

Knox Grammar School

2016

Name: _____

Trial Higher School Certificate Examination

Teacher:	

Year 12 Extension 2 Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen only
- Board approved calculators may be used
- The official BOSTES Reference Sheet is provided
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.

Section I ~ Pages 3-6

- 10 marks
- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II ~ Pages 7-13

- 90 marks
- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Teachers:

Mr Bradford (Examiner) Ms Yun

Write your name on the front cover of each answer booklet

This paper MUST NOT be removed from the examination room. Number of Students in Course: 26 **BLANK PAGE**

Section I

10 marks Attempt questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 Which graph best represents the curve $y^2 = x^2 - 2x$.

2 What value of z satisfies $z^2 = 7 - 24i$?

- (A) 4-3i
- (B) -4-3i
- (C) 3-4*i*
- (D) -3-4*i*
- 3 The Argand diagram shows the complex numbers w, z and u, where w lies in the first quadrant, z lies in the second quadrant and u lies on the negative real axis.

Which statement could be true?

- (A) u = zw and u = z + w
- (B) u = zw and u = z w
- (C) z = uw and u = z + w
- (D) z = uw and u = z w

If
$$y = x^{2}$$
 then $\int x \, dy =$
(A) $2y^{3/2} + C$
(B) $\frac{2}{3}x^{3/2} + C$
(C) $2y^{3} + C$
(D) $\frac{2}{3}x^{3} + C$

5 The angular speed of a disc of radius 5 cm is 10 revolutions per minute. What is the speed of a mark on the circumference of the disc?

(A) 50 cm min⁻¹
(B)
$$\frac{1}{2}$$
 cm min⁻¹
(C) 100 π cm min⁻¹
(D) $\frac{1}{4\pi}$ cm min⁻¹

- 6 A particle is moving along a straight line so that initially its displacement is x = 1, its velocity is v = 2, and its acceleration is a = 4. Which is a possible equation describing the motion of the particle?
 - (A) $v = 2\sin(x-1) + 2$
 - (B) $v = 2 + 4 \log_e x$
 - (C) $v^2 = 4(x^2 2)$
 - (D) $v = x^2 + 2x + 4$

The numbers 1, 2, ... *n*, for $n \ge 4$, are randomly arranged in a row. What is the probability that the number 1 is somewhere to the left of the number 2?

(A)
$$\frac{1}{2}$$

(B) $\frac{1}{n}$
(C) $\frac{1}{2(n-2)!}$
(D) $\frac{1}{2(n-1)!}$

- 8 A hostel has four vacant rooms. Each room can accommodate a maximum of four people. In how many different ways can six people be accommodated in the four rooms?
 - (A) 4020
 - (B) 4068
 - (C) 4080
 - (D) 4096

9 Which expression is equal to
$$\int \frac{1}{1-\sin x} dx$$
?

- (A) $\tan x \sec x + c$
- (B) $\tan x + \sec x + c$
- (C) $\log_e(1 \sin x) + c$

(D)
$$\frac{\log_e(1-\sin x)}{-\cos x} + c$$

10 Which integral is necessarily equal to $\int_{-a}^{a} f(x) dx$?

(A)
$$\int_0^a f(x) - f(-x) dx$$

(B)
$$\int_0^a f(x) - f(a-x) dx$$

(C)
$$\int_0^a f(x-a) + f(-x) dx$$

(D)
$$\int_0^a f(x-a) + f(a-x) dx$$

Section II

90 marks Attempt questions 11 – 16 Allow about 2 hours 45 minutes for this section

Answer each question in a separate writing booklet. Extra writing booklets are available.

All necessary working should be shown in every question.

Question 11 (15 marks) Use a SEPARATE writing booklet

Marks

Draw separate one-third page sketches of the graphs of the following:

(i) <u>y</u>	y = -f(x)				1
--------------	-----------	--	--	--	---

(ii)
$$y = \left| f(x) \right|$$
 1

(iii)
$$y = \frac{1}{f(x)}$$
 2

(iv)
$$y = (f(x))^2$$
 2

Question 11 continues on page 8

Question 11 (continued)

(b)	(i) Sketch the region in the complex plane where the inequalities	
	$ z-i \le 2$ and $0 \le Arg(z-1) \le \frac{3\pi}{4}$ hold simultaneously.	3
	(ii) What is the minimum value of $ z $?	2
	(iii) What is the value of $Arg(z)$? Give reasons for your answer.	1
	(iv) What is the maximum value of $Arg(z)$?	
	Give your answer in radians, correct to two decimal places.	3

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet

2

4

(a) (i) Find real numbers a, b and c such that

$$\frac{7x+4}{(x^2+1)(x+2)} = \frac{ax+b}{x^2+1} + \frac{c}{x+2}$$
3

(ii) Hence find
$$\int \frac{7x+4}{(x^2+1)(x+2)} dx$$
 2

(b) Let
$$\alpha = -\sqrt{3} + i$$
.

