Northern Beaches
Secondary College

Manly Selective Campus

2013 HSC -Trial Examination

Mathematics Extension 2

General
 Instructions

- Reading time - 5 minutes.
- Working time -3 hours .
- Write using blue or black pen.
- Board-approved calculators and templates may be used.
- All necessary working should be shown in every question.
- Multiple choice questions to be completed on the special answer page.
- Each free response questions to be completed in separate booklets.
- If using more than one booklet per question, number booklet " 1 of
\qquad

Total marks - 100 marks

- Attempt Questions 1-16
- Multiple Choice - answer question on answer sheet provided.
- Multiple Choice - 1 mark per question
- Short Answer questions marks as indicated.

Manly Selective Campus

2013 HSC Mathematics Extension 2 Trial Examination

MULTIPLE CHOICE SECTION.

Answer the following questions on the answer sheet provided.

Q1. What is the number of asymptotes on the graph $y=\frac{x^{2}}{x^{2}-1}$?
A. 1
B. 2
C. 3
D. 4

Q2. The value of $\int_{0}^{1} \frac{\cos ^{-1}}{\sqrt{1-x^{2}}} d x$ is
A. $-\frac{\pi^{2}}{8}$
B. $\frac{\pi^{2}}{8}$
C. $-\frac{\pi^{2}}{4}$
D. $\frac{\pi^{2}}{4}$

Q3. The base of the solid is the circle $x^{2}+y^{2}=1$. Every cross section of the solid taken perpendicular to the x-axis is a right-angled, isosceles triangle with its hypotenuse lying in the base of the solid.

Which of the following is an expression for the volume V of the solid?
A. $\int_{-1}^{1}\left(1-x^{2}\right) d x$
B. $2 \int_{-1}^{1}\left(1-x^{2}\right) d x$
C. $4 \int_{-1}^{1}\left(1-x^{2}\right) d x$
D. $8 \int_{-1}^{1}\left(1-x^{2}\right) d x$

Q4. In the Argand diagram below, the points R and S represent complex numbers ω and z respectively where $\angle S O R=90^{\circ}$. The distance $O S$ is $2 a$ units and the distance $O R$ is a units.

Which of the following is correct?
A. $\omega=2 i z$
B. $\omega=\mathbf{i} \bar{\omega}$
C. $\omega=-\frac{i z}{2}$
D. $\quad \omega=-\frac{Z}{2 i}$

Q5. $P x$) is a polynomial of degree 4 . Which of the following statements must be false?
A. $\quad P(x)$ has no real roots
B. $\quad P(x)$ has 1 real root and 3 non-real roots
C. $\quad P(x)$ has 2 real roots and 2 non-real roots.
D. $\quad P(x)$ has 4 real roots.

Q6. In the diagram, the circle $(x-2)^{2}+y^{2}=1$ is drawn. The circle is rotated around the line $x=1$. Using the method of cylindrical shells, the volume of the solid is given by the expression.

A. $\quad V=2 \pi \int_{1}^{3}(x-1) \sqrt{1+(x-2)^{2}} d x$
B. $\quad V=4 \pi \int_{1}^{3}(x-1) \sqrt{1+(x-2)^{2}} d x$
C. $\quad V=2 \pi \int_{1}^{3}(x-1) \sqrt{1-(x-2)^{2}} d x$
D. $\quad V=4 \pi \int_{1}^{3}(x-1) \sqrt{1-(x-2)^{2}} d x$

Q7. What is the multiplicity of the root $x=1$ of the equation
$3 x^{5}-5 x^{4}+5 x-3=0$
A. 1
B. 2
C. 3
D. 4

Q8. Which of the following graphs is the locus of the point P representing the complex number z moving in an Argand digram such that $|z-2 i|=2+\operatorname{Imz}$?
A. A straight line
B. A parabola
C. A circle
D. A hyperbola

Q9. Let $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$ where $n \geq 2$. Which of the following is the correct expression for I_{n}.
A. $\quad I_{n}=\left(\frac{n-1}{n}\right) I_{n-2}$
B. $\quad I_{n}=\left(\frac{n+1}{n}\right) I_{n-2}$
C. $\quad I_{n}=\left(\frac{n}{n-1}\right) I_{n-2}$
D. $\quad I_{n}=\left(\frac{n}{n+1}\right) I_{n-2}$

