Northern Beaches Secondary College
Manly Selective Campus

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time -5 minutes
- Working time - 3 hours
- Write using blue or black pen
- Board-approved calculators and templates may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

Manly Selective Campus
 2011 Mathematics Extension 2 - Trial examination

(a) $\int x \sec ^{2}\left(x^{2}\right) d x$
(b) $\int \frac{d x}{x\left(1+x^{2}\right)}$
(c) Use the substitution $t=\tan \frac{x}{2}$ calculate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{5+3 \sin x+4 \cos x}$
(d) $\int \frac{d x}{\sqrt{x+5} \sqrt{4-x}}$ for $\mathrm{x}<4$ using the substitution $\mathrm{u}^{2}=4-\mathrm{x}$.
(e) $\int \sin (\ln x) d x u \operatorname{sing} u=\ln x$

Manly Selective Campus
 2011 Mathematics Extension 2 - Trial examination

Question 2 (Answer in a separate booklet)

(a) Simplify:
(i) $(4+3 i)^{2}$
(ii) $\frac{7-2 \mathrm{i}}{3+\mathrm{i}}$
(iii) $2 \operatorname{cis} \frac{\pi}{6} \times 3 \operatorname{cis} \frac{\pi}{3}$
(b) Find the roots of $z^{5}-i=0$ and sketch them on an argand diagram.
(c) (i) In the same diagram, sketch the locus of both $|z-2|=2$ and $|z|=|z-4 i|$.
(ii) What is the complex number represented by the point of intersection of these two loci?
(d) Let $y=i(1-i \sqrt{3})(\sqrt{3}+i)$
(i) Express y in cis form.
(ii) Hence find $\mathrm{y}^{3}+\mathrm{y}^{-3}$ in the form $\mathrm{A}+\mathrm{iB}$.
(e) Let z be a complex number of modulus 3 and ω be a complex number of modulus 1 .

Show that $|z-\omega|^{2}=10-(z \bar{\omega}+\bar{z} \omega)$

Manly Selective Campus
 2011 Mathematics Extension 2 - Trial examination

Marks

Question 3 (Answer in a separate booklet)
(a) The diagram below shows the graph of $g(x)$.

Using this information, sketch the graphs:
(i) $k(x)=g(|x|)$
(ii) $t(x)=\frac{1}{g(x)}$
(iii) Graph $f(x)$ given $f(x)=\left(x-\frac{\pi}{2}\right) \cos x$
(b) Given the point $P(6 \cos \theta, 2 \sin \theta)$ lies on an ellipse, determine the following
(i) The eccentricity.
(ii) Coordinates of the foci.
(iii) Equations to the directrices.
(iv) Determine the gradient to the ellipse when $\theta=\frac{2 \pi}{3}$.
(c) Given the polynomial $P(x)=2 x^{3}+3 x^{2}-x+1$ has roots α, β and γ :
(i) Find the polynomial whose roots are α^{2}, β^{2} and γ^{2}.
(ii) Determine the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.

Manly Selective Campus
 2011 Mathematics Extension 2 - Trial examination

Marks

Question 4 (Answer in a separate booklet)
(a) Factorise the polynomial $P(x)=3 x^{3}-7 x^{2}+8 x-2=0$ over C.
(b) Using the method of taking slices parallel to the x -axis, calculate the volume of the solid of revolution when the region bounded by the curve $y=\frac{1}{2} \sqrt{x-2}$, the x-axis and the line $x=6$ is rotated around the line $x=6$.
(c) The area enclosed between the curves $y=(x-4)^{2}$ and $y=x+2$ is rotated about the y-axis.
(i) Draw a diagram to show the area.
(ii) By taking slices of the area parallel to the axis of rotation, show that the volume of the solid formed is given by $2 \pi \int_{2}^{7} 9 x^{2}-x^{3}-14 x . d x$
(iii) Find the volume of the solid formed.
(d) A solid has as its base the region bounded by the curves $y=x$ and $x=2 y-\frac{y^{2}}{2}$.

Cross sections parallel to the x axis are equilateral triangles with a side in the base.

Determine the volume of this solid.

Manly Selective Campus
 2011 Mathematics Extension 2 - Trial examination

Marks

Question 5 (Answer in a separate booklet)
(a) (i) If $I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{\frac{n}{2}} d x$ where n is a positive integer, show that

$$
I_{n}=\frac{n}{(n+1)} I_{n-2}
$$

(ii) Hence evaluate I_{5}.
(b) (i) The polynomial $\mathrm{f}(x)=x^{4}-6 x^{3}+13 x^{2}-a x-b$ has two double zeros α and β. Find the values of a and b.
(ii) Hence determine, with full explanation, the equation of the line which touches the curve

$$
y=x^{4}-6 x^{3}+13 x^{2}
$$

at two distinct points.
(c) If $x+\frac{1}{x}=\mathrm{t}$, find $x^{6}+\frac{1}{x^{6}}$ in terms of t .

Manly Selective Campus
 2011 Mathematics Extension 2 - Trial examination

(a) The points P, Q and R lie on the circumference of a circle and form an acute angled triangle.

The altitudes PM and QN meet at H (which is not the centre of the circle)
(i) Prove that $R \hat{Q} A=R \hat{Q} N$
(ii) Prove that $\mathrm{HM}=\mathrm{MA}$
(1)

(iii) Prove that RH produced meets PQ at right angles.
(b) (i) Show that $a^{2}+b^{2} \geq 2 a b$ where a and b are distinct positive real numbers.
(ii) Hence show that $a^{2}+b^{2}+c^{2} \geq a b+a c+b c$.
(iii) Hence show that $\sin ^{2} \alpha+\cos ^{2} \alpha \geq \sin 2 \alpha$.
(iv) Hence show that $\sin ^{2} \alpha+\cos ^{2} \alpha+\tan ^{2} \alpha \geq \sin \alpha-\cos \alpha+\sec \alpha+\frac{1}{2} \sin 2 \alpha$.
(c) One of the roots of the equation $k x e^{-x}-4=0$ is a double root. Find the value of k .
(a) Determine the equation to the tangent to the curve $x^{3}+y^{3}-3 x^{2} y^{2}=1$ at the point $\mathrm{P}(1,3)$.
(b) A railway line has been constructed around a circular curve of radius 800 metres , and is banked by raising the outer rail to a certain level above the inner rail.
(i) When the train travels at $20 \mathrm{~m} / \mathrm{s}$, the lateral thrust F , is on the outer rail. Show that

$$
\begin{equation*}
F=m\left(\frac{1}{2} \cos \theta-g \sin \theta\right) \text { where } \theta \text { is the angle of inclination. } \tag{2}
\end{equation*}
$$

