

Northern Beaches Secondary College

Manly Selective Campus

2011 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators and templates may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks – 120

- Attempt Questions 1-8
- All questions are of equal value

Question 1 (Answer in a separate booklet)

(a)
$$\int x \sec^2(x^2) dx$$
 (1)

(b)
$$\int \frac{dx}{x(1+x^2)}$$
 (3)

(c) Use the substitution
$$t = \tan \frac{x}{2}$$
 calculate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{5 + 3\sin x + 4\cos x}$ (4)

(d)
$$\int \frac{dx}{\sqrt{x+5}\sqrt{4-x}}$$
 for x < 4 using the substitution u² = 4 - x. (3)

(e)
$$\int \sin(\ln x) dx u \sin gu = \ln x$$
 (4)

Marks

Question 2 (Answer in a separate booklet)

(a) Simplify: (i) $(4+3i)^2$ (1)

(*ii*)
$$\frac{7-2i}{3+i}$$
 (1)

(iii)
$$2 \operatorname{cis} \frac{\pi}{6} \times 3 \operatorname{cis} \frac{\pi}{3}$$
 (1)

(b) Find the roots of $z^5 - i = 0$ and sketch them on an argand diagram. (3)

(c) (i) In the same diagram, sketch the locus of both |z - 2| = 2 and |z| = |z - 4i|. (2)

(ii) What is the complex number represented by the point of intersection of these two loci? (1)

(d) Let
$$y = i(1 - i\sqrt{3})(\sqrt{3} + i)$$

- (i) Express y in cis form. (2)
- (*ii*) Hence find $y^3 + y^{-3}$ in the form A + iB. (2)

(e) Let z be a complex number of modulus 3 and ω be a complex number of modulus 1.

Show that
$$|z - \omega|^2 = 10 - (z\overline{\omega} + \overline{z}\omega)$$
 (2)

Marks

Question 3 (Answer in a separate booklet)

(a) The diagram below shows the graph of g(x).

Using this information, sketch the graphs:

$$(i) \quad k(x) = g(|x|) \tag{1}$$

(*ii*)
$$t(x) = \frac{1}{g(x)}$$
 (1)

(iii) Graph
$$f(x)$$
 given $f(x) = \left(x - \frac{\pi}{2}\right)\cos x$ (3)

(b) Given the point $P(6\cos\theta, 2\sin\theta)$ lies on an ellipse, determine the following

- (i) The eccentricity.(1)(ii) Coordinates of the foci.(1)(iii) Equations to the directrices.(1)
- (*iv*) Determine the gradient to the ellipse when $\theta = \frac{2\pi}{3}$. (2)
- (c) Given the polynomial $P(x) = 2x^3 + 3x^2 x + 1$ has roots α , β and γ :
 - (*i*) Find the polynomial whose roots are α^2 , β^2 and γ^2 . (2)
 - (*ii*) Determine the value of $\alpha^3 + \beta^3 + \gamma^3$. (3)

Marks

Question 4 (Answer in a separate booklet)

(a) Factorise the polynomial
$$P(x) = 3x^3 - 7x^2 + 8x - 2 = 0$$
 over \mathbb{C} . (2)

- (b) Using the method of taking slices parallel to the x-axis, calculate the volume of the solid of revolution when the region bounded by the curve $y = \frac{1}{2}\sqrt{x-2}$, the x-axis and the line x = 6 is rotated around the line x = 6. (4)
- (c) The area enclosed between the curves $y = (x-4)^2$ and y = x+2 is rotated about the y-axis.
 - (i) Draw a diagram to show the area.
 - (*ii*) By taking slices of the area parallel to the axis of rotation, show that the volume of the solid formed is given by $2\pi \int_{2}^{7} 9x^{2} - x^{3} - 14x. dx$ (2)
 - *(iii)* Find the volume of the solid formed.
- (d) A solid has as its base the region bounded by the curves y = x and $x = 2y \frac{y^2}{2}$. Cross sections parallel to the x axis are equilateral triangles with a side in the base.

Determine the volume of this solid.

(5)

15

Marks

(1)

(1)

Question 5 (Answer in a separate booklet)

(a) (i) If
$$I_n = \int_0^1 (1-x^2)^{\frac{n}{2}} dx$$
 where n is a positive integer, show that (4)
$$I_n = \frac{n}{(n+1)} I_{n-2} .$$

(ii) Hence evaluate I₅.

- (b) (i) The polynomial $f(x) = x^4 6x^3 + 13x^2 ax b$ has two double zeros α and β . Find the values of a and b.
 - (ii) Hence determine, with full explanation, the equation of the line which touches the curve

$$y = x^4 - 6x^3 + 13x^2$$

at two distinct points.