Q10. The first derivative of the implicit function $x \sin y+y \cos x=1$ is:
A. $\frac{y \sin x}{x \cos y}$
B. $\left(\frac{y}{x}\right) \tan x$
C. $\frac{y \sin x-x \cos y-\sin y}{\cos x}$
D. $\frac{y \sin x-\sin y}{x \cos y+\cos x}$

FREE RESPONSE SECTION - answer each question in a separate booklet

Question 11 START A NEW BOOKLET
a) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos x \cdot \sin ^{3} x d x$
b) Find $\int_{2}^{5} \frac{2 d x}{x^{2}-4 x+13}$
c) (i) Find real numbers A, B and C such that $\frac{5}{x^{2}(2-x)} \equiv \frac{A x+B}{x^{2}}+\frac{C}{2-x}$
(ii) Hence, or otherwise, find $\int \frac{20}{x^{2}(2-x)} d x$
d) Use the substitution $x=\sin \theta$ to find $\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x$
e) Evaluate $\int_{0}^{1} x \sin ^{-1} x d x$

2013 HSC Mathematics Extension 2 Trial Examination

Question 12 START A NEW BOOKLET
a) The cubic equation $3 x^{3}-9 x^{2}+6 x+2=0$ has roots α, β and γ.
(i) Find the cubic equation with roots α^{2}, β^{2} and γ^{2}
(ii) Hence evaluate $\alpha^{3} \beta \gamma+\alpha \beta^{3} \gamma+\alpha \beta \gamma^{3}$.
b) (i) Given that ω is one of the complex roots of $z^{3}=1$, show that $1+\omega+\omega^{2}=0$.
(ii) Hence, or otherwise, evaluate $1+\omega^{4}+\omega^{8}$
c) Consider the complex number $z=\cos \alpha+i \sin \alpha$
(i) Prove that $z^{n}-\frac{1}{z^{n}}=2 i \sin n \alpha$
(ii) Expand $\left(z-\frac{1}{z}\right)^{3}$ and hence prove $\sin ^{3} \alpha=\frac{3}{4} \sin \alpha-\frac{1}{4} \sin 3 \alpha$.
d) Below is a sketch of $y=\sin ^{3} \alpha$ for $0 \leq \alpha \leq 2 \pi$. Find the area of the shaded region.

e) Sketch the region of the Argand diagram for which the complex number $z=x+i y$ satisfies $\operatorname{Re}(z)>0$ and $|z+3 i| \leq 2$.

Manly Selective Campus

2013 HSC Mathematics Extension 2 Trial Examination

Question 13 START A NEW BOOKLET
a) $\quad P\left(p, \frac{1}{p}\right)$ and $Q\left(q, \frac{1}{q}\right)$ are two points on the rectangular hyperbola $x y=1$. M is the midpoint of $P Q$.
(i) Show that the chord $P Q$ has equation $x+p q y=p+q$
(ii) If P and Q move on the rectangular hyperbola such that the perpendicular distance of the chord $P Q$ from the origin $O(0,0)$ is always $\sqrt{2}$ units, show that $(p+q)^{2}=2\left[1+p^{2} q^{2}\right]$
(iii) Hence find the equation of the locus of M. State the restrictions on the domain of the locus.
b) The ellipse E has the equation $4 x^{2}+9 y^{2}=36$
(i) Write down
(a) the eccentricity of E
$(\beta) \quad$ the coordinates of the positive focus S
$(\gamma) \quad$ the equation of the positive directrix
(δ) the length of the major axis
(ii) Draw a clear sketch of the ellipse E. Show on your sketch the directrices, the coordinates of the foci and the vertices.
c) Find the values of the real numbers p and q such that $1-i$ is a root of the equation

$$
\begin{equation*}
x^{3}+p x+q=0 . \tag{3}
\end{equation*}
$$

2013 HSC Mathematics Extension 2 Trial Examination

a) Find $\int \sqrt{1+\sin 2 x} d x$
b) Use De Moivrés' theorem to show that
(i) (α) $\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$

$$
\begin{equation*}
\text { (} \beta \text {) } \quad \sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta \tag{1}
\end{equation*}
$$

(ii) Deduce that $\tan 3 \theta=\frac{\tan ^{3} \theta-3 \tan \theta}{3 \tan ^{2} \theta-1}$
(iii) Hence, or otherwise, show that $\tan \frac{\pi}{12}$ is a root of the equation

$$
\begin{equation*}
x^{3}-3 x^{2}-3 x+1=0 \tag{3}
\end{equation*}
$$

(iv) Show that $\tan \frac{\pi}{12}+\tan \frac{5 \pi}{12}=4$
c) The figure drawn below shows the shaded area enclosed by the parabola $y^{2}=4 a x$ and the line $x=a$.