(ii) When the train travels at $10 \mathrm{~m} / \mathrm{s}$, the lateral thrust on the inner rail is the same as the lateral thrust on the outer rail at a speed of $20 \mathrm{~m} / \mathrm{s}$.
a) Find the angle of the banking.
b) Find the speed of the train when there is no lateral thrust exerted on the rails. Use $g=9.8 m s^{-2}$

(c) The above diagram shows a mass of 10 kilograms at B connected by light rods (at right angles) to sleeves A and C which revolve freely about the vertical axis AC but do not move vertically. The angle between the vertical axis AC and the light $\operatorname{rod} \mathrm{BC}$ is 30°. The acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{sec}^{2}$.
(i) Given AC is 2 metres, show that the radius of the circular path of rotation of B is $\frac{\sqrt{3}}{2}$ metres.
(ii) Find the tensions in the rods AB and BC when the mass makes 90 revolutions per minute about the vertical axis.

Manly Selective Campus
 2011 Mathematics Extension 2 - Trial examination

Marks
(a) Given the ellipse $\frac{x^{2}}{225}+\frac{y^{2}}{144}=1$, prove that the section of the tangent between the point of contact and its point of intersection with the directrix subtends a right angle with the corresponding focus.
(nb. The equation to the tangent to the ellipse is $\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$ and does need to be proved.)
(b) The hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ with eccentricity e, has one focus S on the positive x-axis and the corresponding directrix d cuts the asymptotes to the hyperbola at points P and Q in the first and fourth quadrants respectively.
(i) Show that $P S$ is perpendicular to the asymptote through P and that $P S=b$.
(ii) A circle with centre S touches the asymptotes of the hyperbola.

Deduce that the points of contact are the points P and Q.
(iii)The circle with centre S which touches the asymptotes of the hyperbola cuts the hyperbola at points R and T. If $b=a$, show that RT is a diameter.
(c) When $(1+a x)^{5}+(1+b x)^{5}$ in expanded in ascending powers of x, the expansion begins

$$
2+30 x+220 x^{2}+\ldots
$$

(i) Prove that $(a+b)=6$ and $\left(a^{2}+b^{2}\right)=22$
(ii) Deduce the value of $a b$.
(iii) Determine the value of the coefficient of x^{3}.

END OF EXAMINATION

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Question 1:

a)	$\begin{aligned} & \int x \sec ^{2}\left(x^{2}\right) \cdot d x \\ & \text { Let } u=x^{2} \\ & \therefore d u=2 x \cdot d x \\ & \therefore I_{0}=\frac{1}{2} \int \sec ^{2} u \cdot d u \\ &=\frac{1}{2} \tan u+c=\frac{1}{2} \tan x^{2}+c \end{aligned}$	1 mark - correct answer
b)	$\begin{aligned} & \int \frac{d x}{x\left(1+x^{2}\right)} \\ & \text { Let } \frac{1}{x\left(1+x^{2}\right)}=\frac{A}{x}+\frac{B x+C}{1+x^{2}} \\ & \therefore 1=A\left(1+x^{2}\right)+x(B x+C) \end{aligned} \text { Sub } x=0: 1=A+0 \rightarrow A=1, ~ \begin{aligned} & \text { Equate } x^{2}: 0=A+B \rightarrow B=-1 \\ & \text { Equate } x: \quad 0=C \quad \rightarrow C=0 \\ & \begin{aligned} \therefore \int \frac{d x}{x\left(1+x^{2}\right)}= & \int\left(\frac{1}{x}-\frac{x}{x^{2}+1}\right) \cdot d x \\ & =\ln x-\frac{1}{2} \ln \left(x^{2}+1\right)+c \end{aligned} \end{aligned}$	1 mark for setting up partial fractions 1 mark for finding constants 1 mark for answer Comment: Many students gained the first 2 marks but left the x out of the final integral
c)	$\int_{0}^{\frac{\pi}{2}} \frac{d x}{5+3 \sin x+4 \cos x}$ Let $t=\tan \frac{x}{2}$ At $x=0, \quad t=0$ $\therefore x=2 \tan ^{-1} t, \quad x=\frac{\pi}{2}, \quad t=1$ and $d x=\frac{2 d t}{1+t^{2}}, \quad \sin x=\frac{2 t}{1+t^{2}}, \quad \cos x=\frac{1-t^{2}}{1+t^{2}}$ $\begin{aligned} & \therefore I=\int_{0}^{1} \frac{\frac{2 d t}{1+t^{2}}}{5+3\left(\frac{2 t}{1+t^{2}}\right)+4\left(\frac{1-t^{2}}{1+t^{2}}\right)} \\ & =\int_{0}^{1} \frac{2 d t}{5+5 t^{2}+6 t+4-4 t^{2}} \\ & =\int_{0}^{1} \frac{2 d t}{(t+3)^{2}} \\ & =-2\left[\frac{1}{t+3}\right]_{0}^{1}=2\left[\frac{1}{t+3}\right]_{1}^{0}=2\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{6} \end{aligned}$	1 mark - sub in correct expressions 1 mark - correct integral 1 mark - integration 1 mark - substitution Comment: many students lost the 2 next to the $d t$

