

Northern Beaches Secondary College Manly Selective Campus

2010 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators and templates may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks – 120

- Attempt Questions 1-8
- All questions are of equal value

Question 1 (Answer in a separate booklet)

(a) Find
$$\int \frac{1}{\sqrt{4x^2 - 25}} dx$$
 (2)

(b) Find
$$\int \tan^4 x \sec^2 x \, dx$$
 (2)

(c) Find
$$\int_{0}^{\frac{\pi}{2}} x \sin x \, dx$$
 (3)

(d) Use the substitution
$$u = x-2$$
 to evaluate
$$\int_{\frac{3}{2}}^{2} \frac{1}{\sqrt{(x-1)(3-x)}} dx$$
 (3)

(e) (i) Write
$$\frac{3x+2}{x^2+5x+6}$$
 as a sum of partial fractions. (2)

(ii) Hence evaluate
$$\int_0^2 \frac{3x+2}{x^2+5x+6} dx$$
 (3)

Marks

(15)

Marks

- (a) Find the value of z^{10} in the form x + iy when $z = \sqrt{2} \sqrt{2}$ i (2)
- (b) The complex vector z is represented in the accompanying diagram by the point A. The triangle OAB is a right angled isosceles triangle.

(c) (i) Write down the value of i⁶. (1)
(ii) Hence or otherwise plot and label the sixth roots of -1 about the unit circle. (2)
(iii) Find the roots of x⁴ - x² + 1 = 0 in modulus-argument form. (2)

(d) Given the locus of z is |z - 2 - 2i| = 1

(i) Sketch the locus of z on the argand diagram.	(1)
(ii) Find the maximum value of arg z.	(2)

(iii) Find the maximum value of mod z. (2)

Question 3 (Answer in a separate booklet)

(15)

(1)

(a) The graph of y = f(x) is shown. The line y = -x is an oblique asymptote to the curve.

Use separate half page graphs, to sketch

(i) f(-x)

(ii) f(|x|) (1)

(iii)
$$\frac{x}{f(x)}$$
 (3)

(b) Given that 1 + i is a zero of $P(x) = x^4 - x^3 - 2x^2 + 6x - 4$, factorise P(x) fully over the field of the complex numbers. (2)

(c) The equation $x^3 + x^2 - 2x - 3 = 0$ has roots α , β and γ . Find the equation with roots:

(i)
$$\alpha^2$$
, β^2 and γ^2 (1)

(ii)
$$\alpha^{3}\beta\gamma, \alpha\beta^{3}\gamma$$
 and $\alpha\beta\gamma^{3}$ (2)

(d) For the hyperbola
$$\frac{x^2}{16} - \frac{y^2}{25} = 1$$
,(1)(i) find the eccentricity.(1)(ii) find the coordinates of the foci.(1)(iii) find the equations of the directrices.(1)(iv) find the equations of the asymptotes.(1)

(v) if P is on the hyperbola and S and S' are it's foci, then given PS=2, find PS'. (1)

Question 4 (Answer in a separate booklet)

(a) Using the method of cylindrical shells, find the volume generated by revolving the region bounded by $y = \log_e x$, the *x*-axis and the interval $1 \le x \le e$ about the *y* axis. (4)

(b) The ellipse $\frac{(x-4)^2}{9} + \frac{y^2}{4} = 1$ is rotated about the y axis to form a donut shape.

- (i) By taking slices perpendicular to the axis of rotation, show that the volume of a slice is $8 \pi \sqrt{36 9y^2} \delta y$ (2)
- (ii) Find the volume of the solid
- (c) Calculate the modulus and argument of the sum of the roots of the equation (2)

$$(3 + 4i)z^{2} + (2 - i)z + (8 - 2i) = 0$$

- (d) PQ is a chord of a rectangular hyperbola $xy = c^2$
 - (i) Show that PQ has equation x + pqy = c(p+q) where P and Q have parameters p and q respectively. (2)
 - (ii) If PQ has a constant length k^2 , show that

$$c^{2}[(p+q)^{2}-4pq](p^{2}q^{2}+1)=k^{4}p^{2}q^{2}$$

and find the locus of R, the midpoint of PQ, in Cartesian form. (3)

(15)

(2)

(a) ABCD is a cyclic quadrilateral. BA and CD are both produced and intersect at E. BC and AD produced intersect at F. The circles EAD and FCD intersect at G as well as at D. Prove the points E, G and F are collinear.

(b) Let
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$$
 for integers n, $n \ge 0$
(i) Show that $I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x \, dx$ for $n \ge 2$.

(ii) Deduce that
$$I_n = \frac{n-1}{n} I_{n-2}$$
 for $n \ge 2$. (2)

(iii) Evaluate
$$I_4$$
 (2)

(c) (i) If α is a multiple root of the polynomial equation P(x) = 0, prove that $P'(\alpha) = 0$ (2)

(ii) Find all roots of the equation
$$18x^3 + 3x^2 - 28x + 12 = 0$$

if two of the roots are equal. (3)

(15)

(4)

(2)

Question 6 (Answer in a separate booklet)

- (a) The diagram shows an ellipse with equation $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and the larger of
 - its auxiliary circles. The coordinates of a point P on the ellipse are $(4\cos\theta, 3\sin\theta)$ where $\theta \neq 0$ or π .

A straight line l parallel to the y axis intersects the x axis at N and the ellipse and the auxiliary circle at the points P and Q respectively.

