

Northern Beaches Secondary College

Manly Selective Campus

2014 HSC – Trial Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes.
- Working time 3 hours.
- Write using blue or black pen.
- Board-approved calculators and templates may be used.
- All necessary working should be shown in every question.
- Multiple choice questions to be completed on the special answer page.
- Each free response questions to be completed in separate booklets.
- If using more than one booklet per question, number booklet "1 of __"

Total marks – 100 marks

- Attempt Questions 1-16
- Multiple Choice answer question on answer sheet provided.
- Multiple Choice 1 mark per question
- Short Answer questions marks as indicated.

2014 HSC Mathematics Extension 2 Trial Examination

MULTIPLE CHOICE SECTION.

Answer the following questions on the answer sheet provided.

Q1. If z = 1 + 2i and $\omega = 3 - i$ then $z - \overline{\omega}$ is: i - 2 4 + i 3i - 24 + 3i

Q2. The directrices of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ are :

A) $x = \pm \frac{16\sqrt{7}}{7}$ B) $x = \pm \frac{\sqrt{7}}{16}$ C) $x = \pm \frac{16}{5}$

D)
$$x = \pm \frac{5}{16}$$

- Q3. Let α , β , γ be the roots of the equation $x^3 + x 1 = 0$. The polynomial equation with roots $2\alpha\beta$, $2\alpha\gamma$, $2\beta\gamma$ is:
 - A $x^{3} + 2x^{2} + 2 = 0$ B $x^{3} - 2x^{2} - 2 = 0$ C $x^{3} - 2x^{2} - 8 = 0$ D $x^{3} - 2x^{2} + 8 = 0$

2014 HSC Mathematics Extension 2 Trial Examination

Q4. If $f(x) = \frac{x(x-1)}{x-2}$, which of the following lines will be an asymptote to the graph y = f(x)?

- A) y = x + 1
- B) y = x 2
- C) y = x 1
- D) y = 0

Q5. P(z) is a polynomial of degree 4. Which one of the following statements must be false?

- A P(z) has no real roots.
- B P(z) has 1 real root and 3 non-real roots
- C P(z) has 2 real roots and 2 non-real roots
- D P(z) has 4 non-real roots

Q6. For a certain function y = f(x), the function = f(|x|) is represented by :

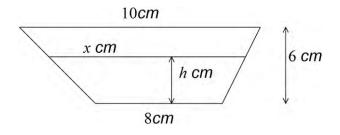
- A) A reflection of y = f(x) in the y-axis
- B) A reflection of y = f(x) in the x-axis.
- C) A reflection of y = f(x) in the x axis for $y \ge 0$
- D) A reflection of y = f(x) in the y axis for $x \ge 0$

Q7. If ω is an imaginary cube root of unity, then $(1 + \omega - \omega^2)^7$ is equal to :

- A) 128ω
- B) -128ω
- C) $128\omega^2$
- D) $-128\omega^2$

2014 HSC Mathematics Extension 2 Trial Examination

Q8. The diagram shows a trapezium with an interval of x units drawn parallel to and h units above the base.



An expression for x in terms of h is given by:

- A) $x = 5 \frac{h}{6}$
- B) $x = 8 + \frac{h}{6}$
- C) $x = 12 + \frac{h}{8}$
- D) $x = 8 + \frac{h}{3}$

Q9. Given the eccentricity of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is *e*, then the eccentricity of the

ellipse $\frac{x^2}{a^2 + b^2} + \frac{y^2}{b^2} = 1$ is: A) \sqrt{e} B) $\frac{1}{e}$ C) eD) e^2

Q10. The roots of the polynomial $4x^3 + 4x - 5 = 0$ and α , β , γ . The value of $(\alpha + \beta - 3\gamma)(b + \gamma - 3\alpha)(\alpha + \gamma - 3\beta)$ is

- A) -80
- B) -16
- C) 16
- D) 80

2014 HSC Mathematics Extension 2 Trial Examination

FREE RESPONSE SECTION - answer each question in a separate booklet

Question 11 START A NEW BOOKLET

- a) (i) Find the Cartesian equation of the locus of of the point z in the complex plane given that Re(z) = |z - 2| (2)
 - (ii) Sketch the locus of z. (1)
- b) Let P(z) be a point in the complex plane such that $|z i| = \frac{1}{2}$. Find the maximum value of Arg (z) (2)

c) (i) Express
$$\sqrt{8+6i}$$
 in the form $x + iy$ where $x > 0$ (2)