d)	$\begin{aligned} & \int \frac{d x}{\sqrt{x+5} \cdot \sqrt{4-x}} \quad \text { Let } u^{2}=4-x \rightarrow 2 u \cdot d u=-d x \\ & \quad \begin{array}{l} \text { and } x=4-u^{2} \end{array} \\ & \therefore I=\int \frac{-2 d u}{\sqrt{9-u^{2}} \cdot \sqrt{u^{2}}}=-\int \frac{2 d u}{\sqrt{9-u^{2}}} \\ & =-2 \sin ^{-1}\left(\frac{u}{3}\right)+c=-2 \sin ^{-1}\left(\frac{\sqrt{4-x}}{3}\right)+c \end{aligned}$	1 mark - correct substitution 1 mark - set up correct integral 1 mark - correct answer Comment: there was mixing up of u 's and x 's
e)	$\begin{aligned} & \int \sin (\ln x) d x \quad \text { Let } u=\ln x \rightarrow x=e^{u} \text { and } d x=e^{u} d u \\ & \therefore I=\int \sin (u) \cdot e^{u} \cdot d u \\ & \text { Let } U=e^{u}, \quad d V=\sin u \cdot d u \\ & \therefore d U=e^{u} d u, \quad V=-\cos u \\ & \therefore \int \sin (u) \cdot e^{u} \cdot d u=-e^{u} \cos u+\int e^{u} \cos u \cdot d u \\ & \text { Let } U=e^{u}, \quad d V=\cos u \cdot d u \\ & \therefore d U=e^{u} d u, \quad V=\sin u \\ & \therefore \int \sin (u) \cdot e^{u} \cdot d u=-e^{u} \cos u+e^{u} \sin u-\int e^{u} \sin u \cdot d u \\ & \therefore 2 \int e^{u} \sin u \cdot d u=-e^{u} \cos u+e^{u} \sin u \\ & \therefore \int e^{u} \sin u \cdot d u=\frac{1}{2}\left(e^{u} \sin u-e^{u} \cos u\right)+c \\ & \text { i.e } \int \sin (\ln x) d x=\frac{x}{2}(\sin (\ln x)-\cos (\ln x))+c \end{aligned}$	1 mark for correct substitution 1 mark for correct use in integration by parts 1 mark for Int by Parts correct answer 1 marks for final answer Comment: Setting out was often not clear

Question 2

2ai)	$(4+3 i)^{2}=16+24 i-9=7+24 i$	1 mark for correct answer
ii)	$\frac{7-2 i}{3+i}=\frac{7-2 i}{3+i} \times \frac{3-i}{3-i}=\frac{21-6 i-7 i-2}{9+1}=\frac{19-13 i}{10}$	1 mark for correct answer
iii)	2 cis $\frac{\pi}{3} \times 3$ cis $\frac{\pi}{6}=6$ cis $\frac{\pi}{2}=6 i$	1 mark for correct answer
b)	$z^{5}-i=0 \rightarrow z^{5}=i$ Let $z=\cos \theta+i \sin \theta$ $\therefore z^{5}=\cos 5 \theta+i \sin 5 \theta=i$ Equate real and imaginary parts: $\cos 5 \theta=0 \text { and } \sin 5 \theta=1$ $\therefore 5 \theta=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \frac{13 \pi}{2}, \frac{17 \pi}{2}$ and $\theta=\frac{\pi}{10}, \frac{\pi}{2}, \frac{9 \pi}{10}, \frac{13 \pi}{10}, \frac{17 \pi}{10}$ $\therefore z_{1}=\operatorname{cis} \frac{\pi}{10}, z_{2}=i, z_{3}=\operatorname{cis} \frac{9 \pi}{10}, z_{4}=\operatorname{cis} \frac{13 \pi}{10}, z_{5}=\operatorname{cis} \frac{17 \pi}{10}$	1 mark for 1 correct value of z 1 mark for 5 correct values of z 1 mark for plotting the values, showing equal moduli and equal imaginary parts for $z_{1}, z_{3} \text { and } z_{4}, z_{5}$ Comment: This question was marked very generously
ci)		1 mark for each graph
ii)	The line and curve intersect at $2+2 i$	1 mark for correct answer
di)	$\begin{aligned} y= & i(1-i \sqrt{3})(\sqrt{3}+i) \\ & =(i+\sqrt{3})(\sqrt{3}+i)=2+2 i \sqrt{3}=4 c i s \frac{\pi}{3} \end{aligned}$	1 mark for correct expansion 1 mark for correct answer

ii)	$\begin{aligned} y^{3}+y^{-3} & =\left(4 \operatorname{cis} \frac{\pi}{3}\right)^{3}+\left(4 \operatorname{cis} \frac{\pi}{3}\right)^{-3} \\ & =64 \operatorname{cis} \pi+\frac{1}{64} \operatorname{cis}(-\pi) \\ & =-\left(64+\frac{1}{64}\right) \end{aligned}$	1 marks for correct use of De Moivre's theorem 1 mark for correct answer
e)	$\begin{aligned} \text { Since } \begin{aligned} z \bar{z}=\|z\|^{2},\|z-w\|^{2}= & (z-w) \overline{(z-w)} \\ & =(z-w)(\bar{z}-\bar{w}) \\ & =z \bar{z}-z \bar{w}-w \bar{z}+w \bar{w} \\ =9-(z \bar{w}+w \bar{z})+1=10- & (z \bar{w}+w \bar{z}) \end{aligned} \end{aligned}$	1 mark for knowledge of conjugates 1 mark for correct answer Comment: There was only one correct response

Manly Selective Campus
 2010 Mathematics Extension 2 Trial - solutions

Question 3:

(a) i		1 mark - correct answer clearly showing symmetry.
(a)ii	Not to scale	1 mark - correct answer including showing asymptotes
(a)iii		3 marks - correct answer clearly showing shape (eg. Domain approx. $-4 \pi \leq x \leq 4 \pi$ or greater) and upper and lower asymptotes or some indication of max/min values 2 marks -clearly showing shape (eg. Domain approx. $-4 \pi \leq x \leq 4 \pi$ or greater) 1mark - significant process towards demonstrating shape.