(c) If
$$x + \frac{1}{x} = t$$
, find $x^{6} + \frac{1}{x^{6}}$ in terms of t. (4)

Marks

15

(2)

(4)

(1)

Question 6 (Answer in a separate booklet)

Marks

of a circle and form an acute angled triangle. The altitudes PM and QN meet at H (which is <u>not</u> the centre of the circle)

(a) The points P, Q and R lie on the circumference

- (i) Prove that $\stackrel{\land}{RQA} = \stackrel{\land}{RQN} (3)$
- (*ii*) Prove that HM = MA (1)
- (iii) Prove that RH produced meets PQ at right angles.
- (b) (i) Show that $a^2 + b^2 \ge 2ab$ where a and b are distinct positive real numbers. (1)
 - (ii) Hence show that $a^2 + b^2 + c^2 \ge ab + ac + bc$. (1)
 - (iii) Hence show that $\sin^2 \alpha + \cos^2 \alpha \ge \sin 2\alpha$. (2)
 - (iv) Hence show that $\sin^2 \alpha + \cos^2 \alpha + \tan^2 \alpha \ge \sin \alpha \cos \alpha + \sec \alpha + \frac{1}{2} \sin 2\alpha$. (2)
- (c) One of the roots of the equation $kxe^{-x} 4 = 0$ is a double root. Find the value of k. (3)

Question 7 (Answer in a separate booklet)

at

(a) Determine the equation to the tangent to the curve $x^3 + y^3 - 3x^2y^2 = 1$

the point
$$P(1,3)$$
. (3)

- (b) A railway line has been constructed around a circular curve of radius 800metres, and is banked by raising the outer rail to a certain level above the inner rail.
 - (i) When the train travels at 20m/s, the lateral thrust F, is on the outer rail. Show that

$$F = m \left(\frac{1}{2}\cos\theta - g\sin\theta\right) \text{ where } \Theta \text{ is the angle of inclination.}$$
(2)

- (*ii*) When the train travels at 10m/s, the lateral thrust on the inner rail is the same as the lateral thrust on the outer rail at a speed of 20m/s.
 - a) Find the angle of the banking. (2)
 - b) Find the speed of the train when there is no lateral thrust (2) exerted on the rails. Use $g = 9.8ms^{-2}$

- (c) The above diagram shows a mass of 10 kilograms at B connected by light rods (at right angles) to sleeves A and C which revolve freely about the vertical axis AC but do not move vertically. The angle between the vertical axis AC and the light rod BC is 30°. The acceleration due to gravity is 9.8 m/sec².
 - (*i*) Given AC is 2 metres, show that the radius of the circular path of rotation of B is $\frac{\sqrt{3}}{2}$ metres.
 - *(ii)* Find the tensions in the rods AB and BC when the mass makes 90 revolutions per minute about the vertical axis.

(1)

(5)

Question 8 (Answer in a separate booklet)

(a) Given the ellipse $\frac{x^2}{225} + \frac{y^2}{144} = 1$, prove that the section of the tangent between the point of contact and its point of intersection with the directrix subtends a right angle with the corresponding focus.

(nb. The equation to the tangent to the ellipse is $\frac{x x_1}{a^2} + \frac{y y_1}{b^2} = 1$ and does need to be proved.) (3)

(b) The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with eccentricity *e*, has one focus *S* on the positive *x*-axis and the corresponding directrix *d* cuts the asymptotes to the hyperbola at points P and Q in the first and fourth quadrants respectively.

- (i) Show that PS is perpendicular to the asymptote through P and that PS=b. (3)
- (ii) A circle with centre S touches the asymptotes of the hyperbola.
 Deduce that the points of contact are the points P and Q.
 (1)
- (*iii*) The circle with centre S which touches the asymptotes of the hyperbola cuts the hyperbola at points R and T. If b=a, show that RT is a diameter. (2)
- (c) When $(1 + ax)^5 + (1 + bx)^5$ in expanded in ascending powers of x, the expansion begins

 $2+30x+220x^2+\ldots$

- (i) Prove that (a+b) = 6 and $(a^2+b^2) = 22$ (2)
- (ii) Deduce the value of ab. (2)
- (iii) Determine the value of the coefficient of x^3 . (2)

END OF EXAMINATION

15

(-/

Marks

STANDARD INTEGRALS

 $\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE :
$$\ln x = \log_e x$$
, $x > 0$

Question 1:

a)	$\int x \sec^2(x^2) dx$ Let $u = x^2$ $\therefore du = 2x dx$	1 mark – correct answer
	$\therefore I_0 = \frac{1}{2} \int \sec^2 u.du$ $= \frac{1}{2} \tan u + c = \frac{1}{2} \tan x^2 + c$	
b)	$\int \frac{dx}{x(1+x^2)}$ Let $\frac{1}{x(1+x^2)} = \frac{A}{x} + \frac{Bx+C}{1+x^2}$ $\therefore 1 = A(1+x^2) + x(Bx+C)$	1 mark for setting up partial fractions 1 mark for finding constants
	Sub $x=0: 1=A+0 \rightarrow A=1$ Equate $x^2: 0=A+B \rightarrow B=-1$ Equate $x: 0=C \rightarrow C=0$	1 mark for answer Comment: Many students
c)	$ \therefore \int \frac{dx}{x(1+x^2)} = \int \left(\frac{1}{x} - \frac{x}{x^2+1}\right) dx \\ = \ln x - \frac{1}{2}\ln(x^2+1) + c $	gained the first 2 marks but left the x out of the final integral
	$\int_{0}^{\frac{7}{2}} \frac{dx}{5+3\sin x + 4\cos x}$ Let $t = \tan \frac{x}{2}$ At $x = 0$, $t = 0$ $\therefore x = 2\tan^{-1} t$, $x = \frac{\pi}{2}$, $t = 1$ and $dx = \frac{2dt}{1+t^{2}}$, $\sin x = \frac{2t}{1+t^{2}}$, $\cos x = \frac{1-t^{2}}{1+t^{2}}$	1 mark – sub in correct expressions 1 mark – correct integral 1 mark – integration 1 mark - substitution
	$\therefore I = \int_{0}^{1} \frac{\frac{2tt}{1+t^{2}}}{5+3\left(\frac{2t}{1+t^{2}}\right)+4\left(\frac{1-t^{2}}{1+t^{2}}\right)}$	<i>Comment: many students lost the 2 next to the dt</i>
	$= \int_{0}^{1} \frac{2dt}{5+5t^{2}+6t+4-4t^{2}}$ $= \int_{0}^{1} \frac{2dt}{(t+3)^{2}}$	
	$= -2\left[\frac{1}{t+3}\right]_{0}^{1} = 2\left[\frac{1}{t+3}\right]_{1}^{0} = 2\left(\frac{1}{3} - \frac{1}{4}\right) = \frac{1}{6}$	

d)	$\int \frac{dx}{\sqrt{x+5} \cdot \sqrt{4-x}} \text{Let } u^2 = 4 - x \rightarrow 2u \cdot du = -dx$ and $x = 4 - u^2$ $\therefore I = \int \frac{-2du}{\sqrt{9-u^2} \cdot \sqrt{u^2}} = -\int \frac{2du}{\sqrt{9-u^2}}$ $= -2\sin^{-1}\left(\frac{u}{3}\right) + c = -2\sin^{-1}\left(\frac{\sqrt{4-x}}{3}\right) + c$ Or $= 2\cos^{-1}\left(\frac{u}{3}\right) + c = 2\cos^{-1}\left(\frac{\sqrt{4-x}}{3}\right) + c$	1 mark – correct substitution 1 mark – set up correct integral 1 mark – correct answer Comment: there was mixing up of u's and x's
e)	$\int \sin(\ln x) dx \text{Let } u = \ln x \to x = e^u \text{ and } dx = e^u du$ $\therefore I = \int \sin(u) \cdot e^u \cdot du$ $\text{Let } U = e^u, dV = \sin u \cdot du$ $\therefore dU = e^u du, V = -\cos u$ $\therefore \int \sin(u) \cdot e^u \cdot du = -e^u \cos u + \int e^u \cos u \cdot du$	1 mark for correct substitution 1 mark for correct use in integration by parts
	Let $U = e^{u}$, $dV = \cos u.du$ $\therefore dU = e^{u}du$, $V = \sin u$ $\therefore \int \sin(u).e^{u}.du = -e^{u}\cos u + e^{u}\sin u - \int e^{u}\sin u.du$ $\therefore 2\int e^{u}\sin u.du = -e^{u}\cos u + e^{u}\sin u$ $\therefore \int e^{u}\sin u.du = \frac{1}{2}(e^{u}\sin u - e^{u}\cos u) + c$ i.e $\int \sin(\ln x)dx = \frac{x}{2}(\sin(\ln x) - \cos(\ln x)) + c$	1 mark for Int by Parts correct answer 1 marks for final answer Comment: Setting out was often not clear

Question 2

		1 mark for correct answer
2ai)	$(4+3i)^2 = 16+24i-9 = 7+24i$	I mark for confect answer
ii)	$\frac{7-2i}{3+i} = \frac{7-2i}{3+i} \times \frac{3-i}{3-i} = \frac{21-6i-7i-2}{9+1} = \frac{19-13i}{10}$	1 mark for correct answer
iii)	$2cis\frac{\pi}{3} \times 3cis\frac{\pi}{6} = 6cis\frac{\pi}{2} = 6i$	1 mark for correct answer
b)	$z^{5} - i = 0 \rightarrow z^{5} = i$ Let $z = \cos \theta + i \sin \theta$ $\therefore z^{5} = \cos 5\theta + i \sin 5\theta = i$ Equate real and imaginary parts: $\cos 5\theta = 0$ and $\sin 5\theta = 1$ $\therefore 5\theta = \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \frac{13\pi}{2}, \frac{17\pi}{2}$ and $\theta = \frac{\pi}{10}, \frac{\pi}{2}, \frac{9\pi}{10}, \frac{13\pi}{10}, \frac{17\pi}{10}$ $\therefore z_{1} = cis \frac{\pi}{10}, z_{2} = i, z_{3} = cis \frac{9\pi}{10}, z_{4} = cis \frac{13\pi}{10}, z_{5} = cis \frac{17\pi}{10}$	 mark for 1 correct value of z mark for 5 correct values of z mark for plotting the values, showing equal moduli and equal imaginary parts for z₁,z₃ and z₄, z₅ Comment: This question was marked very generously
ci)	z-2 =2, z = z-4i	1 mark for each graph
ii)	The line and curve intersect at $2+2i$	1 mark for correct answer
di)	$y = i\left(1 - i\sqrt{3}\right)\left(\sqrt{3} + i\right)$	
	$= (i + \sqrt{3})(\sqrt{3} + i) = 2 + 2i\sqrt{3} = 4cis\frac{\pi}{3}$	1 mark for correct expansion
		1 mark for correct answer