- (ii) Solve the equation $z^2 + 2(1+2i)z (11+2i) = 0$ (2)
- d) Let f(x) be a continuous function for $-5 \le x \le 10$ and let g(x) = f(x) + 2. If $\int_{-5}^{10} f(x) dx = 4$, show that $\int_{-5}^{10} g(u) du = 34$ (3)

e) Use integration by parts to find
$$\int_0^1 \frac{\cos^2 x}{\sqrt{1+x}} dx$$
 (3)

15 marks

2014 HSC Mathematics Extension 2 Trial Examination

Question 12 START A NEW BOOKLET

15 marks

a) (i) Prove that any equation of the form

$$x^3 - mx^2 + n = 0$$

where m, $n \neq 0$ cannot have a triple zero. (2)

- (ii) If the equation has a double zero, find the relation between m and n (2)
- b) Use the table of standard integrals to find $\int \frac{2x}{\sqrt{x^4 + 16}} dx$ (2)

c) The equation $2x^2 - kx + 17 = 0$ has one zero, α , such that $Re(\alpha) = \frac{5}{2}$. If k is real, find the other zero of the equation and the value of k. (2)

- d) (i) Use the substitution $t = \tan \frac{x}{2}$ to prove $\int_{-\infty}^{\frac{\pi}{2}} \frac{dx}{2 + 2\sin x} = \frac{1}{2}$ (3)
 - (ii) Use the substitution u = 2a x to prove

$$\int_{0}^{2a} f(x) \, dx = \int_{0}^{a} \{f(x) + f(2a - x)\} \, dx \tag{2}$$

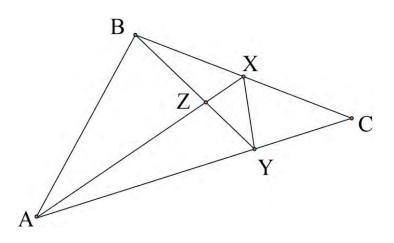
(iii) Hence, or otherwise, evaluate

$$\int_0^\pi \frac{x}{2+2\mathrm{sin}x} \, dx \tag{2}$$

2014 HSC Mathematics Extension 2 Trial Examination

Question 13 START A NEW BOOKLET

15 marks



X and Y are points on sides BC and AC of ΔABC .

 $\angle AXC = \angle BYC$ and BX = XY

(i)	Copy the diagram into your answer booklet, clearly showing the above		
	information. (Your diagram must be at least 1/4 page in size)	(1)	
(ii)	Prove <i>ABXY</i> is a cyclic quadrilateral.	(2)	

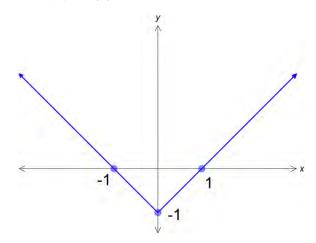
(iii) Hence, or otherwise, prove AX bisects $\angle BAC$. (3)

Question 13 continued on next page

2014 HSC Mathematics Extension 2 Trial Examination

Question 13 continueda

b) Consider the function f(x) = |x| - 1 shown below.



Using diagrams, of at least ¼ page, sketch the following functions. Show all essential features on your diagram.

- (i) y = 1 f(x) (1)
- (ii) y = x f(x) (2)
- (iii) |y| = f(x)(2)
- (iv) $y = e^{f(x)}$ (2)
- (v) $y = \sqrt{f(x)}$ (2)

2014 HSC Mathematics Extension 2 Trial Examination

Question 14 START A NEW BOOKLET

15 marks

a) (i) Show that (2 + i) is a root of $x^3 - 11x + 20 = 0$ (1)

(ii) Hence, or otherwise solve
$$x^3 - 11x + 20 = 0$$
 (2)

b) A, B, C and D are the vertices, in clockwise order, of a square.

(i)	Given that A and C represent the points $2 + 2i$ and $4 + 2i$ respectively, find	
	the coordinates of <i>B</i> and <i>D</i> .	(2)
(ii)	If the square $ABCD$ is rotated anticlockwise through 90° about the origin find	

- (ii) If the square ABCD is rotated anticlockwise through 90° about the origin, find the coordinates of the new position of the point A. (1)
- c) Consider chords of the hyperbola $xy = c^2$ which pass through the point A (6c, 4c)

(i) Find the equation of the chord passing through the points
$$P\left(cp, \frac{c}{p}\right)$$
 and $Q\left(cq, \frac{c}{q}\right)$. Express your answer in general form. (2)

(ii) Show that
$$4pq + 6 = p + q$$
 (1)

(iii) Find the equation of the locus of the midpoints of the chords PQ. (2)