(i) Express
$$\alpha$$
 in modulus-argument form. 2

- (ii) Hence find the least positive integer *n* for which α^n is purely real.
- (c) By taking slices perpendicular to the axis of rotation, find the volume of the solid formed when the region bounded by the curves $y = 2x^3$ and $y = 2\sqrt{x}$ is rotated about the *x*-axis. Explain your reasoning carefully by sketching the curves and using sigma notation.
- (d) The expression $\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}}$ has a limit *L*. Find the exact value of *L*. Explain your reasoning carefully.

Question 13 (15 marks) Use a SEPARATE writing booklet

2

2

4

3

- (a) Let α , β and γ be roots of the equation $x^3 + x^2 2x 5 = 0$. For the following questions, give your answers in the form $ax^3 + bx^2 + cx + d = 0$ where the coefficients *a*, *b*, *c* and *d* are integers.
 - (i) Find a polynomial equation with integer coefficients whose roots are $\alpha 2$, $\beta 2$ and $\gamma 2$.
 - (ii) Find a polynomial equation with integer coefficients whose roots are α^2 , β^2 and γ^2 .
- (b) Solve the equation $x^4 + x^2 + 6x + 4 = 0$ over the complex field given that it has a rational zero of multiplicity 2.
- (c) Find the values of real numbers p and q such that 1-i is a root of the equation $z^3 + pz + q = 0$.

(d) (i) Using the identity
$$(p+q)^2 = (p-q)^2 + 4pq$$
, show that for $p, q > 0$
$$\frac{(p+q)}{2} \ge \sqrt{pq}$$
 2

(ii) Hence show that if *p*, *q*, *r* and *s* are greater than zero then

$$\frac{p+q+r+s}{4} \ge \sqrt[4]{pqrs} \ .$$

Marks

2

3

4

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) Consider the hyperbola with the equation
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
.

(i)	What is the eccentricity of the hyperbola?	1
(ii)	Find the coordinates of the foci and <i>x</i> -intercepts of the hyperbola.	2
(iii)	Find the equations of the directrices and the asymptotes of the hyperbola.	2
(iv)	What are the parametric equations of this hyperbola?	1

The point *P* lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0. The tangent at P meets the tangents at the ends of the major axis at R and T.

(i) Use the parametric representation of an ellipse to show the equation of the tangent is $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$.

(ii) Show that RT subtends a right angle at the focus S(ae, 0).

(c) By deriving the equation of the tangent, prove that the chord of contact of the tangents from the point $P(x_0, y_0)$ to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ has the equation $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$.

Question 15 (15 marks) Use a SEPARATE writing booklet

(a) A particle of mass m is moving in a straight line under the action of a force F, where:

$$F = \frac{m}{x^3} (6 - 10x) \, .$$

- (i) Find v^2 in any position if the particle starts from rest at x = 1. 2
- (ii) At which other position does the particle come to rest?
- (b) Two light inextensible strings PQ and QR each of length l are attached to a particle of mass m at Q. The other ends P and R are fixed to two points in a vertical line such that P is a distance l above R. The particle describes a horizontal circle with constant angular speed ω .

- (i) Find the tension in the strings.
- (ii) What value must ω be greater than in order for the strings to be tight? 1
- (c) Find, correct to one decimal place, the angle at which a road must be banked so that a car may round a curve with a radius of 200 metres at 100 km/h without sliding. Use a diagram and appropriate force equations in your solution.
- (d) (i) Differentiate $\sin^{n-1}\theta\cos\theta$ expressing the result in terms of $\sin\theta$ only. 2

(ii) Hence, or otherwise, deduce that if
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n \theta \, d\theta$$
, then

$$I_n = \left(\frac{n-1}{n}\right) I_{n-2} \text{ with } n \ge 2.$$

(iii) Hence find the exact value of I_4 .

Marks

2

3

2

Question 16 (15 marks) Use a SEPARATE writing booklet

(a) Prove the following relationship for $n \ge 2$ using mathematical induction.

$$n^{n+1} > n(n+1)^{n-1}$$
 3

(b) Suppose that $x \ge 0$ and *n* is a positive integer.

(i) Show that
$$1 - x \le \frac{1}{1 + x} \le 1$$
. 2

(ii) Hence, or otherwise, show that
$$1 - \frac{1}{2n} \le n \ln\left(1 + \frac{1}{n}\right) \le 1.$$
 2

(iii) Hence, explain why
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$
 1

(c) On polling day the ratio of the electoral votes in the three available booths A, B and C was 5:4:3 respectively. The percentage of votes for Mr Turnbull in these booths was 30%, 60% and 50% respectively.