Manly Selective Campus 2010 Mathematics Extension 2 Trial - solutions

ii)	$y^{3} + y^{-3} = \left(4cis\frac{\pi}{3}\right)^{3} + \left(4cis\frac{\pi}{3}\right)^{-3}$ $= 64cis\pi + \frac{1}{64}cis(-\pi)$ $= -(64 + \frac{1}{-1})$	 1 marks for correct use of De Moivre's theorem 1 mark for correct answer
e)	$= -(64 + \frac{1}{64})$ Since $z\overline{z} = z ^2$, $ z - w ^2 = (z - w)\overline{(z - w)}$ $= (z - w)(\overline{z} - \overline{w})$ $= z\overline{z} - z\overline{w} - w\overline{z} + w\overline{w}$	1 mark for knowledge of conjugates 1 mark for correct answer
	$= 9 - \left(\overline{zw} + w\overline{z}\right) + 1 = 10 - \left(\overline{zw} + w\overline{z}\right)$	Comment: There was only one correct response

Question 3:

Manly Selective Campus 2010 Mathematics Extension 2 Trial - solutions

b-(i)	$P(6\cos\theta, 2\sin\theta)$ $\therefore \frac{x^2}{36} + \frac{y^2}{4} = 1$	1
	$b^2 = a^2(1-e^2)$	1 mark – correct answer
	$e = \sqrt{1 - \frac{4}{36}}$	
	$=\sqrt{\frac{32}{36}} = \frac{2\sqrt{2}}{3}$	
b-(ii)	<i>Foci</i> = $(\pm ae, 0) = (\pm 4\sqrt{2}, 0)$	1 mark – correct answer
b-(iii)	Directrices $x = \pm \frac{a}{e}$	1 mark – correct answer
	$x = \pm \frac{6 \times 3}{2\sqrt{2}} = \pm \frac{9\sqrt{2}}{2}$	
b-(iv)	$\frac{x^2}{36} + \frac{y^2}{4} = 1$	2 mark – correct answer
	$\frac{2x}{36} + \frac{2y}{4}\frac{dy}{dx} = 0 \qquad \qquad x = 6\cos\theta \ y = 2\sin\theta$	1 mark – correct
	$\frac{dy}{dx} = -\frac{x}{9y}$ $\frac{dx}{d\theta} = -6\sin\theta$ $\frac{dy}{d\theta} = 2\cos\theta$	equation for $\frac{dy}{dx}$
	$\theta = \frac{2\pi}{3} \qquad \qquad \frac{dy}{dx} = -\frac{1}{3}\cot\theta$	
	$x = -3 \qquad y = \sqrt{3} \qquad \qquad \frac{dy}{dx} = \frac{1}{3\sqrt{3}} = \frac{\sqrt{3}}{9}$	
	$m = \frac{1}{3\sqrt{3}} = \frac{\sqrt{3}}{9}$	
(c) Ii	$P(x) = 2x^3 + 3x^2 - x + 1$	2 marks – correct
	$Q(x) = 2(\sqrt{x})^3 + 3(\sqrt{x})^2 - \sqrt{x} + 1$	answer
	$0 = 2(\sqrt{x})^3 + 3(\sqrt{x})^2 - \sqrt{x} + 1$	1 mark – correct substitution of \sqrt{x} .
	$2(\sqrt{x})^3 - \sqrt{x} = -3x - 1$	<i>Substitution of</i>
	$\sqrt{x} (2x-1) = -(3x+1)$	
	$x(2x-1)^{2} = (3x+1)^{2}$	
	$4x^3 - 4x^2 + x = 9x^2 + 6x + 1$	
	$Q(x) = 4x^3 - 13x^2 - 5x - 1$	