- (i) Find the equations of the tangent to the ellipse at P and to the auxiliary circle at Q. (4)
- (ii) The tangents at P and Q intersect at point R. Show that R lies on the x axis. (2)
- (iii) Prove that ON*OR is independent of the positions of P and Q. (1)
- (b) On Tuesday morning at 5 am, a truck crashes into a harbour. The rescue team and their equipment can only work effectively when the depth of water is no more than 7 m. At low tide, the depth of the water is 5 metres and at high tide, the depth is 10 metres. Low tide occurs at 4 am and high tide at 10.15 am. Assume the movement of the tide is simple harmonic motion.

- (ii) If the deadline for the rescue operation is 6 pm on Wednesday evening, find the periods of time between 5 am and 6 pm during which the rescue team can work effectively.
- (c) Given a real polynomial Q(x) show that if α is a root of Q(x)-*x*=0, then α is also a root of Q(Q(x))-*x*=0. (2)

Marks

Marks

Question 7 (Answer in a separate booklet) (15)

(a) For the curve $x^2y^2 - x^2 + y^2 = 0$

(i) state any x and y-intercepts.	(1)
(ii) demonstrate why $ v < 1$	(1)

(ii) demonstrate why
$$|y| < 1$$
. (1)

(iii) demonstrate why
$$|y| \le |x|$$
. (1)

(iv) use implicit differentiation to show
$$\frac{dy}{dx} = \frac{x(1-y^2)}{y(1+x^2)}$$
. (2)

(b) By expanding
$$(\cos \theta + i \sin \theta)^3$$
 it can be shown that
 $\cot 3\theta = \frac{t^3 - 3t}{3t^2 - 1}$ where $t = \cot \theta$

(i) solve
$$\cot 3\theta = -1$$
 for $0 \le \theta \le 2\pi$ (2)

(ii) Hence show that
$$\cot \frac{\pi}{12}$$
. $\cot \frac{5\pi}{12}$. $\cot \frac{9\pi}{12} = -1$ (2)

(iii) Write down a cubic equation with roots $\tan \frac{\pi}{120}$, $\tan \frac{5\pi}{12}$ and $\tan \frac{9\pi}{12}$. (2) (Express your answer as a polynomial equation with positive integer coefficients).

Question 8 (Answer in a separate booklet)

(a) The series
$$\frac{1}{2} + \frac{8}{4} + \frac{27}{8} + \ldots = \sum_{n=1}^{\infty} \frac{n^3}{2^n}$$
 is not geometric and, as such, it is not a

routine matter to decide whether or not it converges to a finite sum. Let $y_n = \frac{n^2}{2^n}$

(i) Show that
$$\frac{y_n}{y_{n-1}} = \frac{1}{2} \times \left(\frac{n}{n-1}\right)^3$$
 and hence show that this ratio is greater than 1 when $2 \le n \le 4$ but less than 1 when $n \ge 5$. (3)

(ii) Show that
$$\frac{y_n}{y_{n-1}} \le 0.98$$
 for $n \ge 5$. (2)

- (iii) Given that $y_4 = 4$, deduce that $y_n \le 4 \times (0.98)^{n-4}$ for $n \ge 4$ and write down the value of $\lim_{n \to \infty} y_n$. (2)
- (b) Show that the derivative of the function $y = x^x$ for x > 0 is $(\log_e x + 1) x^x$. (2)
- (c) Find all solutions $(0 \le \theta < \pi)$ in radians of the equation $\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} = \frac{3}{4}$. (3)
- (d) A triangle ABC is right-angled at A and it has sides of lengths a, b and c units (the side opposite angle A is a etc). A circle of radius r units is drawn so that the sides of the triangle are tangents to the inscribed circle.

Prove that
$$r = \frac{1}{2}(c + b - a)$$
. (3)

Marks

(15)

Marks

STANDARD INTEGRALS

 $\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$ NOTE : $\ln x = \log_e x$, x > 0

1

		[]
(a)	Let $u=2x$	2 mantra compost
	du = 2dx	2 marks – correct solution
	$\int \frac{1}{\sqrt{4x^2 - 25}} dx$	
	$\int \sqrt{4x^2 - 25}$	
	$\int 1 du$	
	$=\int \frac{1}{\sqrt{u^2-5^2}} \frac{du}{2}$	
	$=\frac{1}{2}\ln\left(u+\sqrt{u^2-5^2}\right)+c$	
	$=\frac{1}{2}\ln(2x+\sqrt{4x^2-25})+c$	
	$=\frac{1}{2}\ln(2x+\sqrt{4x}-25)+c$	
	Alternatively	
	Ċ	
	$\int \frac{1}{\sqrt{4x^2 - 25}} dx$	
	4 100 20	
	$= \int \frac{1}{\sqrt{4\left(x^2 - \frac{25}{4}\right)}} dx$	
	$\int \int \frac{1}{4(x^2-25)}$	
	$=\frac{1}{2}\int \frac{1}{\sqrt{x^2 - \left(\frac{5}{2}\right)^2}} dx$	
	$\left[-\frac{2}{2}\right] = \left[\frac{2}{\sqrt{2}} + \frac{5}{\sqrt{2}}\right]^2$	
	$\sqrt{x^{-}(\overline{2})}$	
	$1\left(\begin{array}{c}2&25\end{array}\right)$	
	$=\frac{1}{2}\ln\left(x+\sqrt{x^2-\frac{25}{4}}\right)+c_1$	
	NB These solutions only differ by a constant of integration as	
	$\frac{1}{2}\ln\left(x+\sqrt{x^2-\frac{25}{4}}\right)+c_1$	
	$=\frac{1}{2}\ln\left(x+\sqrt{\frac{4x^2-25}{4}}\right)+c_1$	
	$=\frac{1}{2}\ln\left(x+\sqrt{\frac{4x-25}{4}}\right)+c_{1}$	
	$=\frac{1}{2}\ln\left(\frac{2x+\sqrt{4x^{2}-25}}{2}\right)+c_{1}$	
	$=\frac{1}{2}\ln\left(2x+\sqrt{4x^2-25}\right)-\frac{1}{2}\ln 2+c_1$	
	$\therefore c = c_1 - \frac{1}{2} \ln 2$	
(b)	2	
(b)	C	2 marks – correct
	$\tan^4 x \sec^2 x dx$	solution
	Ĵ	
	$= \int \tan^4 x d(\tan x)$	1 mark – applying the
	J	standard integral.
	$=\frac{\tan^5 x}{5} + c$	
	5 5	