If ten voters were chosen at random, find the probability that Mr Turnbull gained at least eight votes. Give your answer correct to five decimal places. 3

- (d) (i) Prove that $(a+b+c)^2 \ge 3(ab+ac+bc)$. Note that a, b and c are positive integers. 2
 - (ii) Hence or otherwise prove that for positive integers x, y and z

$$x^{2}y^{2} + x^{2}z^{2} + y^{2}z^{2} \ge xyz(x+y+z)$$
2

End of paper

Marks

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
8. Easier to work with		10. $\int_{-\pi}^{\alpha} f(x) dx = \int_{-\pi}^{0} f(x) dx + \int_{-\pi}^{0} f(x) dx$	Tou could
complementary events. With		-a -a	test the
no restriction there are 4 choices	1 N 1 N	with the latter equal to	alternatives
We need to subtract from this		(f/a-n) dn (love theory)	bau's non-
value the no of arrangements		0 19	trivial f=
where all people are in the		Now ((f(x) - f(a-1)) dn -is	such as f(a)=e
one room. Additionally, need	N	recessorily equal to zero	1.1.1.4
To subtract all instances		& so this alternative is	A student
where five people are in		discounted. to consider (D).	anticipate
one noom with one individual		For (f(x-a) dn, letu=x-a	that the
in another. For the Soomer, this		Do a when n=0	Core 411
is achieved in the ways		= u=o when x=a.	pa ())
(why?). to The latte, this		1. dinaly integral becomes:	f(a=10)chl =
I achieved in the x be x be		Alconanity (9)	$\int_{0} f(n) dn$
Choose a		f(u) du or f(x) dn	is living
form for the individual		-a -a	flateer neve.
Man numaining		So (D) is content.	,
for five no maining		JECTION JL	
point for fire healt.		Question II: (a)	
11 1h 16 4c - 4c x 6e x 2		i) f $y=f(x)$	
			Imark
= 4020.50 (A)	Sec. 1	y=-f(i)	
$q. \frac{1}{1+\sin x} = \frac{1}{1+\sin x}$	t substitution	* V ; · ·	
1-Sinal 1-Sinal 1+Sinal	available.	ii) 1 a 1	
$= \frac{1 + \lambda m \pi}{(m^2)!}$			l m. l
		to y the	Imarn
: (dr) + sech + tanz	C (m)	cusp	
JI-sin1 = tanx + secx + C	20 (B)	4	

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
<u>All Cont</u> (a) iii)	y wordinate	(iii) As the locus of z excludes	1 for
Y 1 !\	of herring	The origin then z >0 & to	answer +
4 1	+ < -2	Arg(1z1) = 0 (a positive real no.)	reason ;
2 1			no credit for
0 1 2	V for shape	(IV) Arg(z) is maximised at the	in), / n
-24	V vertical	point ? (see diagram) where t	VVV for
-4	asymptotes	The line xty-1=0 intersector	correct us
$\downarrow \downarrow \downarrow$	2=0,1.	x + (y-1) = 4 in the 2 guarant.	worlding
		To find P, solve simultaneously:	V Substantial
iv) ta	1 for shape	$\int x^2 + (y-1)^2 = 4$	progress.
2		2+y-1=0 or y-1=-2	/ Recognition
	V turning pt	Sub. y-1=-x into egin of	that they are max. at P.
	at $x = 1$.	aircle gives: 2x2=4=> x=-12	, X < 0
		$\Rightarrow P(-\sqrt{2},\sqrt{2}+1).$	for 2 guad.
. 2		m , $\sqrt{2}+1$, $\sqrt{2}$,	
		$m_{op} = \frac{1}{-\sqrt{2}}$ or $\frac{1}{2} = 1$	
		& Ara [- 12 + i (12+1)]	
(b) (i)	1		2.100 699
× *	v shapes	= 2.10 radians, correct to	
P 3	V shading	Zd.p.	
	/ sineubrity	Question 12:	
	Junit	(a) (1) Equivalent to finding a, b&C	
1 1C 13 2		when $7x + 4 \equiv (ax+b)(x+2) + c(x+1)$	Imark
		When x=-2=>-10=5c or c=-2	for each
(ii) [2] measures distance from D.	Egn of line	Equating coefficients of 2: a+c = 0	correct ens.
121 is minimised by calculating the	inx+y-1=0	$\Rightarrow \underline{\alpha} = 2.$	
Henrich (0,1) & (1,0) to the origin.	1 102, + by+c	Equating constant terms: 26+C=4	a=2
	$Q_{\perp} = \frac{1}{\sqrt{a^2 + b^2}}$	=7 _b=3	c = -2
$a_1 = \sqrt{2} a_1 \sqrt{2}$	(a,,y) = (0,0)		
V/ correct answer with working	a=b=1;c=-		
V Meaningful progress.	3		