Manly Selective Campus 2010 Mathematics Extension 2 Trial - solutions

(1)	
(d)	$P(\alpha) = 2\alpha^3 + 3\alpha^2 - \alpha + 1 = 0$
Iii	$P(\beta) = 2\beta^{3} + 3\beta^{2} - \beta + 1 = 0$
	$P(\gamma) = 2\gamma^3 + 3\gamma^2 - \gamma + 1 = 0$
	$2(\alpha^3 + \beta^3 + \gamma^3) = -3(\alpha^2 + \beta^2 + \gamma^2) + (\alpha + \beta + \gamma) - 3$
	$\alpha^{2} + \beta^{2} + \gamma^{2} = -\frac{b}{a} = \frac{13}{4} \qquad from \ part \ (i)$
	$\alpha + \beta + \gamma = -\frac{3}{2}$
	$2(\alpha^{3} + \beta^{3} + \gamma^{3}) = -3 \times \frac{13}{4} - \frac{3}{2} - 3$
	$\alpha^3 + \beta^3 + \gamma^3 = -\frac{57}{8}$

Question 4

(a)	$P(x) = 3x^3 - 7x^2 + 8x - 2 = 0$	
	T(x) = 3x - 7x + 8x - 2 = 0 Test ± 1, 2, $\frac{1}{3}$, $\frac{2}{3}$	2 marks – correct answer factorised over C.
	$P\left(\frac{1}{3}\right) = 0 \therefore (3x - 1) \text{ is a factor}$	1 mark – correctly factorised over R.
	$P(x) = (3x - 1)(x^{2} - 2x + 2) \text{ by inspection &/or long division.}$ $= (3x - 1)[(x - 1)^{2} + 1]$	
	= (3x - 1)(x - 1 - i)(x - 1 + i)	
(b) (i)		4 marks – correct answer fully explained.
	$\mathbf{Volumo} \text{ of single cylinder}$	3 marks – Correct integration for correct volume expression
	Volume of single cylinder $V = \pi r^2 \cdot h$ $r = 6 - x$ $h = \delta y$	
	$\delta V = \pi (6 - x)^2. \delta y$ $y = \frac{1}{2} \sqrt{x - 2}$	2 mark – approximate volume showing Σ notation
	$x = 4y^2 + 2$	<u>(nb Σ notation was specifically</u> required to be demonstrated in this
	$\delta V = \pi (4 - 4y^2)^2 \cdot \delta y$ = $16\pi (1 - y^2)^2 \cdot \delta y$	<u>solution.)</u>
	Approximate volume of shape.	l mark–formula for volume of single cylinder ie. δV
	$V \cong \lim_{dy \to 0} \sum_{0}^{1} 16\pi (1-y^2)^2 . \delta y$	
	$V = 16\pi \int_0^1 1 - 2y^2 + y^4 dy$	
	$= 16\pi \left[y - \frac{2y^3}{3} + \frac{y^5}{5} \right]_0^1$	
	$=\frac{128}{12}\pi\ units^3$	

Question 4 (continued)

<i>c-(i)</i>		1 mark – correct diagram including intercepts.
c-(ii)	$\delta V = 2\pi r. h. \delta x \qquad r = x \qquad h = (x+2) - (x-4)^2$ $\therefore \delta V = 2\pi. x. [(x+2) - (x-4)^2]. \delta x$ $= 2\pi x (9x - x^2 - 14). \delta x$ $= 2\pi (9x^2 - x^3 - 14x). \delta x$ Intercepts $x + 2 = (x-4)^2$ $0 = x^2 - 9x + 14$ = (x-2)(x-7)	2 marks – correctly demonstrated derivation of formula 1 mark – correct process with single error.
<i>c-(iii)</i>	$V \cong \lim_{x \to 0} \sum_{2}^{7} 2\pi (9x^{2} - x^{3} - 14x). \delta x$ $V = 2\pi \int_{2}^{7} (9x^{2} - x^{3} - 14x). dx$ $= 2\pi \left[3x^{3} - \frac{x^{4}}{4} - 7x^{2} \right]_{2}^{7}$ $= \frac{375\pi}{2} units^{3}$	1 mark – correct answer

Question 4 (continued)

Question 5:

(a) (i)	c1 n	
(a) (1)	$I_n = \int_0^1 (1-x^2)^{\frac{n}{2}} dx$	4 marks – correct proof
	$= \left[x(1-x^2)^{\frac{n}{2}}\right]_0^1 + n \int_0^1 x^2(1-x^2)^{\frac{n}{2}-1}$	3 marks – error in manipulation of separate parts
	$= 0 - n \int_0^1 (1 - x^2 + 1)(1 - x^2)^{\frac{n}{2} - 1}$	2 marks – incorporation of transformation in step 2
	$= -n \int_0^1 (1-x^2)^{\frac{n}{2}} dx + n \int_0^1 \left(\frac{1}{x^2}\right)^{\frac{n}{2}-1} dx$	<i>1 mark – correct integration by parts</i>
	$= -nI_n + nI_{n-2}$	
	$=\frac{nI_{n-2}}{n+1}$	
(ii)	$I_5 = \frac{5}{6}I_3$	
	$I_3 = \frac{3}{4}I_1$	2 marks – correct value determined
	$I_1 = \int_0^1 \sqrt{1 - x^2} dx$	1 mark – correct process but error
	$=\frac{\pi}{4}$	
	$\therefore I_3 - \frac{3}{4} \times \frac{\pi}{4}$	
	$I_5 = \frac{5}{6} \times \frac{3}{4} \times \frac{\pi}{4} = \frac{5\pi}{32}$	
(b) (i)	$f(x) = x^4 - 6x^3 + 13x^2 - ax - b$	
	$f'(x) = 4x^3 - 18x^2 + 26x - a$	4 marks – both values correct
	Roots are $\alpha \alpha \beta \beta$	3 marks – correct values for α
	$\therefore 2(\alpha + \beta) = 6 \text{ so } \alpha + \beta = 3$	and β
	$\alpha^2 + \beta^2 + 4\alpha \beta = 13$	2 marks – both equations with α
	$(\alpha + \beta)^2 + 2 \alpha \beta = 13$	and β correct
	$9 + 2\alpha (3 - \alpha) = 13$	1 mark – one equation with α
	$\alpha^2 - 3\alpha + 2 = 0$	and β correct
	$\alpha = 1 \text{ or } 2 \text{ so } b = 2 \text{ or } 1$	
	So $2(\alpha \alpha \beta + \alpha \beta \beta) = -a$	
	a = 12	
	b = -4	
(ii)	Equation is $y = 12x - 4$ as solving the equations	1 mark account into a 1
	together gives the equation in (i) and the double	<i>1 mark – correct integration by parts</i>
	zero gives the two points of contact.	

Question 5 (continued)

(c)
$$\left(x + \frac{1}{x} \right)^2 = x^6 + \frac{6x^5}{x} + \frac{15x^4}{x^2} + \frac{20x^3}{x^3} + \frac{15x^2}{x^4} + \frac{6x}{x^5} + \frac{1}{x^6} \right)$$

$$= \left(x^6 + \frac{1}{x^6} \right) + 6\left(x^4 + \frac{1}{x^4} \right) + 15\left(x^2 + \frac{1}{x^2} \right) + 20$$

$$x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x} \right)^2 - 2 = t^2 - 2$$

$$= t^4 - 4t^2 + 2$$

$$t^6 = \left(x^6 + \frac{1}{x^6} \right) + 6(t^4 - 4t^2 + 2) + 15(t^2 - 2) + 20$$

$$= t^6 - 6t^4 + 9t^2 - 2$$

$$= t^6 - 6t^6 + 9t^2 - 2$$

Question 6

(a)(i)	Join QA and AR	
	$P\hat{R}Q = P\hat{A}Q = \alpha \text{ (angle at circumference subtended by PQ)}$ $A\hat{Q}R = A\hat{P}R = \beta \text{ (as above subtended by AR)}$ But in $\Delta MPR \ \alpha + \beta = 90^{\circ}$ $\therefore \text{ in } \Delta RQN R\hat{Q}N + N\hat{R}Q = 90^{\circ}$ $\therefore R\hat{Q}N = 90^{\circ} - \alpha = \beta = A\hat{Q}R$ $\therefore R\hat{Q}A = R\hat{Q}N$	3 marks – correct proof with full reasoning 2 marks – correct approach continued for a second angle 1 mark – approach using angles at circumference properly demonstrated
(ii)	In $\triangle MQH$ and $\triangle MQA$ QM is common $\hat{QMH} = \hat{QMA} = 90^{\circ} (given)$ $\hat{RQA} = \hat{RQN} (proved above)$ $\therefore \Delta MQH \equiv \Delta MQA (ASA)$ $\therefore AM = MA (opposite corresponding angles)$	1 mark – correct proof of congruence
(iii)	In \triangle MHR and MAR MH = MA (proved above) MR is common $H\hat{M}R = A\hat{M}R = 90^{\circ} (given)$ $\therefore \Delta MHR \equiv \Delta MAR$ $\therefore M\hat{A}R = M\hat{H}R$ But $\hat{ARQ} = \hat{APQ}$ (angles at circumference subtended by AQ) RH produced meets QP at X $M\hat{H}R = X\hat{H}P$ (vertically opposite angles) $\therefore X\hat{PQ} + X\hat{H}P = 90^{\circ}$ $\therefore P\hat{X}H = 90^{\circ}$ $\therefore RH$ produced meets PQ at right angles	2 marks – correct proof with reasons clearly stated 1 mark – suitable approach

Question 6 (continued)