$b-(i)$	$\begin{aligned} P(6 \cos \theta, 2 \sin \theta) & \therefore \frac{x^{2}}{36}+\frac{y^{2}}{4}=1 \\ b^{2} & =a^{2}\left(1-e^{2}\right) \\ e & =\sqrt{1-\frac{4}{36}} \\ & =\sqrt{\frac{32}{36}}=\frac{2 \sqrt{2}}{3} \end{aligned}$	1 mark - correct answer
$b-(i i)$	Foci $=(\pm a e, 0)=(\pm 4 \sqrt{2}, 0)$	1 mark - correct answer
b-(iii)	$\text { Directrices } \begin{aligned} x & = \pm \frac{a}{e} \\ x & = \pm \frac{6 \times 3}{2 \sqrt{2}}= \pm \frac{9 \sqrt{2}}{2} \end{aligned}$	1 mark - correct answer
$b-(i v)$	$\begin{array}{rlrl} \frac{x^{2}}{36}+\frac{y^{2}}{4} & =1 & \\ \frac{2 x}{36}+\frac{2 y}{4} \frac{d y}{d x} & =0 & x=6 \cos \theta y=2 \sin \theta \\ \frac{d y}{d x} & =-\frac{x}{9 y} & \frac{d x}{d \theta}=-6 \sin \theta & \frac{d y}{d \theta}=2 \cos \theta \\ \theta & =\frac{2 \pi}{3} & & \frac{d y}{d x}=-\frac{1}{3} \cot \theta \\ x & =-3 & y=\sqrt{3} & \frac{d y}{d x}=\frac{1}{3 \sqrt{3}}=\frac{\sqrt{3}}{9} \\ m & =\frac{1}{3 \sqrt{3}}=\frac{\sqrt{3}}{9} & & \end{array}$	2 mark - correct answer 1 mark-correct equation for $\frac{d y}{d x}$
$\begin{aligned} & \text { (c) } \\ & I i \end{aligned}$	$\begin{aligned} P(x) & =2 x^{3}+3 x^{2}-x+1 \\ Q(x) & =2(\sqrt{x})^{3}+3(\sqrt{x})^{2}-\sqrt{x}+1 \\ 0 & =2(\sqrt{x})^{3}+3(\sqrt{x})^{2}-\sqrt{x}+1 \\ 2(\sqrt{x})^{3}-\sqrt{x} & =-3 x-1 \\ \sqrt{x}(2 x-1) & =-(3 x+1) \\ x(2 x-1)^{2} & =(3 x+1)^{2} \\ 4 x^{3}-4 x^{2}+x & =9 x^{2}+6 x+1 \\ Q(x) & =4 x^{3}-13 x^{2}-5 x-1 \end{aligned}$	2 marks - correct answer 1 mark - correct substitution of \sqrt{x}.

(d)	$P(\alpha)$ $=2 \alpha^{3}+3 \alpha^{2}-\alpha+1=0$ Iii $P(\beta)$ $=2 \beta^{3}+3 \beta^{2}-\beta+1=0$ $P(\gamma)$ $=2 \gamma^{3}+3 \gamma^{2}-\gamma+1=0$ $2\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)$ $=-3\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+(\alpha+\beta+\gamma)-3$ $\alpha^{2}+\beta^{2}+\gamma^{2}$ $=-\frac{b}{a}=\frac{13}{4} \quad$ from part (i) $\alpha+\beta+\gamma$ $=-\frac{3}{2}$ $2\left(\alpha^{3}+\beta^{3}+\gamma^{3}\right)$ $=-3 \times \frac{13}{4}-\frac{3}{2}-3$ $\alpha^{3}+\beta^{3}+\gamma^{3}$ $=-\frac{57}{8}$	

Question 4

(a)	$\begin{aligned} & P(x)=3 x^{3}-7 x^{2}+8 x-2=0 \\ & \text { Test } \pm 1,2, \frac{1}{3}, \frac{2}{3} \end{aligned}$ $P\left(\frac{1}{3}\right)=0 \therefore(3 x-1)$ is a factor $P(x)=(3 x-1)\left(x^{2}-2 x+2\right)$ by inspection \&/or long division. $\begin{aligned} & =(3 x-1)\left[(x-1)^{2}+1\right] \\ & =(3 x-1)(x-1-i)(x-1+i) \end{aligned}$	2 marks - correct answer factorised over C. 1 mark-correctly factorised over R.
(b) (i)	 Volume of single cylinder $\begin{aligned} V & =\pi r^{2} \cdot h \quad r=6-x \quad h=\delta y \\ \delta V & =\pi(6-x)^{2} \cdot \delta y \\ y & =\frac{1}{2} \sqrt{x-2} \\ x & =4 y^{2}+2 \\ \delta V & =\pi\left(4-4 y^{2}\right)^{2} \cdot \delta y \\ & =16 \pi\left(1-y^{2}\right)^{2} \cdot \delta y \end{aligned}$ Approximate volume of shape. $\begin{aligned} V & \cong \lim _{d y \rightarrow 0} \sum_{0}^{1} 16 \pi\left(1-y^{2}\right)^{2} \cdot \delta y \\ V & =16 \pi \int_{0}^{1} 1-2 y^{2}+y^{4} \cdot d y \\ & =16 \pi\left[y-\frac{2 y^{3}}{3}+\frac{y^{5}}{5}\right]_{0}^{1} \\ & =\frac{128}{12} \pi u_{n i t s}{ }^{3} \end{aligned}$	4 marks - correct answer fully explained. 3 marks - Correct integration for correct volume expression 2 mark - approximate volume showing Σ notation nb Σ notation was specifically required to be demonstrated in this solution.) 1 mark-formula for volume of single cylinder ie. δV

Manly Selective Campus
 2010 Mathematics Extension 2 Trial - solutions

Question 4 (continued)

c-(i)		1 mark - correct diagram including intercepts.
c-(ii)	$\begin{aligned} \delta V & =2 \pi r \cdot h \cdot \delta x \quad r=x \quad h=(x+2)-(x-4)^{2} \\ \therefore \delta V & =2 \pi \cdot x \cdot\left[(x+2)-(x-4)^{2}\right] \cdot \delta x \\ & =2 \pi x\left(9 x-x^{2}-14\right) \cdot \delta x \\ & =2 \pi\left(9 x^{2}-x^{3}-14 x\right) \cdot \delta x \end{aligned}$ Intercepts $\begin{aligned} x+2 & =(x-4)^{2} \\ 0 & =x^{2}-9 x+14 \\ & =(x-2)(x-7) \end{aligned}$	2 marks - correctly demonstrated derivation of formula 1 mark - correct process with single error.
c-(iii)	$\begin{aligned} V & \cong \lim _{x \rightarrow 0} \sum_{2}^{7} 2 \pi\left(9 x^{2}-x^{3}-14 x\right) \cdot \delta x \\ V & =2 \pi \int_{2}^{7}\left(9 x^{2}-x^{3}-14 x\right) \cdot d x \\ & =2 \pi\left[3 x^{3}-\frac{x^{4}}{4}-7 x^{2}\right]_{2}^{7} \\ & =\frac{375 \pi}{2} \text { units }^{3} \end{aligned}$	1 mark - correct answer