WHILE ACTIVE

2016 Year 12 Mathematics Extension 2 Task 5 Trial HSC SOLUTIONS

(4)

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Quastion 13:		$\int \frac{4}{(x+1)^2} \frac{2}{(x+1)^2} \frac{2}{(x-2)^2} \frac{2}{(x-2)^2} + \frac{4}{(x+1)^2} \frac{2}{(x-2)^2} \frac{2}{(x-2)$	W.C. mont.
(M)/t $x = N = 2 = N = 2 + 2$		To It latter quadratic factor;	a 11
Luigrad L = u = 2 - 7 u = - 2		Tor the time = 0 = (x-1) - (13i)=0	Completing
a salutes at a -la -s =0		$\frac{1}{2} - \frac{1}{2} + \frac{1}$	The sequare.
$=7(x+2)^{2}+(x+2)^{2}-2(x+2)^{2}-5=0$		= 1 + 1 = 1 = 1	Imark:
= $7 \pi^{3} + 6 \pi^{2} + 12 \pi + 8 + \pi^{2} + 4 \pi + 4 - 2 \pi - 9 = 0$: woll are -1(2), 1200	Calculater
$= - \alpha^3 + 7\alpha^2 + 1/(\alpha + 3) = 0$	\mathcal{N}	(2) From Conjugate root theorem,	derivative
2		It is also a rast of cubic eg'n.	th zero.
$ i \text{ Let } \mathcal{H} = \mathcal{A} = \mathcal{I} \mathcal{A} = \mathcal{I} \mathcal{I}.$		11, to remaining root.	2marks:
For convenience, choose $\alpha = \sqrt{2}$.		Let d be remained in $-2(1+i)+d=0$	Recognises
2 salufues at a - 2n-3=0		$2 \operatorname{root} = 0 = 10000000000000000000000000000000$	(2+1) as a
$= 7 \pi \sqrt{2} + 2 - 2\sqrt{2} - 5 = 0$		=) x = - 2	factor of
=> $\sqrt{\pi}(x-2) = 5-x$		for cubic is (x-(1+i)(x-(1-i))(x+2)	WW Correct
=) $\tau(\tau-2)^2 = (5-\tau)^2$		$(\pi + 1)(\pi^2 - 2\pi + 2) = 0$	solution.
= 3 4 2. 4 = 25-10x + x2		= 3 201 4 = 0 whence	Imark:
3 - 2 - 10 - 25 - 6	11	= 2 - 2 - 4 - 1	kecognises
=) $\chi - 5\chi + 14\chi - 25 = 0$		p=-2 a p	anothe root
(b) Let P(n) = n+n+6n+4		(a)(i) the $p,q',0', once included$	via Conjugale
=> $p'(x) = 4x^3 + 2x + 6$		$(p+q)^{2} = (p-q) + Tpq unperes$	2marks
Now P'(-1) = 0 by inspection.		(p+q)2 7 4pq as (p-q)=0	Recognition
Additionally, P(-1) = 0. Conclude		=> p+q = 2 vpq upon taking	of d = - L
from the multiple rout theorem that		The positive y too	root he
-1 is a root of multiplicity 2. It is		2 Z VPV as neguired	3 marous:
also rational.		$(ii) p+q+r+s = \frac{p+q}{2} + \frac{r+s}{2}$	solution.
$\int_{0}^{1} \tau^{4} + \tilde{\tau}^{2} + (b_{1} + 4) = (\eta^{2} + 2\chi + 1) \times (\alpha \chi^{2} + b_{7})$	(++)	4 2	d(i) 2
for real nos. q, b & c. By inspection	Various	$\geqslant \sqrt{\binom{p+q}{2}\binom{r+s}{2}}$ using (i)	marks-for process
a=1& c=4. Looking at the	methods		(ii) 2mark
co-efficient of n': 0= b+2a	available to	V Vpq. Vrs mong(i) agan	for process
$\Rightarrow b = -2.$	fina remaining	= #1 pgrs	J. 1.
	guad. factor		

(5)