Manly Selective Campus 2010 Mathematics Extension 2 Trial - solutions

(c)	$c^{\frac{\pi}{2}}$	3 marks – correct
	$\int_{0}^{\frac{\pi}{2}} x \sin x dx$	solution.
		2 marks correctly
		2 marks – correctly integrating sinx.
	Γ \neg_{π} $\int \frac{\pi}{2}$	integrating sinx.
	$= \left[-x\cos x \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos x dx$	1 mark – correct
		substitution into
		integration by parts
	$= (00) + \left[\sin x \right]_{0}^{\frac{\pi}{2}}$	process.
	= 0 + (1 - 0)	
	= 1	
(d)	u = x - 2	
	u + 1 = x - 1	3 marks – correct
	1 - u = 3 - x	solution.
	when $x = \frac{3}{2}$, $u = -\frac{1}{2}$	2 marks – correctly
	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	integrating.
	when $x = \frac{5}{2}$, $u = \frac{1}{2}$	
		1 mark – correct change
	$\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{(1+u)(1-u)}} du$	of variable.
	$\frac{1}{du}$	
	$\sqrt{(1+u)(1-u)}$ and	
	$= \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-u^2}} du$	
	$=$ $\frac{1}{2}$ du	
	$\sqrt{1-u^2}$	
	$\frac{u_1}{2}$ $\sqrt{1-u}$	
	1	
	$\overline{2}$	
	$= [\sin^{-1} u] - 1$	
	$= [\sin^{-1}u] - \frac{1}{2}$	
	$=\frac{\pi}{6}-\frac{\pi}{6}$	
	$=\frac{\pi}{3}$	
	3	

Manly Selective Campus
2010 Mathematics Extension 2 Trial - solutions

(e) i	$\frac{3x+2}{(x+3)(x+2)} = \frac{A}{x+3} + \frac{B}{x+2}$ $3x+2 = A(x+2) + B(x+3)$ When $x = -2, -4 = B \therefore B = -4$ When $x = -3, -7 = -A \therefore A = 7$ $\frac{3x+2}{(x+3)(x+2)} = \frac{7}{x+3} - \frac{4}{x+2}$	2 marks -correct solution 1 marks - finding A or B.
(e) ii	$\int_{0}^{2} \frac{3x+2}{x^{2}+5x+6} dx$ = $\int_{0}^{2} \frac{7}{x+3} - \frac{4}{x+2} dx$ = $\left[7\ln(x+3) - 4\ln(x+2)\right]_{0}^{2}$ = $7\ln 5 - 4\ln 4 - 7\ln 3 + 4\ln 2$ = $7\ln\left(\frac{5}{3}\right) - 4\ln 2$	3 marks – correct solution. 2 marks – correct substitution. 1 mark – correct integrand.

Question 2

<i>(a)</i>	$z = \sqrt{2} - \sqrt{2} i = 2 \operatorname{cis} \left(-\frac{\pi}{4} \right)$	2 marks – correct answer
	$\therefore z^{10} = 2^{10} \operatorname{cis}\left(\frac{-10\pi}{4}\right) = -2^{10} \operatorname{i} = -1024 \operatorname{i}$	1 mark – correct mod and arg for z
(1)(')		
(b)(i)	(O-A)(-i) = P - A	
	P = A + Ai	1 mark – correct vector
	=z(1+i)	for P
(ii)	$\frac{(\mathbf{O}-\mathbf{A})\mathbf{i}}{2} = \mathbf{M} - \mathbf{A}$	
	$\therefore \mathbf{M} = \mathbf{z} \left(\frac{\mathbf{i}}{2} + 1 \right)$	1 mark – correct vector
	(2)	for M
(iii)	OC must be // AB	
	$k(A-O) I = C - O \ (k \neq 1)$	1 mark – correct vector
	$C = kzi - eg \ 2zi$	
(c(i))	$i^6 = i^4 * i^2$	1 mark – correct value
	= (1)(-1) = -1	
(ii)	$z^{6} = -1 + 0 \times i$ $= (\cos \theta + \mathbf{i} \sin \theta)^{6}$ $= \cos 6\theta + \mathbf{i} \sin 6\theta$ $\therefore 6\theta = \pi, 3\pi, 5\pi, 7\pi, 9\pi, \dots$ $\theta = \frac{\pi}{6}, \frac{3\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{9\pi}{6}, \frac{11\pi}{6}$ $\therefore \text{ sixth roots are } \cos \frac{2\mathbf{k} + 1}{6}\pi + \mathbf{i} \sin \frac{2\mathbf{k} + 1}{6}$ $\frac{\mathbf{i} \cdot \left(\frac{3\pi}{2}\right)}{\mathbf{i} \cdot \left(\frac{3\pi}{2}\right)}$	2 marks – correct solutions and correct diagram appropriately labelled 1 mark - correct solutions but incompletely labelled
(c)(iii)	$z^{6} + 1 = 0$ $(z^{2})^{3} + (1)^{3} = 0$ $(z^{2} + 1)(z^{4} - z^{2} + 1) = 0$ But $z^{2} + 1 = 0$ has roots $z = \pm i$ $\therefore z^{4} - z^{2} + 1 = 0$ has roots $z = \operatorname{cis} \frac{\pi}{6}, \operatorname{cis} \frac{5\pi}{6}, \operatorname{cis} \frac{7\pi}{6}$ and $\operatorname{cis} \frac{11\pi}{6}$	2 marks – correct roots 1 mark – recognition of the basic factorisation