The area is rotated around the line $x=a$. By considering slices perpendicular to the axis of rotation, find the volume of the solid of revolution.

2013 HSC Mathematics Extension 2 Trial Examination

Question 15 START A NEW BOOKLET
a)

The diagram shows the graph $y=f(x)$. On separate axes, sketch graphs of each of the following functions. Show all details. [Your diagrams should be at least $\frac{1}{3}$ of a page in size, with axes drawn with a ruler and a clear scale on each axis.]
(i) $y=|f(x)|$
(ii) $y=f(-x)$
(iii) $y=\frac{1}{f(x)}$
(iv) $y=e^{f(x)}$
b) Two circles intersect at P and Q as shown. The smaller circle passes through the centre O of the larger circle. The tangent to the smaller circle $R P T$ intersects the larger circle at $T . P Q$ bisects $\angle R Q O$

Let $\angle P T Q=\alpha$
(i) Show that $\triangle P Q T$ is isosceles
(ii) Show that P is the midpoint of $R T$

2013 HSC Mathematics Extension 2 Trial Examination

Question 15 continued

c)

In the diagram, the curves $x y=2$ and $y=x(k-x)$ intersect at the points P, Q and R with the x coordinates α, β and δ respectively.
(i) Show that α, β and δ satisfy the equation $x^{3}-k x^{2}+2=0$
(ii) Find the value of k such that α, β and δ are consecutive terms in an arithmetic sequence.

2013 HSC Mathematics Extension 2 Trial Examination

Question 16 START A NEW BOOKLET
a) A particle of mass m is moving vertically in a resisting medium in which the resistance to motion has magnitude $\frac{1}{10} m v^{2}$ when the particle has velocity $v m s^{-1}$. The acceleration due to gravity is $10 \mathrm{~ms}^{-2}$.
(i) The particle is projected vertically upwards with speed $U \mathrm{~ms}^{-2}$. Show that during its upward motion, its acceleration $a \mathrm{~ms}^{2}$ is given by $a=-\frac{1}{10}\left(100+v^{2}\right)$
(ii) Hence show that its maximum height, H metres, is given by
$H=5 \ln \left(\frac{U^{2}+100}{100}\right)$
(iii) The particle falls vertically from rest. Show that during its downward motion its acceleration $a \mathrm{~ms}^{-1}$ is given by $a=\frac{1}{10}\left(100-v^{2}\right)$
(iv) Hence show that it returns to its point of projection with speed Vms^{-1} given by $V=\frac{10 U}{\sqrt{U^{2}+100}}$

Manly Selective Campus

2013 HSC Mathematics Extension 2 Trial Examination

Question 16 continued

b) A particle P of mass m is attached to one end of a light inelastic string of length l, while the other end is fixed at point O.

The particle moves with velocity v in a horizontal circle of radius r so that the string describes a cone whose vertical axis passes through the centre C of the circle.

Let T be the tension in the string as the particle moves; let $O C=h$ and let Θ be the angle between the string and the vertical.
(i) Draw a diagram, clearly showing the forces acting on P.
(ii) Let ω be the constant angular velocity of P. Show that $h=\frac{g}{\omega^{2}}$
(iii) Hence show that
(a) $h=\frac{m g l}{T}$
(β) $\quad r^{2}=\frac{m v^{2} l}{T}$
(iv) Show that $T=\frac{m}{2 l}\left\{v^{2}+\sqrt{v^{4}+4 g^{2} l^{2}}\right\}$

End of Examination

This Page has been left blank.

Northern Beaches Secondary College
Manly Selective Campus

2013 HSC Mathematics Extension 2 Trial Examination

Answer sheet for multiple choice questions 1-10

INSTRUCTIONS:

For Questions 1 to 10, place a cross in the box corresponding to your selected answer.
Student Number: \qquad

Question \#	(A)	(B)	(C)	(D)
1				
2				
3				
4				
5				
6				
7				
8				
10				
9				
4				

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