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\frac{Question 4:a (i)}{e^2 = 1 + \frac{b^2}{a^2}; a^2 = 16 & b^2 = 9.}$ $\Rightarrow e^2 = 1 + \frac{9}{16} \text{ or } \frac{25}{16}$ $\Rightarrow e = \frac{54}{4} (e > 0)$ ii) foci are $(\pm ae, 0) \Rightarrow (\pm 5, 0)$ & x intercepts are $\pm 4.$ iii) $x = \pm \frac{9}{2} \Rightarrow x = \pm \frac{16}{5}$ Equations of asymptotes are $y = \pm \frac{b}{a}x$ $\Rightarrow y = \pm \frac{3}{4}x$ iv) $fx = a \sec \theta \Rightarrow fx = 4 \sec \theta$	$b^{2} = a^{2}(e^{2} - 1)$ $a = 4$ $b = 3$ $Accept$ $(\pm 4, 0)$ $3x \pm 4y = 0$ $a \neq \pm \frac{\pi}{2}$	(ii) We need to find the co-ords. of R&T. When $x = a$: $cord + \frac{4}{b}sin\theta = 1$ $\Rightarrow Y = \frac{b(1-cor\theta)}{sin\theta}$ $\therefore T(a, \frac{b(1-cor\theta)}{sin\theta})$. When $x = -a: -cor\theta + \frac{4}{b}sin\theta = 1$ $\Rightarrow Y = \frac{b(1+cor\theta)}{sin\theta}$ $\therefore R(-a, \frac{b(1+cor\theta)}{sin\theta})$ $M_{RS} = \frac{b(1+cor\theta)/sin\theta}{-a - ae}$ $= \frac{b(1+cor\theta)}{sin\theta} \cdots (T)$	1 mark: Determined co-ords. ot T& R. 2 marks Made progress in proving lines are 1. ot: the focus.
$(y = b fant) [y = 3 fant)$ $(b) (i) x = a cord & y = b sind$ $\Rightarrow \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} or -\frac{b cord}{a sin\theta} \cdot$ $Eg'n of fangent is :-$ $y - b sind = \frac{b cord}{-a sin\theta} (x - a cord)$ $\Rightarrow - a y sind + a b sind = b x coll - a b cord$ $\Rightarrow b x cord + a y sind = a b (sind + cord)$ $\Rightarrow \frac{x}{a} cord + \frac{y}{b} sind = 1 u fun$ division by ab.	y-y,=m(2-2) sin²∂+co?∂=1 ab≠0 V/-for process	$M_{TS} = \frac{b(1-con\theta)/sin\theta}{a - ee}$ $= \frac{b(1-con\theta)}{a - ee}$ $= \frac{b(1-con\theta)}{a(1-e)sin\theta} (II)$ For RT to sublend a right-ongle at S, we require: $M_{RS} \times M_{TS} = -1$ $sHS = \frac{b^2 sin^2 \theta}{-a^2(1-e^2)sin^2 \theta}$ $= \frac{b^2}{-b^2} \text{ or } -1, \text{ as desired.}$	$1 - \cos^2 \theta = \sin^2 \theta$ $b^2 = a^2 (1 - e^2)$ for an elliptice

Constant DE

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Ducestion 14 Cont.		x, x, + 4,40 = 1. This ear	
(c) Let O(x, y,) & R(x2, y2) be distinct	7	a^2 b^2 b^2 b^2 b^2	
fouls on the ellipse. We proceed to	Q	Can be interpreted in John to	Y_ 1
as follows:	1,0	(a, i) no on the inter a b	1
$\frac{d}{dx}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)=\frac{d}{dx}(i)$	W for	Allo, for the rangent as A su	:-
$\Rightarrow \frac{2\chi}{2} + \frac{2y}{2} dy = 0$	derivation		
a^2 b^2 dx	of tangents	$\frac{\chi_2 \lambda_0}{a^2} + \frac{\chi_2 \gamma_0}{b^2} = 1.$	
= $\frac{dy}{dx} = -\frac{bx}{a^2y}$	hill har	R(x2,12) lies on the line	
$= -\frac{b^2 \pi}{b^2}$ of β	Comoloto.	xox yoy 1. As Q&R	2
$a^2 y$	proof.	$a^2 + b^2 = b^2$,
Ein of tengent is therefore:-	/ ()	both satury 0 + 101 = 1, 7	le
$\gamma - \gamma_1 = -\frac{b x_1}{a^2 x_1} (\pi - \pi_1)$		equation of the chord TOS	
$\Rightarrow 2^2 22 1^2 \dots 1^n$	2 2	must be $\frac{1}{a^2} + \frac{1}{b^2} = 1$, as regular	<i>CE</i> .
$a q_1 q_2 - a q_1 = -6 x_1 x_1 + 6$	24,	Question 15:	
=> b^{n} , $n + a^{n}$, $y = b^{n}$, $+a^{n}$	Yi ÷ by a b ft	i) by Mewtons 2 Zaw :-	
$ = \frac{\chi_{1}\chi_{1}}{\chi_{1}} + \frac{\chi_{1}\chi_{1}}{\chi_{1}} = \frac{\chi_{1}^{2}}{\chi_{1}^{2}} + \frac{\chi_{1}^{2}}{\chi_{1}^$	-	$P = ma = 7 ma = \frac{1}{x^3} (6 - 1050)$	
$\Rightarrow x_1 x_2 y_2 = x_1 x_2 y_2 y_3 y_4 y_5 y_5 y_5 y_5 y_5 y_5 y_5 y_5 y_5 y_5$		& a = v. ox. Consequently,	
$a^2 + \frac{11}{b^2} = 1$ as 8, lies		$Y \cdot \frac{dV}{dx} = \frac{G - 10x}{x^3}$	C. dr.
Builder the seconding of the		- C. dr h - ((62-3-10)) d	a drian
tensent at R(x, y) is x2x yy			= Jvdv.
a ² + b ²	=/.	$= \frac{1}{2} \sqrt{\frac{1}{2}} = \frac{1}{\chi^2} + \frac{10}{\chi} + C$	Equivalently,
For the Langent at Q to pas	8	Lub 2=1& v=0=7 C=-7	. the declev/
through Pive require		$\Rightarrow \frac{1}{y^2} = \frac{-3}{x^2} + \frac{10}{-7} - 7$	