Question 2 (continued)

(<i>d</i>) (<i>i</i>)	$\begin{array}{c} \begin{array}{c} & y \\ 3 \\ 2.5 \\ 2 \\ 1.5 \\ 1 \\ 1 \\ 0.5 \\ \\ \\ \\ -1 \\ 0.5 \\ \\ \\ -1 \\ \end{array} $	1 mark – correct diagram showing the locus (only)
(ii)	Max arg when the tangent is on left side of the circle) - NOT through point (1, 2). $\therefore \sin \alpha = \frac{1}{2\sqrt{2}}$	2 marks – correct argument
	$\therefore \qquad \alpha = 20^{\circ}42'$ argument of vector to centre is $\frac{\pi}{4}$	<i>1 mark – correct argument for vector to centre</i>
	$\therefore \max \arg = \frac{\pi}{4} + \sin^{-1}\left(\frac{1}{2\sqrt{2}}\right) = 65^{\circ}42'$	
	$2 - 1 - \alpha - 2\sqrt{2}$	
(iii)	Max modulus is when the vector extends through the centre to	
	the other side of the circle. So modulus vector is $2\sqrt{2}$ and radius is 1.	2 marks – correct modulus
	Hence max modulus is $2\sqrt{2} + 1$	1 mark – indication of where the modulus would be

Question 3:

(b)	As $(1+i)$ is a zero, $(1-i)$ is also a zero. $\therefore (x - (1 + i))(x - (1 - i))$ is a factor $= (x^2 - 2x + 2)$ so other factors maybe found by factor theorem or polynomial division P(1) = 0; $x - 1$ is a factor P(-2) = 0; $x + 2$ is a factor	2 mark – correct factorisation 1 mark- correct application of "complex roots of a polynomial, with real coefficients, occur in conjugate pairs"
(c) i	$\therefore P(x) = (x-1)(x+2)(x-1-i)(x-1+i)$ $x^{3} + x^{2} - 2x - 3 = 0 \text{ has roots } x = \alpha, \beta \text{ and } \gamma$ So the equation with roots $X = \alpha^{2}, \beta^{2} \text{ and } \gamma^{2}$ will have $\sqrt{X} = \alpha, \beta \text{ and } \gamma$ so $x = \sqrt{X}$ will satisfy the original equation. $(\sqrt{X})^{3} + (\sqrt{X})^{2} - 2(\sqrt{X}) - 3 = 0$ $x^{\frac{3}{2}} + X - 2x^{\frac{1}{2}} - 3 = 0$ $x^{\frac{3}{2}} - 2x^{\frac{1}{2}} = 3 - X$ $x^{3} - 4x^{2} + 4X = 9 - 6X + x^{2}$ $x^{3} - 5x^{2} + 10X - 9 = 0$	1 mark correct equation.
(c) ii	$\alpha \beta \gamma = 3$ $\therefore \alpha^{3}\beta\gamma, \ \alpha\beta^{3}\gamma, \ \alpha\beta\gamma^{3}$ $= \alpha\beta\gamma \alpha^{2}, \ \alpha\beta\gamma \beta^{2}, \ \alpha\beta\gamma \gamma^{2}$ $= 3\alpha^{2}, \ 3\beta^{2}, \ 3\gamma^{2}$ which are 3 times the roots of $x^{3} - 5x^{2} + 10x - 9 = 0$ So substitute $\frac{x}{3}$ into $x^{3} - 5x^{2} + 10x - 9 = 0$ Alternatively, substitute $\sqrt{\frac{x}{3}}$ into $x^{3} + x^{2} - 2x - 3 = 0$ $\left(\frac{x}{3}\right)^{3} - 5\left(\frac{x}{3}\right)^{2} + 10\left(\frac{x}{3}\right) - 9 = 0$ $\frac{x^{3}}{27} - \frac{5x^{2}}{9} + \frac{10x}{3} - 9 = 0$ $x^{3} - 15x^{2} + 90x - 243 = 0$	2 marks correct polynomial 1 mark for obtaining $3\alpha^2 3\beta^2 3\gamma^2$

Manly Selective Campus
2010 Mathematics Extension 2 Trial - solutions

/

(d)	$b^2 = a^2(e^2 - 1)$	1 mark
i	$b^{2} = a^{2}(e^{2} - 1)$ 25 = 16($e^{2} - 1$)	
	$e^2 = 1 + \frac{25}{16}$	
	$e = \pm \frac{\sqrt{41}}{4}$	
	but, as for a hyperbola, e>0 then	
	$e = \frac{\sqrt{41}}{4}$	
(d)	$(\pm ae, 0) = (\pm \sqrt{41}, 0)$	1 mark
ii		
(d)	$x = \pm \frac{a}{e} = \pm \frac{16}{\sqrt{41}}$	1 mark
iii	$a = -\frac{1}{2}\sqrt{41}$	
(d)	$y = \pm \frac{b}{a}x$	1 mark
iv		
	$y = \pm \frac{5}{4}x$	
(d)	PS –PS' =2a	1 mark
v	2-PS' =8	
	PS'=10 or -6, but PS' is a distance	
	PS'=10	

