Particle comes to rest |  | when $r^{2}=0 \Rightarrow \frac{-6}{x^{2}}+\frac{20}{x}-14=0$

$$
\Rightarrow 14 x^{2}-20 x+6=0 \text { or }
$$

equivalently $7 x^{2}-10 x+3=0$ We know $(x-1)$ is a frito \& so $7 x^{2}-10 x+3=(7 x-3)(x-1)$ $\therefore v^{2}=0$ when $x=\frac{3}{7}$ too.
(b) An appurfriate force diagram


Resolving forces horizontally:

$$
T_{1} \sin \theta+T_{2} \sin \theta=m r \omega^{2}
$$

From the geometry: $\sin \theta=\frac{r}{l}$

$$
\begin{equation*}
\Rightarrow T_{1}+T_{2}=m l \omega^{2} \cdots \tag{I}
\end{equation*}
$$

Resolving forces vertically :

$$
T_{1} \cos \theta-T_{2} \cos \theta-m g=0
$$

From the geometry $\cos \theta=\frac{l / 2}{l}$ or $\frac{1}{2}$.

$$
\Rightarrow T_{1}-T_{2}=2 m g
$$

| Comments |
| :--- |
| © by $x^{2}$ |

$(I)+(I I)$ gives $2 T_{1}=m\left(l \omega^{2}+2 g\right)$
$\Rightarrow T_{1}=\frac{m}{2}\left(l \omega^{2}+2 g\right) \cdots$ (III)
Substituting (III) into (I) gives

$$
\begin{aligned}
& \frac{m}{2}\left(l \omega^{2}+2 g\right)+T_{2}=m l \omega^{2} \\
& \Rightarrow T_{2}=\frac{m}{2}\left(l \omega^{2}-2 g\right) \cdots\left(\frac{\pi}{2}\right)
\end{aligned}
$$

ii) For the strings to remain taut we require:-
$T_{1}, T_{2}>0$. Now $T_{1}$ is always re whereas $T_{2}$ has its threshold value whe $T_{2}=0$

$$
\Rightarrow \quad \frac{m}{2}\left(\ln ^{2}-2 g\right)=0
$$

Radially inward dir'n taken as posit.

Upward dir' taken as the



2016 Year 12 Mathematics Extension 2 Task 5 Trial HSC SOLUTIONS


2016 Year 12 Mathematics Extension 2 Task 5 Trial HSC SOLUTIONS