Manly Selective Campus
 2010 Mathematics Extension 2 Trial - solutions

Question 4 (continued)

(d)	 $h=\frac{\sqrt{3}}{2} x$ Intercepts $\begin{aligned} y & =2 y-\frac{y^{2}}{2} \\ y^{2}-2 y & =0 \\ y & =0 \quad y=2 \end{aligned}$ Length of side $=x_{2}-x_{1}$ $=2 y-\frac{y^{2}}{2}-y=y-\frac{y^{2}}{2}$ Area of Triangle $=\frac{1}{2} \operatorname{absin} 60^{\circ}$ $=\frac{1}{2}\left(y-\frac{y^{2}}{2}\right)^{2} \cdot \frac{\sqrt{3}}{2}$ Volume of single triangular prism $V=\frac{\sqrt{3}}{4} \cdot\left(y-\frac{y^{2}}{2}\right)^{2} \cdot \delta y$ Volume of shape. $\begin{aligned} V & \approx \lim _{\delta y \rightarrow \infty} \sum_{y=0}^{2} \frac{\sqrt{3}}{4}\left(y-\frac{y^{2}}{2}\right)^{2} \delta y \\ & =\frac{\sqrt{3}}{4} \int_{0}^{2} y^{2}-y^{3}+\frac{y^{4}}{4} d y \\ & =\frac{\sqrt{3}}{4}\left[\frac{y^{3}}{3}-\frac{y^{4}}{4}+\frac{y^{5}}{20}\right]_{0}^{2} \\ & =\frac{\sqrt{3}}{15} u^{3} \end{aligned}$	5 marks - correct answer clearly demonstrated. 4 marks - Correct to final integration 3 marks - correct derivation of δV 2 marks - correct formula in terms of y for Area of triangle. 1 mark - length of side in terms of y.

Manly Selective Campus
 2010 Mathematics Extension 2 Trial - solutions

Question 5:

(a) (i)	$\begin{aligned} I_{n} & =\int_{0}^{1}\left(1-x^{2}\right)^{\frac{n}{2}} d x \\ & =\left[x\left(1-x^{2}\right)^{\frac{n}{2}}\right]_{0}^{1}+n \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{\frac{n}{2}-1} \\ & =0-n \int_{0}^{1}\left(1-x^{2}+1\right)\left(1-x^{2}\right)^{\frac{n}{2}-1} \\ & =-n \int_{0}^{1}\left(1-x^{2}\right)^{\frac{n}{2}} d x+n \int_{0}^{1}\left(\frac{1}{x^{2}}\right)^{\frac{n}{2}-1} d x \\ & =-n I_{n}+n I_{n-2} \\ & =\frac{n I_{n-2}}{n+1} \end{aligned}$	4 marks - correct proof 3 marks - error in manipulation of separate parts 2 marks - incorporation of transformation in step 2 1 mark - correct integration by parts
(ii)	$\begin{aligned} & I_{5}=\frac{5}{6} I_{3} \\ & I_{3}=\frac{3}{4} I_{1} \\ & I_{1}=\int_{0}^{1} \sqrt{1-x^{2}} d x \\ &=\frac{\pi}{4} \\ & \therefore I_{3}-\frac{3}{4} \times \frac{\pi}{4} \\ & I_{5}=\frac{5}{6} \times \frac{3}{4} \times \frac{\pi}{4}=\frac{5 \pi}{32} \end{aligned}$	2 marks - correct value determined 1 mark - correct process but error
(b) (i)	$\begin{aligned} & f(x)=x^{4}-6 x^{3}+13 x^{2}-a x-b \\ & f^{\prime}(x)=4 x^{3}-18 x^{2}+26 x-a \end{aligned}$ Roots are $\alpha \alpha \beta \beta$ $\begin{aligned} & \therefore 2(\alpha+\beta)=6 \text { so } \alpha+\beta=3 \\ & \alpha^{2}+\beta^{2}+4 \alpha \beta=13 \\ & (\alpha+\beta)^{2}+2 \alpha \beta=13 \\ & 9+2 \alpha(3-\alpha)=13 \\ & \alpha^{2}-3 \alpha+2=0 \\ & \alpha=1 \text { or } 2 \text { so } b=2 \text { or } 1 \end{aligned}$ So $2(\alpha \alpha \beta+\alpha \beta \beta)=-a$ $\begin{aligned} a & =12 \\ b & =-4 \end{aligned}$	4 marks - both values correct 3 marks - correct values for α and β 2 marks - both equations with α and β correct 1 mark - one equation with α and β correct
(ii)	Equation is $y=12 x-4$ as solving the equations together gives the equation in (i) and the double zero gives the two points of contact.	1 mark-correct integration by parts

Question 5 (continued)

| (c) | $\left(x+\frac{1}{x}\right)^{2}=x^{6}+\frac{6 x^{5}}{x}+\frac{15 x^{4}}{x^{2}}+\frac{20 x^{3}}{x^{3}}+\frac{15 x^{2}}{x^{4}}+\frac{6 x}{x^{5}}+\frac{1}{x^{6}}$
 $=\left(x^{6}+\frac{1}{x^{6}}\right)+6\left(x^{4}+\frac{1}{x^{4}}\right)+15\left(x^{2}+\frac{1}{x^{2}}\right)+20$ 4 marks - correct expression
 for t^{6} |
| :--- | :--- | :--- |
| $x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2=t^{2}-2$ | 3 marks - correct |
| substitution for $t^{6}\left(2^{n d}\right.$ last | |
| line $)$ | |
| $\left(x^{4}+\frac{1}{x^{4}}\right)=\left(x^{2}+\frac{1}{x^{2}}\right)^{2}-2=\left(t^{2}-2\right)^{2}-2$ | 2 marks - correct expression |
| $=t^{4}-4 t^{2}+2$ | for $x^{4}+\frac{1}{x^{4}}$ |
| $t^{6}=\left(x^{6}+\frac{1}{x^{6}}\right)+6\left(t^{4}-4 t^{2}+2\right)+15\left(t^{2}-2\right)+20$ | |
| $=t^{6}-6 t^{4}+9 t^{2}-2$ | 1 mark - correct expression |
| for $x^{2}+\frac{1}{x^{2}}$ | |