Question 4

<i>(a)</i>	Area of shell = $\pi\{(x + \delta x)^2 - x^2\}$	
	$\therefore \text{ Vol} = \pi 2x \text{ dx y after letting } \delta x^2 \rightarrow 0$	4 marks – correct volume
	or $2 \pi xy \delta x = 2 \pi x \ln x \delta x$	
	$\therefore \text{ Vol} = \lim_{\delta x \to 0} \sum_{1}^{e} 2 \pi x \ln x \delta x$	3 marks – application of integration by parts but subsequent error
	$= 2 \pi \int_{1}^{\infty} x \ln x dx$	2 marks – correct statement for V
	$= 2\pi \left[\ln x \times \frac{x^2}{2} \right]_{1}^{e} - 2\pi \int_{1}^{e} \frac{x}{2} dx$	<i>1</i> mark – correct development for δV .
	$= 2\pi \left[\frac{e^2}{2} - 0\right] - 2\pi \left[\frac{e^2}{4} - \frac{1}{4}\right]$	<i>NOTE: (x-1) is not necessary</i> <i>because the integral goes from 1 to</i>
	$=\frac{\pi}{2}[e^2+1]$	е.
(b) (i)		
		2 marks – correct demonstration
	$\delta V = \pi (R_2^2 - R_1^2) \delta y$ $x = 4 \pm 3 \sqrt{1 - \frac{y^2}{4}}$ $x = 4 \pm 3 \sqrt{1 - \frac{y^2}{4}}$	1 mark – correct approach with sufficient progress
	$\therefore R_2 + R_1 = 8 \text{ and } R_2 - R_1 = 6 \sqrt{1 - \frac{y^2}{4}}$	
	$\delta V = \pi 8 \times \frac{6}{2} \times \sqrt{4 - y^2} $	
	$= 8\pi\sqrt{36 - 9y^2}$	
(ii)	$V = \lim_{\delta y \to 0} \sum_{-2}^{2} 24\pi \sqrt{4 - y^2} \delta y$	2 marks – correct volume calculated
	$= 24\pi \int_{-2}^{2} \sqrt{4-y^2} dy$	1 mark – correct approach using any appropriate method (eg trig substitution).
	$= 24\pi \times \frac{\pi \times 2^2}{2} = 48\pi^2$	Always make your life easier by looking for the" circle approach" when you can.

Question 4 (continued)

▰.

(c)	Sum of roots $= \frac{-(2-\mathbf{i})}{3+4\mathbf{i}}$	
	$=\frac{(\mathbf{i}-2)}{3+4\mathbf{i}}\times\frac{3-4\mathbf{i}}{3-4\mathbf{i}}$	
	$=\frac{11\mathbf{i}-2}{25}$	
		2 marks – correct answers
	: Modulus = $\sqrt{\frac{11^2 + 2^2}{25^2}} = \frac{1}{\sqrt{5}} = 0.447$	1 mark – sum of roots expressed
	Argument = $\tan^{-1} \left(-\frac{11}{25} \\ \frac{2}{25} \right) = \tan^{-1} \left(-\frac{11}{2} \right) = 100^{\circ} 18'$	correctly
(d)(i)	Let the points be $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right)$	
	$\mathbf{v} - \mathbf{c}$	2 marks – correct proof
	$\therefore \frac{y - \frac{c}{p}}{\frac{c}{q} - \frac{c}{p}} = \frac{x - cp}{cq - cp}$	
	$\frac{c}{q} - \frac{c}{p}$ $cq - cp$	1 mark – correct approach with
	$\frac{py-c}{p}$	progress but minor error
	$\frac{\frac{p}{c(p-q)}}{\frac{pq}{pq}} = \frac{x-cp}{c}$	
	$\frac{(py-c)q}{c} = -\frac{x-cp}{c}$	
	$\therefore x + pqy = c(p+q)$	
(ii)	$PQ^{2} = (cp - cq)^{2} + \left(\frac{c}{p} - \frac{c}{q}\right)^{2} = k^{4}$	
		3 marks – final equation for locus
	$= c^{2} (p-q)^{2} + \frac{c^{2}}{p q^{2}} (q-p)^{2}$	correct
	$\therefore \mathbf{c}^{2}(\mathbf{p}-\mathbf{q})^{2}\left(1+\frac{1}{\mathbf{p}^{2}\mathbf{q}^{2}}\right) = \mathbf{k}^{4}$	
	$\therefore c^{2}[(p+q)^{2} - 4pq](p^{2}q^{2} + 1) = k^{4}p^{2}q^{2}$	2 marks – values for x and y calculated correctly and some
	R is $X = \frac{cp + cq}{2} = \frac{c(p + q)}{2}$	appropriate progress made from there
	$Y = \frac{cq + cp}{2pq}$	
	: eliminating (p+q) $X = pqY$	1 mark – first equation proved
	Substituting the $X = eqn$ for $(p+q)$ and the last for pq into	correctly
	the previously proved equation gives:	
	$c^{2}\left[\frac{4x^{2}}{c^{2}}-\frac{4x}{y}\right]\left[\frac{x^{2}}{y^{2}}+1\right] = k^{4}\frac{x^{2}}{y^{2}}$	
	$[4x^{2}y - 4xc^{2}][x^{2} + y^{2}] = k^{4}x^{2}y$	
	$4(xy - c^{2})(x^{2} + y^{2}) = k^{4}xy$	

Question 5:

(b)	π	
i	$I_n = \int_{-\infty}^{\frac{\pi}{2}} \sin^{n-1} x \sin x dx$	2 marks – correct solution
		1 mark – correct choice of u
	$u = \sin^{n-1}x \qquad dv = \sin x$ $du = (n-1)\sin^{n-2}x\cos x dx \qquad v = -\cos x$	and dv.
	π	
	$I_{n} = \left[\sin^{n-1} x \times -\cos x\right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (n-1)\sin^{n-2} x \cos x \times -\cos x dx$	
	$= [0-0] + (n-1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x \cos^{2} x dx$	
	$= (n-1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x \cos^{2} x dx$	
(b)	$\int \frac{\pi}{2}$	
ii	$I_{n} = (n-1) \int_{0}^{\frac{1}{2}} \sin^{n-2} x \cos^{2} x dx$	2 marks – correct proof.
	$\int \frac{\pi}{2}$	1 marks – for obtaining
	$I_n = (n-1) \int_{-\infty}^{\frac{n}{2}} \sin^{n-2} x (1-\sin^2 x) dx$	α ^π .
	υ () π	$(n-1)\int_{0}^{\frac{\pi}{2}}\sin^{n-2}x - \sin^{n}xdx$
	$I_n = (n-1) \int_0^{\frac{n}{2}} \sin^{n-2} x - \sin^n x dx$	0
	$I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x - (n-1) \int_0^{\frac{\pi}{2}} \sin^n x dx$	
	$I_n = (n-1)I_{n-2} - (n-1)I_n$ $I_n + (n-1)I_n = (n-1)I_{n-2}$ $nI_n = (n-1)I_{n-2}$	
	$I_n = \frac{n-1}{n} I_{n-2}$	
(b) iii	$I_4 = \frac{3}{4}I_2$	2 marks – correct solution.
	$=\frac{3}{4}\left(\frac{1}{2}I_{0}\right)$	1 mark – correct primitive
	$=\frac{3}{8}\int_{0}^{\frac{\pi}{2}}\sin^{0}xdx$	
	$=\frac{3}{8}\left[x\right]_{0}^{\frac{\pi}{2}}$	
	$=\frac{3\pi}{16}$	
(c)		2 marks – correct proof.
i (C)	Let $P(x) = (x - \alpha)^n Q(x)$ $P'(x) = n(x - \alpha)^{n-1}Q(x) + (x - \alpha)^n Q'(x)$	1 mark for defining $P(x)$ as
	$P'(x) = (x - \alpha)^{n-1} [nQ(x) + (x - \alpha)Q'(x)]$	Let $P(x) = (x - \alpha)^n Q(x)$
	\therefore $P'(\alpha) = 0$ and all is a root of $P'(x)$	

Manly Selective Campus 2010 Mathematics Extension 2 Trial - solutions

(c)	$P'(x) = 54x^2 + 6x - 28$	3 marks – correct solution.
ii	$P'(x) = 2(27x^{2} + 3x - 14)$ P'(x) = 2(9x + 7)(3x - 2)	2 mark –
	$x = -\frac{7}{9} \operatorname{or} \frac{2}{3}$	$P'\left(\frac{2}{3}\right) = P\left(\frac{2}{3}\right) = 0$
	$P\left(\frac{2}{3}\right) = 18\left(\frac{2}{3}\right)^3 + 3\left(\frac{2}{3}\right)^2 - 28\left(\frac{2}{3}\right) + 12 = 0$	1 mark- 7 2
	$\therefore \qquad P'\left(\frac{2}{3}\right) = P\left(\frac{2}{3}\right) = 0 \qquad (3)$	$x = -\frac{7}{9} \operatorname{or} \frac{2}{3}$
	and $x=2/3$ is the double root.	
	$\therefore (3x-2)^2(ax-\beta) = 18x^3 + 3x^2 - 28x + 12$ (9x ² - 12x + 4)(ax - \beta) = 18x ³ + 3x ² - 28x + 12	
	$(9x^{2} - 12x + 4)(ax - \beta) = 18x^{3} + 3x^{2} - 28x + 12$	
	so by inspection of the coefficients	
	$(3x-2)^{2}(2x+3) = 18x^{3} + 3x^{2} - 28x + 12$	
	the roots are $2/3$ and $-3/2$	

Question 6

(a)(i)	At P x = $4\cos\theta$ y = $3\sin\theta$	
	$\frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{x}} = \frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{\theta}} \times \frac{\mathrm{d} \mathrm{\theta}}{\mathrm{d} \mathrm{x}}$	For each equation:
	$= \frac{-3\cos\theta}{4\sin\theta}$ $\therefore y - 3\sin\theta = \frac{-3\cos\theta}{4\sin\theta}(x - 4\cos\theta)$	2 marks – equation correct
	$\frac{x \cos \theta}{4} + \frac{y \sin \theta}{3} = 1$	1 mark – gradient correct
	At Q x = 4 cos θ y = 4 sin θ $\therefore \frac{dy}{dx} = \frac{-\cos \theta}{\sin \theta}$	
	$y - 4\sin\theta = \frac{-\cos\theta}{\sin\theta}(x - 4\cos\theta)$	
	$\frac{x\cos\theta}{4} + \frac{y\sin\theta}{4} = 1$	
(ii)	Solving simultaneously gives	
	$x \cos \theta = 4$	2 marks –correct demonstration
	: substituting back in	
	$16 + 4y \sin \theta = 16$ $\therefore y = 0 \text{ (so the x - axis)}$	<i>1 mark – correct approach to solving simultaneous equations</i>
(iii)	$ON = 4 \cos \theta$	
	$OR = \frac{4}{\cos \theta}$	1 mark – correct demonstration
	$\therefore \text{ON} \times \text{OR} = 16$	
	which is independent of θ and so of the positions of P and Q	
(b) (i)	Amplitude = 2.5 m	2 marks – both amplitude and period correct
	Period = 12.5 hours	<i>1 mark – either amplitude and period correct</i>