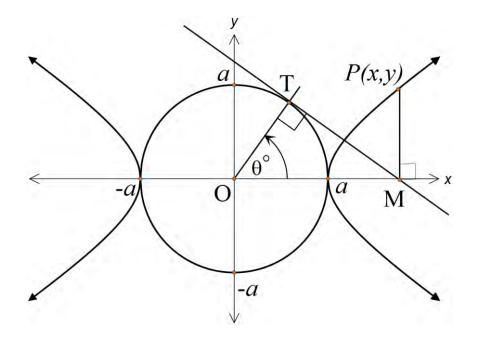
d) (i) Find
$$\frac{dy}{dx}$$
 for the implicit function $x^2 - y^2 + xy + 5 = 0$. (2)

(ii) Find the *x* coordinate of the points of the curve $x^2 - y^2 + xy + 5 = 0$ where the tangents have a zero gradient. (2)

2014 HSC Mathematics Extension 2 Trial Examination

Question 15 START A NEW BOOKLET

a) The diagram below shows the hyperbola $H: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and the circle $C: x^2 + y^2 = a^2$



The point P(x,y) lies on the hyperbola *H* and the point *T* lies on the circle *C* and $\angle TOM = \Theta$.

- (i) Show that *P* has the coordinates $(a \sec \theta, b \tan \theta)$. (2)
- (ii) The point Q lies on the hyperbola and has coordinates $(a \sec \phi, b \tan \phi)$.

Given that $\theta + \phi = \frac{\pi}{2}$ and $\theta \neq \frac{\pi}{4}$, show that the chord *PQ* has the equation $ay = b(\cos\theta + \sin\theta)x - ab$ (4)

(iii) Show that every chord *PQ* passes through a fixed point and find the coordinates of that point. (2)

(iv) Show that, as
$$\Theta$$
 approaches $\frac{\pi}{2}$, the chord *PQ* approaches a line parallel to an asymptote. (2)

Question 15 continued on next page

15 marks

2014 HSC Mathematics Extension 2 Trial Examination

Question 15 continued

b) Let x_1 , x_2 be positive real numbers.

(i) Show that
$$x_1 + x_2 \ge 2\sqrt{x_1 x_2}$$
 (1)

(ii) Hence, or otherwise, prove

$$\frac{x_1 + x_2 + x_3 + x_4}{4} > 4\sqrt{x_1 x_2 x_3 x_4}$$

where x_1 , x_2 , x_3 , x_4 are positive real numbers.

(iii) By making the substitution $x_4 = \frac{x_1 + x_2 + x_3}{3}$ into the result in part (ii), show that

$$\frac{x_1 + x_2 + x_3}{3} > \sqrt[3]{x_1 x_2 x_3}$$

where x_1 , x_2 , x_3 are positive real numbers.

(2)

(2)

2014 HSC Mathematics Extension 2 Trial Examination

Question 16 START A NEW BOOKLET

a) A solid has its base in the ellipse
$$E: \frac{x^2}{36} + \frac{y^2}{16} = 1$$

If each section perpendicular to the major axis is an equilateral triangle, show that the volume of the solid is $128\sqrt{3}$ cubic units. (4)

b) Let
$$I_n = \int_0^1 x(1-x^5)^n dx$$
 where $n \ge 0$ is an integer

(i) Show that
$$I_n = \frac{5n}{5n+2} I_{n-1}$$
 for $n \ge 1$ (3)

(ii) Show that

$$I_n = \frac{5^n n!}{2 \times 7 \times 12 \times \ldots \times (5n+2)}$$
for $n \ge 1$
(2)

(iii) Evaluate
$$I_4$$
 (1)

c) Let f(x), g(x) be continuously differentiable functions.

(i) Prove
$$\int \{f''(x) g(x) - f(x) g''(x)\} dx = f'(x) g(x) - f(x) g'(x)$$
 (2)

(ii) Hence, or otherwise, evaluate
$$\int_{0}^{\frac{\pi}{4}} \sin 3x \cos 2x \, dx$$
 (3)

(State your answer in simplest exact form)

End of Examination

Page 12 of 14

15 marks

2014 HSC Mathematics Extension 2 Trial Examination

Northern Beaches Secondary College Manly Selective Campus

2014 HSC Mathematics Extension 2 Trial Examination

Answer sheet for multiple choice questions 1-10

INSTRUCTIONS:

For Questions 1 to 10, place a cross in the box corresponding to your selected answer.