Manly Selective Campus
 2010 Mathematics Extension 2 Trial - solutions

Question 6

(a)(i)	$\begin{aligned} & \text { Join } \mathrm{QA} \text { and AR } \\ & P \hat{R} Q=P \hat{A} Q=\alpha \text { (angle at circumference subtended by PQ) } \\ & A \hat{Q} R=A \hat{P} R=\beta \text { (as above subtended by AR) } \\ & \text { But in } \triangle M P R \alpha+\beta=90^{\circ} \\ & \therefore \text { in } \triangle R Q N R \hat{Q} N+\hat{Q R Q}=90^{\circ} \\ & \therefore R \hat{Q} N=90^{\circ}-\alpha=\beta=A \hat{Q} R \\ & \therefore R \hat{Q} A=R \hat{Q} N \end{aligned}$	3 marks - correct proof with full reasoning 2 marks - correct approach continued for a second angle 1 mark - approach using angles at circumference properly demonstrated
(ii)	In $\triangle M Q H$ and $\triangle M Q A$ QM is common $\begin{aligned} & Q \hat{M} H=Q \hat{M} A=90^{\circ}(\text { given }) \\ & R \hat{Q} A=R \hat{Q} N(\text { proved above }) \\ & \therefore \Delta M Q H \equiv \Delta M Q A(\text { ASA }) \end{aligned}$ $\therefore \mathrm{AM}=\mathrm{MA}$ (opposite corresponding angles)	1 mark - correct proof of congruence
(iii)	In $\triangle M H R$ and $M A R$ MH = MA (proved above) MR is common $\begin{aligned} & \hat{H M R}=\hat{M} R=90^{\circ} \text { (given) } \\ & \therefore \Delta M H R \equiv \Delta M A R \\ & \therefore \hat{M A R}=\hat{M H R} \end{aligned}$ But $A \hat{R} Q=A \hat{P} Q$ (angles at circumference subtended by AQ) RH produced meets QP at X $\begin{aligned} & M \hat{H} R=X \hat{H} P(\text { vertically opposite angles }) \\ & \therefore \hat{X P Q}+X \hat{H} P=90^{\circ} \\ & \therefore \hat{P X H}=90^{\circ} \end{aligned}$ $\therefore \mathrm{RH}$ produced meets PQ at right angles	2 marks - correct proof with reasons clearly stated 1 mark - suitable approach

Manly Selective Campus
 2010 Mathematics Extension 2 Trial - solutions

Question 6 (continued)

(b) (i)	$\begin{aligned} & (a-b)^{2} \geq 0 \\ & a^{2}+b^{2}>+2 a b \end{aligned}$	1 mark - correct proof of inequality
(i)	$\begin{aligned} & a^{2}+b^{2}>+2 a b \\ & a^{2}+c^{2}>+2 a c \\ & b^{2}+c^{2}>+2 b c \\ & 2\left(a^{2}+b^{2}+c^{2}\right) \geq 2(a b+a c+b c) \\ & a^{2}+b^{2}+c^{2} \geq a b+a c+b c \end{aligned}$	1 mark - correct proof of inequality
(iii)	$\begin{aligned} & \text { Let } a=\sin \alpha \text { and } b=\cos \alpha \\ & \therefore \sin ^{2} \alpha+\cos ^{2} \alpha \geq 2 \sin \alpha \cos \alpha \text { (using (i) } \\ & \therefore \sin ^{2} \alpha+\cos ^{2} \alpha \geq \sin 2 \alpha \end{aligned}$	1 mark - correct proof of congruence
(iv)	$\begin{aligned} & \sin ^{2} \alpha+\cos ^{2} \alpha+\tan ^{2} \alpha \geq \sin \alpha \cos \alpha+\sin \alpha \tan \alpha+\cos \alpha \tan \alpha \\ & \text { RHS }=\frac{1}{2} \sin 2 \alpha+\frac{\sin ^{2} \alpha}{\cos \alpha}+\sin \alpha \\ & =\frac{1}{2} \sin 2 \alpha+\sin \alpha+\frac{1-\cos ^{2} \alpha}{\cos \alpha} \\ & =\frac{1}{2} \sin 2 \alpha+\sin \alpha+\frac{1}{\cos \alpha}-\frac{\cos ^{2} \alpha}{\cos \alpha} \\ & =\frac{1}{2} \sin 2 \alpha+\sin \alpha+\sec \alpha-\cos \alpha \end{aligned}$	2 marks - correct proof with full logic shown 1 mark - correct approach to simplification of RHS
(c)	$\begin{aligned} & k x e^{-x}-4=0 \\ & \therefore k e^{-x} \times 1-k x e^{-x}=0 \\ & \left.k e^{-x} 1-x\right)=0 \\ & e^{-x} \neq 0 \therefore x=1 \\ & \therefore \mathrm{k} \times 1 \times \mathrm{e}^{-1}=4 \\ & k=4 e \end{aligned}$	3 marks - correct value for k 2 marks - correct value for x 1 mark - correct differentiation

Question 7:

(a)	$\begin{aligned} x^{3}+y^{3}-3 x^{2} y^{2} & =1 \\ 3 x^{2}+3 y^{2} \frac{d y}{d x}-3\left(2 x y^{2}+2 x^{2} y \frac{d y}{d x}\right) & =0 \\ \left(3 x^{2}-6 x y^{2}\right)+\left(3 y^{2}-6 x^{2} y\right) \frac{d y}{d x} & =0 \\ \frac{d y}{d x} & =\frac{3\left(2 x y^{2}-x^{2}\right)}{3\left(y^{2}-2 x^{2} y\right)} \\ \frac{d y}{d x} & =\frac{18-1}{9-6}=\frac{17}{3} \\ \left(y-y_{1}\right) & =m\left(x-x_{1}\right) \\ y-3 & =\frac{17}{3}(x-1) \\ \text { at } x=1, y=3 \quad 3 y-8 & =0 \end{aligned}$	3 marks - correct answer 2 marks - correct expression for $\frac{d y}{d x}$ (gradient function). 1 mark-correct differentiation ($n b$ - equation formed from incorrect implicit differentiation not considered.)
(b)	$\begin{align*} & N \cos \theta-F \sin \theta=\boldsymbol{m} \boldsymbol{g} \tag{1}\\ & N \sin \theta+F \cos \theta=\frac{m v^{2}}{r} \tag{2} \end{align*}$ $\begin{aligned} & \text { (1) } \times \sin \theta \&(2) \times \cos \theta \\ & N \cos \theta \sin \theta-F \sin ^{2} \theta=\boldsymbol{m} \boldsymbol{g} \sin \theta \\ & N \cos \theta \sin \theta+F \cos ^{2} \theta=\frac{m v^{2}}{r} \cos \theta \\ & F\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\frac{m v^{2}}{r} \cos \theta-\boldsymbol{m} \boldsymbol{g} \sin \theta \\ & F=m\left(\frac{400}{800} \cos \theta-g \sin \theta\right) \\ & F=m\left(\frac{1}{2} \cos \theta-g \sin \theta\right) \end{aligned}$	2 marks - correct answer fully demonstrated. 1 mark - correct resolution of forces horizontally and vertically.

b-(ii)	Train travelling at $10 \mathrm{~m} / \mathrm{s}$ $\begin{align*} & N \cos \theta+F \sin \theta=\boldsymbol{m} \boldsymbol{g} \tag{①}\\ & N \sin \theta-F \cos \theta=\frac{m v^{2}}{r} \tag{2}\\ & \text { (1) } \times \sin \theta \&(2) \times \cos \theta \\ & N \cos \theta \sin \theta+F \sin ^{2} \theta=\boldsymbol{m} \boldsymbol{g} \sin \theta \\ & N \cos \theta \sin \theta-F \cos ^{2} \theta=\frac{m v^{2}}{r} \cos \theta \tag{4}\\ & F\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\boldsymbol{m} \boldsymbol{g} \sin \theta-\frac{m v^{2}}{r} \cos \theta \\ & F=m\left(g \sin \theta-\frac{100}{800} \cos \theta\right) \\ & F=m\left(g \sin \theta-\frac{1}{8} \cos \theta\right) \\ & m\left(g \sin \theta-\frac{1}{8} \cos \theta\right)=m\left(\frac{1}{2} \cos \theta-g \sin \theta\right) \\ & \frac{5}{8} \cos \theta=2 g \sin \theta \\ & \tan \theta=\frac{5}{16 g} \\ & \theta=1^{\circ} 50^{\prime} \end{align*}$	2 marks - correct answer fully demonstrated. 1 mark - correct equation for F for $10 \mathrm{~m} / \mathrm{s}$
v	$\begin{aligned} N \cos \theta & =\boldsymbol{m} \boldsymbol{g} \\ N \sin \theta & =\frac{m v^{2}}{r} \\ \tan \theta & =\frac{v^{2}}{g r} \\ v & =\sqrt{g r \tan \theta} \\ & =\sqrt{g \times 800 \times \frac{5}{16 g}} \\ & =5 \sqrt{10} \mathrm{~m} / \mathrm{s} \end{aligned}$	2 marks - correct answer fully demonstrated. 1 mark - correct derivation of $\tan \theta$

vi	Given triangle ABC is $60 / 30$ triangle then side $\mathrm{AB}=1$ Triangle ABD is also $60 / 30$ therefore side $\mathrm{DB}=\frac{\sqrt{3}}{2}$	1 mark - correct demonstration of length of DB
vii	$\begin{aligned} & f=90 \mathrm{rev} / \mathrm{min} \quad f=\frac{\omega}{2 \pi} \mathrm{rev} / \mathrm{sec} \\ & \omega=\frac{180 \pi}{60}=3 \pi \mathrm{~s}^{-1} \end{aligned}$ Resolving forces vertically. $\begin{gather*} T_{1} \cos 60-T_{2} \sin 60=\boldsymbol{m} \boldsymbol{g}=10 g \\ \frac{T_{1}}{2}-\frac{\sqrt{3} T_{2}}{2}=98 \tag{1} \end{gather*}$ Resolving forces horizontally $\begin{align*} T_{1} \sin 60+T_{2} \cos 60 & =m r \omega^{2} \\ \frac{\sqrt{3} T_{1}}{2}+\frac{T_{2}}{2} & =10 \times \frac{\sqrt{3}}{2} \times(3 \pi)^{2}=45 \sqrt{3} \pi^{2} \\ \frac{\sqrt{3} T_{1}}{2}+\frac{T_{2}}{2} & =45 \sqrt{3} \pi^{2} \tag{2} \end{align*}$ (2) $\times \sqrt{3}$ $\frac{3 T_{1}}{2}+\frac{\sqrt{3} T_{2}}{2}=135 \pi^{2}$	5 marks - correct answer showing all steps involved. 4 marks - one correct tension determined. 3 marks - forces resolved correctly 2 marks - forces resolved correctly - either horizontally or vertically 1 mark - determination for ω - angular velocity

$\frac{T_{1}}{2}-\frac{\sqrt{3} T_{2}}{2}$	$=98$
$\frac{3 T_{1}}{2}+\frac{\sqrt{3} T_{2}}{2}$	$=135 \pi^{2}$
$2 T_{1}$	$=98+135 \pi^{2}$
T_{1}	$=\frac{98+135 \pi^{2}}{2}=715.2 \mathrm{~N}$
$T_{1}-\sqrt{3} T_{2}$	$=196$
$\sqrt{3} T_{2}$	$=\frac{98+135 \pi^{2}}{2}-196$
T_{2}	$=\frac{98+135 \pi^{2}-392}{2 \sqrt{3}}=299.76 \mathrm{~N}$

Question 8:

(a) (i)	Equation to tangent $\begin{aligned} \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}} & =1 \quad \text { or } \quad \frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1 \\ b^{2} & =a^{2}\left(1-e^{2}\right) \\ e^{2} & =1-\frac{144}{225} \\ e & =\frac{3}{5} \end{aligned}$ $\text { Focus }=a e=15 \times \frac{3}{5}=9$ Directrix $x=\frac{a}{e}=\frac{15 \times 5}{3}=25$ Point of intersection of tangent and directrix. $\begin{aligned} \frac{x \cos \theta}{15}+\frac{y \sin \theta}{12} & =1 \quad x=25 \\ \frac{25 \cos \theta}{15}+\frac{y \sin \theta}{12} & =1 \\ y & =\frac{12-20 \cos \theta}{\sin \theta} \end{aligned}$ Gradient - Focus to P $m_{1}=\frac{12 \sin \theta}{15 \cos \theta-9}=\frac{4 \sin \theta}{5 \cos \theta-3}$ Gradient - Focus to Directrix intercept $\begin{aligned} & m_{2}=\frac{\frac{12-20 \cos \theta}{\sin \theta}}{25-9}=\frac{12-20 \cos \theta}{16 \sin \theta}=\frac{3-5 \cos \theta}{4 \sin \theta} \\ & m_{1} \times m_{2}=\frac{4 \sin \theta}{5 \cos \theta-3} \times \frac{3-5 \cos \theta}{4 \sin \theta}=-1 \end{aligned}$ Therefore right angle subtended at focus.	3 marks - correct answer fully demonstrated 2 marks - correct gradient for either PS or SQ 1 mark-focus and directrix correctly determined.
(ii)		

	Length PS $\begin{aligned} P S & =\sqrt{\left(\frac{a}{e}-a e\right)^{2}+\frac{b^{2}}{e^{2}}} \\ & =\sqrt{\left(\frac{\left.a\left(e^{2}-1\right)\right)^{2}+\frac{b^{2}}{e^{2}}}{e}\right.} \\ & =\sqrt{\frac{a^{2}\left(e^{2}-1\right)\left(e^{2}-1\right)+b^{2}}{e^{2}}} \\ & =\sqrt{\frac{b^{2}\left(e^{2}-1+1\right)}{e^{2}}} \\ & =b \end{aligned}$	
(iii)	As PS and PQ are perpendicular to asymptotes and equal in length. Also radii are perpendicular to tangents at point of contact. Therefore circle with centre at S would have points of contact with aysmptotes at Points P and Q .	
(b)		2marks - correct answer fully demonstrated 1 mark - correct approach and significant progress made towards reaching correct answer.

Focus ($a e, 0$) $\quad a=b$ Circle with centre at focus and touching at P and Q $\begin{aligned} (x-a e)^{2}+y^{2} & =b^{2}=a^{2} \\ y^{2} & =a^{2}-(x-a e)^{2} \end{aligned}$ Hyperbola with $a=b$ $\begin{aligned} x^{2}-y^{2} & =a^{2} \\ y^{2} & =x^{2}-a^{2} \\ \therefore \quad x^{2}-a^{2} & =a^{2}-(x-a e)^{2} \\ x^{2}-a^{2} & =a^{2}-x^{2}+2 a e x-a^{2} e^{2} \\ x^{2}-a^{2} & =a^{2}\left(1-e^{2}\right)-x^{2}+2 a e x \\ x^{2}-a^{2} & =-b^{2}-x^{2}+2 a e x \\ x^{2}-a^{2} & =-a^{2}-x^{2}+2 a e x \quad a s b=a \\ 2 x^{2}-2 a e x & =0 \\ x & =a e \quad \text { as } x \neq 0 \end{aligned}$ Therefore x coordinate of R, T and S is the same for each point ie. $x=a e$. Therefore are collinear and single line through centre meets circle and hyperbola at same points, therefore RT must be a diameter.	
Using binomial expansion gives to determine coefficient of x and x^{2} $\begin{aligned} & & { }^{5} \mathbf{C}_{1} a x+{ }^{5} \mathbf{C}_{1} b x & ={ }^{5} \mathbf{C}_{1}(a+b) x=30 x \\ & \therefore & & 5(a+b) \end{aligned}$ $\begin{aligned} { }^{5} \mathbf{C}_{2} a^{2} x^{2}+{ }^{5} \mathbf{C}_{2} a^{2} x^{2} & ={ }^{5} \mathbf{C}_{2}\left(a^{2}+b^{2}\right) x^{2}=220 x^{2} \\ 10\left(a^{2}+b^{2}\right) & =220 \\ a^{2}+b^{2} & =22 \end{aligned}$	2 marks - one mark per correct answer.

Question 8 (continued)

$\begin{aligned} (a+b)^{2} & =a^{2}+2 a b+b^{2} \\ a b & =\frac{(a+b)^{2}-\left(a^{2}+b^{2}\right)}{2} \\ a b & =\frac{36-22}{2}=7 \end{aligned}$	2 marks - correct answer fully demonstrated 1 mark - correct approach and significant progress made towards reaching correct answer.
$\begin{aligned} { }^{5} \mathbf{C}_{3} a^{3} x^{3}+{ }^{5} \mathbf{C}_{3} b^{3} x^{3} & ={ }^{5} \mathbf{C}_{3}\left(a^{3}+b^{3}\right) x^{3} \\ \text { Coefficent } & ={ }^{5} \mathbf{C}_{3}\left(a^{3}+b^{3}\right)=10\left(a^{3}+b^{3}\right)=900 \\ a^{3}+b^{3} & =(a+b)\left(a^{2}-a b+b^{2}\right) \\ & =(a+b)\left(a^{2}+b^{2}-a b\right) \\ & =6 \times(22-5)=90 \end{aligned}$ or $\begin{aligned} (a+b)^{3} & =a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\ a^{3}+b^{3} & =(a+b)^{3}-3 a b(a+b) \\ a^{3}+b^{3} & =216-3 \times 7 \times 6=90 \end{aligned}$ $\therefore \quad$ Coefficent of $x=40 \times 90=3600$	2 marks - correct answer fully demonstrated. 1 mark - correct process with arithmetic error.

Manly Selective Campus
2010 Mathematics Extension 2 Trial - solutions