(ii)	$n = \frac{4\pi}{25}$ $\therefore x = 2.5 \cos\left(\frac{4\pi t}{25} + \varepsilon\right)$ $t = 0, x = -2.5 \text{ (so at low tide)} \therefore \varepsilon = \pi$ $\therefore x = 2.5 \cos\left(\frac{4\pi t}{25} + \pi\right) = -2.5 \cos\left(\frac{4\pi t}{25}\right)$ $x = -0.5 t = \frac{25}{4\pi} \cos^{-1} (0.2)$ $\therefore t = 2 \text{ hrs } 43 \text{ mins after } 4 \text{ am i.e at } 6 \text{ hrs } 43 \text{ mins}$ and 2hr 43 mins before 4:30 pm - so 1:47 pm so crew can work from 5 am to 6:43 am and from 1:47 pm to 6:00 pm	 4 marks – correct time intervals determined 3 marks – correct expression for time 2 marks – correct value for initial phase determined 1 mark – appropriate format for a cos equation stated
(c)	If α is a root $Q(\alpha) - \alpha = 0$ $\therefore Q(\alpha) = \alpha$ \therefore when α is substituted $Q(Q(x)) - x = Q(Q(\alpha)) - \alpha$ $= Q(\alpha) - \alpha = 0$ $\therefore \alpha$ is a root	2 marks – correct demonstration 1 mark – some appropriate substitution made.

Question 7:

(a)	When $x = 0$	Imark
<i>(a)</i>	$0 - x^2 - 0 = 0$	Indik
i	$\therefore \qquad x = 0$	
	So x-y intercept is $(0,0)$	
	50 x-y increept <i>is</i> (0, 0)	
ii	$x^2y^2 - x^2 + y^2 = 0$ rearranges to	1 mark
	2 2 2	
	$y^2 = \frac{x^2}{1 + x^2}$	
	and since $x^2 \le 1 + x^2$	
	$y^2 < 1$ y	
	$y^2 - 1 < 0$	
	(y-1)(y+1) < 0 -1 < y < 1	
	-1 < y < 1	
	$ y < 1$ -321 \downarrow 123 ×	
iii	The equation may also be rearranged to	Imark
	$\frac{y^2}{y^2} = 1$ y^2	
	$\frac{y^2}{x^2} = 1 - y^2.$	
	As $y^2 \ge 0$	
	$-y^2 \le 0$	
	then $1 - y^2 \le 1$	
	$\lim_{y \to 1} 1 - y \leq 1$	
	$\therefore \qquad \frac{y^2}{x^2} \le 1$ $\therefore \qquad \frac{y^2}{x^2} \le x^2$ $\sqrt{y^2} \le \sqrt{x^2}$	
	x^{-}	
	$y^{\underline{y}} \leq x^{\underline{z}}$	
	$\sqrt{y^2} \le \sqrt{x^2}$	
	$ y \le x $	
iv	$2xy^2 + x^2 2y \frac{dy}{dx} - 2x + 2y \frac{dy}{dx} = 0$	2 marks for correct demonstration
	un un	1 mark for implicit differentiation
	$\frac{dy}{dx}(2x^2y + 2y) = 2x - 2xy^2$	5 1 55
	u.r	
	$\frac{dy}{dx} = \frac{2x - 2xy^2}{2x^2y + 2y}$	
	2x y + 2y	
	$\frac{dy}{dx} = \frac{2x(1-y^2)}{2y(1+x^2)}$	
	$dx = 2y(1+x^2)$	
	$\frac{dy}{dx} = \frac{x(1-y^2)}{y(1+x^2)}$	
	$dx - \frac{1}{y(1+x^2)}$	
v	$\frac{dy}{dx}$	Imark
	Critical points occur when dx is undefined at y=0.	
	Therefore the critical point is $(0,0)$.	

vi	Possible stationary points occur when $\frac{dy}{dx} = 0$,	Imark
	$0 = \frac{x(1 - y^{2})}{y(1 + x^{2})}$ x = 0 or y = ±1	
	But these values do not result in stationary points as they are either at the critical point or outside the range determined above. So there can be no stationary points.	
vii	y=+-1 Use limit as x approaches plus or minus infinity.	1 mark
viii	Note the relation can be rewritten in form	1 mark
	$y^{2} = \frac{x^{2}}{1 + x^{2}}$ and all curves of form $y^{2} = f(x)$ have	
	symmetry about x-axis because $y = \pm \frac{x}{\sqrt{1+x^2}}$. Also it is	
	odd.	
	$y \\ 0.5 \\ -10 \\ -5 \\ -0.5 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	
b	$\cot 3\theta = -1$	2 marks for correct angles.
i	$\tan 3\theta = -1$	<i>1 mark for some of the correct</i>
	$3\theta = -\frac{\pi}{4} + k\pi$ where k is an integer	angles.
	$3\theta = \frac{-\pi + 4k\pi}{4}$	
	$\theta = \frac{-\pi(1-4k)}{12}$	
	so for $0 \le \theta \le 2\pi$ when k=1,2,3,4,5,6	
	$\theta = \frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{15\pi}{12}, \frac{19\pi}{12}, \frac{23\pi}{12}$	