 $(\overline{\gamma})$

VELLE AGENE

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 15 cont. a) (ii) Particle comes to rest when $\gamma^2 = 0 \Rightarrow \frac{-6}{x^2} + \frac{20}{x} - 14 = 0$ $\Rightarrow 14x^2 - 20x + 6 = 0$ or	⊗by 22²	(I) + (II) gives $2T_1 = m(t_w^2; 2g)$ => $T_1 = \frac{m}{2}(t_w^2; 2g) \dots (II)$ Substituting (III) into (I) gives	W for process
equivalently $7\chi^2 - 10\chi + 3 = 0$ We know $(\chi - 1)$ is a facto- & so $7\chi^2 - 10\chi + 3 = (7\chi - 3)(\chi - 1)$ $\therefore V^2 = 0$ when $\chi = \frac{3}{7}$ too.	\mathcal{V}	$\frac{m}{2}(\ell w + 2g) + T_2 = m\ell w$ $= 7 T_2 = \frac{m}{2}(\ell w^2 - 2g) \dots (m)$ ii) For the strings to remain taut we require :-	
(b) An appropriate force diagram is: T2 mg Resolving forces horizontally: T151nD + T25inD = mrw ²	Radially inward dirn Juken as posit.	T ₁ , T ₂ 7 0. Now T ₁ is always the whereas T ₂ has its threshold value whe T ₂ =0 $\Rightarrow \frac{m}{2}(-lw-2g) = 0$ $\Rightarrow \omega = \sqrt{2g}$ to $\omega > \sqrt{2g}$ (c) The lateral threat between the types and the car must be	WZO
From the geometry: $\sin\theta = \frac{r}{T}$ $\Rightarrow T_1 + T_2 = m \cdot l \cdot \omega^2 \dots \cdot T_1$ Resolving forces vertically: $T_1 \cdot \omega_1 \theta - T_2 \cdot \omega_2 \theta - mg = 0$ From the geometry $\omega_1 \theta = \frac{\ell/2}{2}$ $\sigma_1 \cdot \chi_2^2$.	Upward dirn Falien as tve	hanking angle kesolving forces horizontally & vertically:	Radially inward

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 15 Cont. c) cont. $\frac{2}{rg}$ (I) ÷ (II) gives $\tan \theta = \frac{v^2}{rg}$ => $\theta = -\frac{1}{rg} \left(\frac{v^2}{rg}\right), \theta$ acute	V for process.		Using Reduction Formula
$g = 9.8 \text{ m/s}^2 = 27 \frac{7}{9} \text{ m/s}.$ $\Rightarrow \theta = \tan^{-1} \left(0.3936 \right)$ $\approx 21.5^{\circ}$ $\therefore \text{ banking angle is affirox 21.5}.$ $d) (i)$ $d \left(4m^{\circ} \theta \cdot m0 \right)$	21· 488 368	:. $I_{4} = \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$ ie: $I_{4} = \frac{3\pi}{16} \sqrt{\frac{2}{(a)} P(n) \cdot n^{n+1} > n(n+1)^{n-1}}$: $n \in N \setminus \{0, 1\}$. Test for $n=2$	Basis
$ \frac{d\theta}{d\theta} \left(\begin{array}{c} \sin^{n-1}\theta \cdot \frac{d}{d\theta} \left(\cos\theta \right) + \cos\theta \cdot \frac{d}{d\theta} \left(\sin^{n-1}\theta \right) \\ = \sin^{n}\theta \cdot \frac{d}{d\theta} \left(\cos\theta \right) + \cos\theta \cdot \frac{d}{d\theta} \left(\sin^{n-1}\theta \right) \\ = -\sin^{n}\theta + (n-1) \cdot \sin^{n-2}\theta \cdot (1-\sin^{2}\theta) \\ = -\sin^{n}\theta + (n-1) \cdot \sin^{n-2}\theta - (n-1) \sin^{n}\theta \\ = (n-1) \cdot \sin^{n-2}\theta - n \cdot \sin^{n}\theta . $	Product Rule Chain rule	LHSp(2) = 2 ³ or 8; RHS = 2×3 or 6 As 8 > 6, P(2) is true Addume the prop ² is true for some arbitrary counting no. n=K. 1.e. cussame P(12) is true or K+1 (11)	Step. Inductive
(ii) From (i) $n \sin^n \theta = (n-1) \cdot \sin^n \theta - \frac{d}{d\theta} (\sin^n \theta)$ $\pi/2$ $\pi/$	$(\omega_{1}0) dD$ $(\omega_{2}0) dD$	equivalently $K > K(R+1)$ Cloal: Prove the result is necesserily true for $n = K+1$, i.e. $(K+1) > (K+2)^{K}$ when $K^{K+1} > K(K+1)^{K+1} (K+2)^{K}$ when $j \cdot e. P(K) \Rightarrow P(K+1)$. Soe next page	Hypothosés.