(b) (i)	$(a-b)^2 \ge 0$ $a^2 + b^2 > + 2ab$	1 mark – correct proof of inequality
(ii)	$a^{2} + b^{2} > + 2ab$ $a^{2} + c^{2} > + 2ac$ $b^{2} + c^{2} > + 2bc$ $2(a^{2} + b^{2} + c^{2}) \ge 2(ab + ac + bc)$ $a^{2} + b^{2} + c^{2} \ge ab + ac + bc$	<i>1 mark – correct proof of inequality</i>
(iii)	Let $a = \sin \alpha$ and $b = \cos \alpha$ $\therefore \sin^2 \alpha + \cos^2 \alpha \ge 2 \sin \alpha \cos \alpha$ (using (i) $\therefore \sin^2 \alpha + \cos^2 \alpha \ge \sin 2\alpha$	1 mark – correct proof of congruence
(iv)	$\sin^{2} \alpha + \cos^{2} \alpha + \tan^{2} \alpha \ge \sin\alpha \cos \alpha + \sin\alpha \tan\alpha + \cos\alpha \tan \alpha$ RHS = $\frac{1}{2} \sin 2\alpha + \frac{\sin^{2} \alpha}{\cos \alpha} + \sin \alpha$ = $\frac{1}{2} \sin 2\alpha + \sin \alpha + \frac{1 - \cos^{2} \alpha}{\cos \alpha}$ = $\frac{1}{2} \sin 2\alpha + \sin \alpha + \frac{1}{\cos \alpha} - \frac{\cos^{2} \alpha}{\cos \alpha}$ = $\frac{1}{2} \sin 2\alpha + \sin \alpha + \sec \alpha - \cos \alpha$	2 marks – correct proof with full logic shown 1 mark – correct approach to simplification of RHS
(c)	$kxe^{-x} - 4 = 0$ $\therefore ke^{-x} \times 1 - kxe^{-x} = 0$ $ke^{-x} 1 - x) = 0$ $e^{-x} \neq 0 \therefore x = 1$ $\therefore k \times 1 \times e^{-1} = 4$ k = 4e	3 marks - correct value for k 2 marks – correct value for x 1 mark – correct differentiation

Question 7:

(a)		
(a)		
	$x^3 + y^3 - 3x^2y^2 = 1$	3 marks – correct answer
	$3x^{2} + 3y^{2}\frac{dy}{dx} - 3\left(2xy^{2} + 2x^{2}y\frac{dy}{dx}\right) = 0$	2 marks – correct expression for
		$\frac{dy}{dx}$ (gradient function).
	$(3x^2 - 6xy^2) + (3y^2 - 6x^2y)\frac{dy}{dx} = 0$	1 mark – correct differentiation
	$dy = 3(2xy^2 - x^2)$	I mark correct afferentiation
	$\frac{dy}{dx} = \frac{3(2xy^2 - x^2)}{3(y^2 - 2x^2y)}$	
	at $x = 1$, $y = 3$ $\frac{dy}{dx} = \frac{18 - 1}{9 - 6} = \frac{17}{3}$	(nb – equation formed from incorrect implicit differentiation
		not considered.)
	$(y-y_1) = m(x-x_1)$	
	$y-3=\frac{17}{3}(x-1)$	
	17x - 3y - 8 = 0	
(b)		
	N v=20m/s	2 marks – correct answer
	θ^*	fully demonstrated.
	θ^{*}	1 1 . 1.
	$N\cos\theta - F\sin\theta = mg$ (1)	<i>1 mark – correct resolution of forces horizontally and</i>
	$N\sin\theta + F\cos\theta = \frac{mv^2}{r}$ (2)	vertically.
	r r r	
	$N\cos\theta\sin\theta - F\sin^2\theta = mg\sin\theta \qquad \qquad \bigcirc$	
	$N\cos\theta\sin\theta + F\cos^2\theta = \frac{mv^2}{r}\cos\theta$	
	$F(\cos^2\theta + \sin^2\theta) = \frac{mv^2}{r}\cos\theta - mg\sin\theta$	
	$F = m \left(\frac{400}{800}\cos\theta - g\sin\theta\right)$	
	$F = m \left(\frac{1}{2}\cos\theta - g\sin\theta\right)$	

$$\frac{T_1}{2} - \frac{\sqrt{3}}{2} \frac{T_2}{2} = 98$$

$$\frac{3T_1}{2} + \frac{\sqrt{3}}{2} \frac{T_2}{2} = 135\pi^2$$

$$2T_1 = 98 + 135\pi^2$$

$$T_1 = \frac{98 + 135\pi^2}{2} = 715.2N$$

$$T_1 - \sqrt{3} T_2 = 196$$

$$\sqrt{3} T_2 = \frac{98 + 135\pi^2}{2} - 196$$

$$T_2 = \frac{98 + 135\pi^2 - 392}{2\sqrt{3}} = 299.76N$$

Question 8:

(a) (i)	1	
	P (15 cos +, 12 sin +) C S	3 marks – correct answer fully demonstrated
	Equation to tangent	2 marks – correct gradient for either PS or SQ
	$\frac{x x_1}{a^2} + \frac{y y_1}{b^2} = 1 \qquad or \qquad \frac{x \cos\theta}{a} + \frac{y \sin\theta}{b} = 1$	1 mark – focus and directrix
	$b^2 = a^2(1-e^2)$	correctly determined.
	$e^2 = 1 - \frac{144}{225}$	
	$e=\frac{3}{5}$	
	$Focus = ae = 15 \times \frac{3}{5} = 9$	
	Directrix $x = \frac{a}{e} = \frac{15 \times 5}{3} = 25$	
	Point of intersection of tangent and directrix.	
	$\frac{x\cos\theta}{15} + \frac{y\sin\theta}{12} = 1 \qquad \qquad x = 25$	
	$\frac{25\cos\theta}{15} + \frac{y\sin\theta}{12} = 1$	
	$y = \frac{12 - 20\cos\theta}{\sin\theta}$	
	Gradient – Focus to P	
	$m_1 = \frac{12\sin\theta}{15\cos\theta - 9} = \frac{4\sin\theta}{5\cos\theta - 3}$	
	Gradient – Focus to Directrix intercept	
	$m_2 = \frac{\frac{12 - 20\cos\theta}{\sin\theta}}{25 - 9} = \frac{12 - 20\cos\theta}{16\sin\theta} = \frac{3 - 5\cos\theta}{4\sin\theta}$	
	$m_1 \times m_2 = \frac{4\sin\theta}{5\cos\theta - 3} \times \frac{3 - 5\cos\theta}{4\sin\theta} = -1$	
	Therefore right angle subtended at focus.	
(ii)		

Manly Selective Campus 2010 Mathematics Extension 2 Trial - solutions

	Length PS	
	$PS = \sqrt{\left(\frac{a}{e} - ae\right)^2 + \frac{b^2}{e^2}}$	
	$=\sqrt{\left(\frac{a(e^2-1)}{e}\right)^2+\frac{b^2}{e^2}}$	
	$=\sqrt{\frac{a^2(e^2-1)(e^2-1)+b^2}{e^2}}$	
	$= \sqrt{\frac{b^2(e^2 - 1 + 1)}{e^2}}$	
	= b	
(iii)	As PS and PQ are perpendicular to asymptotes and equal in length. Also radii are perpendicular to tangents at point of contact. Therefore circle with centre at S would have points of contact with aysmptotes at Points P and Q.	
(b)		2marks – correct answer fully demonstrated 1 mark – correct approach and significant progress made towards reaching correct answer.

Focus (ae, 0) a = b Circle with centre at focus and touching at P and Q $(x - ae)^2 + y^2 = b^2 = a^2$ $y^2 = a^2 - (x - ae)^2$	
Hyperbola with $a=b$ $x^2 - y^2 = a^2$ $\therefore \qquad y^2 = x^2 - a^2$	
$\therefore \qquad x^{2} - a^{2} = a^{2} - (x - ae)^{2}$ $x^{2} - a^{2} = a^{2} - x^{2} + 2aex - a^{2}e^{2}$ $x^{2} - a^{2} = a^{2}(1 - e^{2}) - x^{2} + 2aex$ $x^{2} - a^{2} = -b^{2} - x^{2} + 2aex$	
$x^{2} - a^{2} = -a^{2} - x^{2} + 2aex as \ b = a$ $2x^{2} - 2aex = 0$ $x = ae as \ x \neq 0$ Therefore x coordinate of R, T and S is the same for each	
point ie. $x = ae$. Therefore are collinear and single line through centre meets circle and hyperbola at same points, therefore RT must be a diameter.	
$5\mathbf{C}_{1}ax + {}^{5}\mathbf{C}_{1}bx = {}^{5}\mathbf{C}_{1}(a+b)x = 30x$ $\therefore \qquad 5(a+b) = 30$ a+b = 6	2 marks – one mark per correct answer.
${}^{5}\mathbf{C}_{2}a^{2}x^{2} + {}^{5}\mathbf{C}_{2}a^{2}x^{2} = {}^{5}\mathbf{C}_{2}(a^{2} + b^{2})x^{2} = 220x^{2}$ $10(a^{2} + b^{2}) = 220$ $a^{2} + b^{2} = 22$	

Question 8 (continued)

$(a+b)^{2} = a^{2} + 2ab + b^{2}$ $ab = \frac{(a+b)^{2} - (a^{2} + b^{2})}{2}$	2marks – correct answer fully demonstrated
$ab = \frac{36 - 22}{2} = 7$	1 mark – correct approach and significant progress made towards reaching correct answer.
${}^{5}\mathbf{C}_{3}a^{3}x^{3} + {}^{5}\mathbf{C}_{3}b^{3}x^{3} = {}^{5}\mathbf{C}_{3}(a^{3} + b^{3})x^{3}$ Coefficent = ${}^{5}\mathbf{C}_{3}(a^{3} + b^{3}) = 10(a^{3} + b^{3}) = 900$	2 marks – correct answer fully demonstrated.
$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $= (a + b)(a^{2} + b^{2} - ab)$	1 mark – correct process with arithmetic error.
$= 6 \times (22 - 5) = 90$ or $(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ $a^{3} + b^{3} = (a + b)^{3} - 3ab(a + b)$ $a^{3} + b^{3} = 216 - 3 \times 7 \times 6 = 90$ ∴ Coefficient of $x = 40 \times 90 = 3600$	