r	
$t^{3}-3t$	2 marks for correct
If $\cot 3\theta = -1$ and given $\cot 3\theta = \frac{t^2 - 3t}{2t^2 - 1}$ then	demonstration.
3t - 1	
$-1 = \frac{t^3 - 3t}{3t^2 - 1}$	<i>1 mark for a <u>correct</u> statement</i>
$1 - \frac{1}{3t^2 - 1}$	regarding the product of the
$1 - 3t^2 = t^3 - 3t$	roots.
1 57 7 57	
$0 = t^3 + 3t^2 - 3t - 1$	
3 unique solutions of this polynomial are	
$t = \cot \frac{\pi}{4}, \ \cot \frac{\pi}{12} \text{ and } \cot \frac{11\pi}{12}$	
4 12 12	
By the product of the roots of	
$0 = t^3 + 3t^2 - 3t^2$	3t-1
$\cot\left(\frac{\pi}{4}\right)\cot\left(\frac{7\pi}{12}\right)\cot\left(\frac{11\pi}{12}\right) = 1$	
and since $\cot(-\theta) = -\cot\theta$ the	nen
$-\cot\left(\frac{3\pi}{4}\right) \times -\cot\left(\frac{5\pi}{12}\right) \times -\cot\left(\frac{\pi}{12}\right) = 1$	
$-\cot\left(\frac{9\pi}{12}\right)\times\cot\left(\frac{5\pi}{12}\right)\times\cot\left(\frac{\pi}{12}\right)=1$	
$\cot\left(\frac{\pi}{12}\right) \times \cot\left(\frac{5\pi}{12}\right) \times \cot\left(\frac{9\pi}{12}\right) = -1$	
$0 = \left(\frac{1}{t}\right)^3 + 3\left(\frac{1}{t}\right)^2 - 3\left(\frac{1}{t}\right) - 1$	1 mark for correct
$\left[\begin{array}{c} 0 - \left(\frac{1}{t}\right) + 3\left(\frac{1}{t}\right) - 3\left(\frac{1}{t}\right) - 1 \end{array} \right]$	demonstration
$0 = 1 + 3t - 3t^2 - t^3$	
0 - 1 + 3i - 3i - i	

Question 8:

r		· · · · · · · · · · · · · · · · · · ·
(a) (i)	$f(n) = \frac{y_n}{y_{n-1}} = \frac{n^3}{2^n} \times \frac{2^{n-1}}{(n-1)^3}$ $= \frac{1}{2} \left(\frac{n}{n-1}\right)^3$	<i>3 marks – correct demonstration or interpretation of pattern</i>
	$f'(n) = \frac{3}{2} \left(\frac{n}{n-1}\right)^2 \times \frac{(n-1) \times 1 - n \times 1}{(n-1)^2}$ $= \frac{-3n^2}{2(n-1)^4}$	2 marks – progress with the derivative interpretation or examination of values
	For $n \ge 5$ f '(n) < 0 so it is a decreasing function f(2) = 4 f(3) = $\frac{27}{16}$ and f(4) = $\frac{32}{27}$ but f(5) = $\frac{125}{128} < 1$ \therefore ratio > 1 for $2 \le n \le 4$ but < 1 for $n \ge 5$	<i>1 mark – correct simplification of ratio and than an attempt to apply it</i>
		<i>NOTE: you need a strategy to show that the ratio does not start to increase.</i>
(ii)	We know that $f(5) = \frac{125}{128} = 0.977 < 0.98$	2 marks – correct argument
	and the function is decreasing ∴ always less than 0.98	<i>1 mark – some justification as to why it should be less than 0.98</i>
(iii)	The ratio of successive terms in this series is less than 0.98 (from part (ii)). Hence the series will decrease more rapidly than a geometric series which has a common ratio of 0.98.	2 marks – correct argument
	So $y_n \le 4 \times (0.98)^{n-4}$ for $n \ge 4$ as $y_4 = 4$. But for the GS, the nth term approaches 0 because $(0.98)^{n-4}$ approaches 0. So the limit of y_n is zero.	1 mark – correct approach but logic error
(b)	$y = x^{x}$ $\therefore \qquad \ln y = x \ln x$	
	$y = e^{x \ln x}$ $\frac{d}{dx}(x \ln x) = \ln x + 1$	2 marks – correct demonstration
	$\therefore \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{\mathrm{x}\mathrm{lnx}} \times (\mathrm{lnx} + 1)$	1 mark – transformation to base e
	$= (\ln x + 1) x^{x}$	

Question 8 (continued)

(c)	$\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} = \frac{3}{4}$	
	$\frac{(\sin\theta + \cos\theta)(\sin^2\theta - \sin\theta\cos\theta + \cos^2\theta)}{\sin\theta + \cos\theta} = \frac{3}{4}$	3 marks – two correct solutions
	$\therefore 1 - \sin \theta \cos \theta = \frac{3}{4} (\sin \theta \neq -\cos \theta)$	
	$\therefore \sin 2\theta = \frac{1}{2}$	2 marks – relevant progress to a statement for 2θ .
	$2\theta = \frac{\pi}{6}, \frac{5\pi}{6}$	
	$\Theta = \frac{\pi}{12}, \frac{5\pi}{12}$	1 mark – numerator factored correctly
(<i>d</i>)	As radii meet the tangents at right angles,	
	$ D$	
	$As < DAE = 90^{\circ} (given)$	
	and $AD = AE$ (tangents from B a F c	3 marks – correct proof
	an external point are equal)	
	AEGD is a square.	2 marks – appropriate work towards solution
	So $AD = AE = r$	ionaras sociatori
	So BD = c - r = BF	I work identification that AD and
	EC = b - r = CF	1 mark - identification that AD and AE = r
	So $BC = a = b \cdot r + c \cdot r$	
	$\therefore r = \frac{1}{2}(c+b-a)$	