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
$\frac{Question 16 Cent \cdot a) cont}{LHS_{P(K+1)} = (K+1)^{K+2} K+1} = \frac{(K+1)^{K+2} K+1}{K^{K+1}}$ $= \frac{(K+1)^{K+2} K(K+1)}{K^{K+1}}$ $= \frac{(K+1)^{2K+1}}{K^{K}}$ $= \frac{(K+1)^{2}}{K^{K}} (K+1)$	by induction hypothesis	(b) i) From $\chi z_0 \Rightarrow 1+\chi z_1(\gamma_0)$ $\Rightarrow (0 <) \frac{1}{\chi + 1} \le 1$ when reciprocation $S_0 \qquad \frac{1}{\chi + 1} \le 1$ (I) Also, since χz_0 , containly $\chi^2 z_0$. $\Rightarrow -\chi^2 \le 0$ $\Rightarrow 1 - \chi^2 \le 1$ or $(1 - \eta)(1 + \chi) \le 1$ $\Rightarrow 1 - \chi \le \frac{1}{1 + \chi}$ when division by $1 + \chi$ $S_0 \qquad 1 - \chi \le \frac{1}{1 + \chi}$ (II)	Adding Dne to both sides multiply -1. Adding one to both sides 142 = 1(20) W for 1 proof
$= \frac{\left(\frac{K^{2}+2K+1}{K}\right)^{K}}{\frac{K^{K}}{K}}$ $= \left(\frac{K^{2}+2K+1}{K}\right)^{K} (K+1)$ $= (K+1) \left(K+2+\frac{1}{K}\right)^{K}$ $\geq (K+1) \left(K+2\right)^{K}$ $= RHS P(K+1) \cdot Kat$ is, if H_proposition is true for n=K, it is also true for n=K+1. As P(2) is true (from basis shep), hence P(3) is true and similarly P(4) and hence for the for all remaining counting no.5.	as K > 0 Imark: Tests the result for n=2; 3 marks for correct proof.	From (I) & (II) $1 - \pi \leq \frac{1}{1+\pi} \leq 1$, as require ii) Noting $\int_{0}^{h} \frac{dn}{1+\pi} = \ln(1+h)$, then $\int_{0}^{h} (1-\pi) dn \leq \int_{0}^{h} \frac{dn}{1+\pi} \leq \int_{0}^{h} dn$ $\Rightarrow \frac{1}{n} - \frac{1}{2n^{2}} \leq \ln(1+\frac{1}{n}) \leq \frac{1}{n}$ $\Rightarrow 1 - \frac{1}{2n} \leq n \cdot \ln(1+h) \leq 1$ upon mult ² by π . iii) we have $1 - \frac{1}{2n} \leq \ln(1+h) \leq 1$ Exponentialing this inequality we have $e^{1-\frac{1}{2n}} \leq e^{1}(1+h) \leq e^{1}$ $\Rightarrow e^{1-\frac{1}{2n}} \leq (1+h) \leq e^{1}$ $\Rightarrow \lim_{n\to\infty} e^{1-\frac{1}{2n}} \leq \lim_{n\to\infty} (1+h) \leq \lim_{n\to\infty} e^{1}$ $\Rightarrow \lim_{n\to\infty} (1-\frac{1}{2n}) \leq \lim_{n\to\infty} (1+h)^{n} \leq \lim_{n\to\infty} e^{1}$ $\Rightarrow \lim_{n\to\infty} (1+h)^{n} \leq e^{1}$	d. 1 V/for process from (ii) nln(x) = ln(x) e ^x is an increasing f & so the inequalities are presend. inereasing f & so the inequalities are presend. inereasing f & so the inequalities are presend. inereasing f & so the inequalities are presend. init prop- erties plus Squeeze the orean (formally)

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Question 16 cont: (c) Let A, B & C be the events that the vote is drawn from booth A, B & C respectively. Also, let V _T be the event that the vote is for Mr. Turnhull. We require initially the probability that a randomly selected vote will be for Mr. Turnhull. P(V _T) = P(V _T (A). P(A) + P(Y B). P(B) + P(Y C). P(C) = 0.3 × $\frac{5}{12}$ + 0.6 × $\frac{44}{12}$ + 0.5 × $\frac{3}{12}$ Booth 0.3 VT. $\frac{5}{12}$ A $\frac{5}{0.4}$ VT. $\frac{5}{0.4}$ VT. $\frac{5}{0.4}$ A $\frac{5}{0.4}$ VT. $\frac{5}{0.4}$ VT. $\frac{5}{0.4}$ VT. $\frac{5}{0.4}$ A $\frac{5}{0.4}$ VT. $\frac{5}{0.4}$ V	Tive oliogram seful in eightening he logic. I mark : Calculates probability fore voter or Mr Turnhall 2 marks : Nostly correct solution : 3 marks : Correct sol?n. (=0,1,2,,10	$\begin{aligned} & \Pr[X \ge 8] = \Pr[X = 8] + \Pr[X = 9] + \Pr[X = 10] \\ &= \Pr[C_{g}(0.45)(0.55)^{2} + \Pr[C_{g}(0.45)(0.55) + (0.47)] \\ &\cong 0.02.739 (0.02.7391839) \\ & (d) i) From (A-b)^{2} \ge 0 \\ &\equiv a^{2} + b^{2} \ge 2ab \dots (T) \\ & \text{Similarly from } (A-c)^{2} \ge 0 & (b-c)^{2} \ge 0 \\ & we obtain: - \\ & a^{2} + c^{2} \ge 2ac \\ & we obtain: - \\ & a^{2} + c^{2} \ge 2ac \\ & we obtain: - \\ & a^{2} + c^{2} \ge 2bc \\ & \dots (TT) \\ & \text{Adding (T), (T) & (TT) & (TT) \\ & \text{Adding (T), (TT) & (TT) & we obtain: - \\ & 2(a^{2} + b^{2} + c^{2}) \ge 2(ab + ac + bc) \\ & \Rightarrow a^{2} + b^{2} + c^{2} \ge ab + ac + bc \\ & (a + b+c)^{2} \ge a^{2} + b^{2} + c^{2} + 2(ab + ac + bc) \\ & \Rightarrow (a + b+c)^{2} \ge a^{2} + b^{2} + c^{2} + 2(ab + ac + bc) \\ & \Rightarrow (a + b+c)^{2} \ge a^{2} + b^{2} + c^{2} + 2(ab + ac + bc) \\ & \text{wing (TT)} \\ & & \text{She result follows.} \\ & (i) From (TT) above : - \\ & a^{2} + b^{2} + c^{2} \ge ab + ac + bc \\ & \text{she result follows.} \\ & \text{(ii) From (TT) above : - } \\ & a^{2} + b^{2} + c^{2} \ge ab + ac + bc \\ & \text{she result follows.} \\ & \text{(b) From (TT) above : - } \\ & a^{2} + b^{2} + c^{2} \ge ab + ac + bc \\ & \text{she result follows.} \\ & \text{(b) From (TT) above : - } \\ & a^{2} + b^{2} + c^{2} \ge ab + ac + bc \\ & \text{she result follows.} \\ & \text{(b) H: } n^{2} + n$	Algebraic Expansion & collection of likedenns. otherwise opproach

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
Quartian 16 Cont. d) ii) lont. From $(a+b+c)^2 \ge 3(ab+ac+bc)$, let $a = \pi y$, $b = \pi z$, $c = yz$. Then inequality becomes:- $(\pi y + \pi z + yz)^2 \ge 3(\pi^2 yz + \pi yz^2 + \pi yz^2)$	Herre approach		
$\begin{aligned} &\mathcal{H}S = a^{2}y^{2} + nz^{2}z^{2} + y^{2}z^{2} + 2(ny^{2}z + ny^{2}z + ny^{2}z^{2}) \\ &\mathcal{H}S = a^{2}y^{2} + nz^{2}z^{2} + y^{2}z^{2} + 2ny^{2}(n+y+z) \\ &\mathcal{H}S = 3ny^{2}(n+y+z) \\ &\mathcal{H}S = 3ny^{2}(n$	VI for process		

(12)