Student Number: _____

Question #	(A)	(B)	(C)	(D)
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

2014 HSC Mathematics Extension 2 Trial Examination

STANDARD INTEGRALS

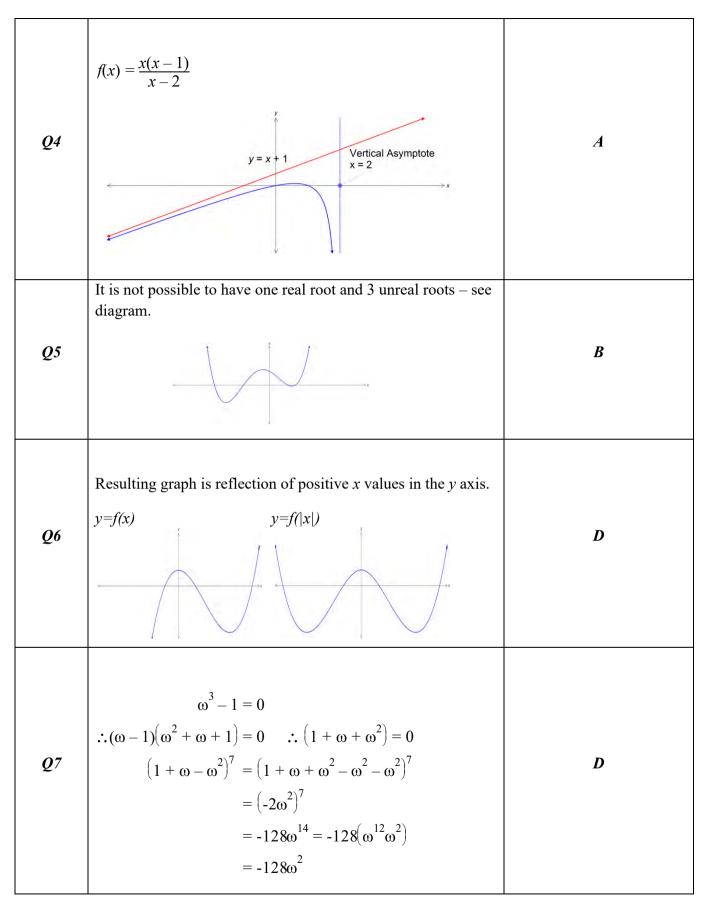
 $\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE : $\ln x = \log_e x$, x > 0

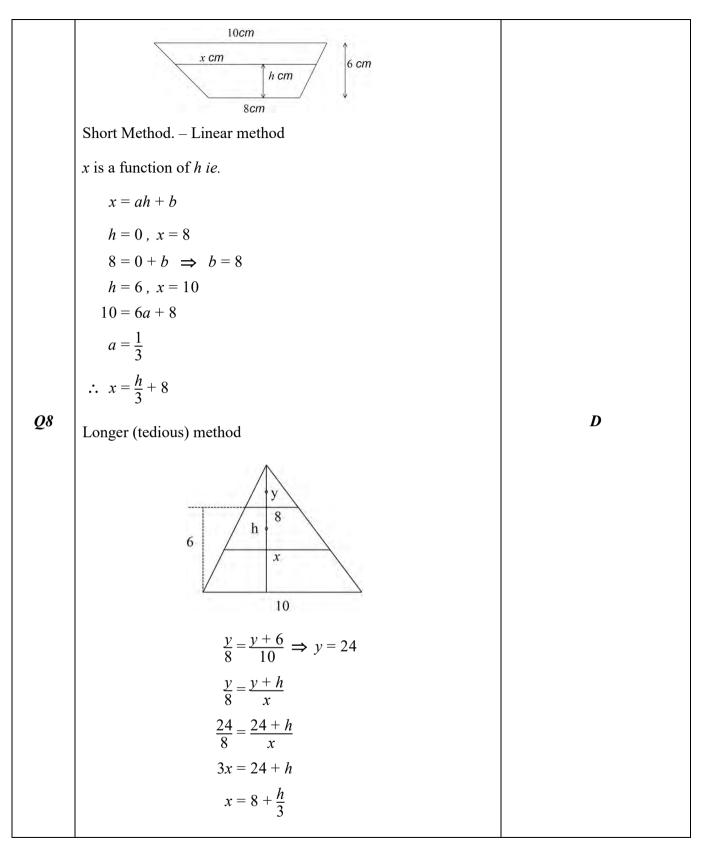
Question 1:

Q1	$z = 1 + 2i \qquad \omega = 3 - i : \overline{\omega} = 3 + i$ $z - \overline{\omega} = 1 + 2i - (3 + i)$ $= i - 2$	A
Q2	$\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1$ Directrices: $x = \pm \frac{a}{e} = \pm \frac{4}{e}$ $e = \sqrt{1 - \frac{b^{2}}{a^{2}}} = \frac{\sqrt{7}}{4}$ $x = \pm \frac{16}{\sqrt{7}} = \pm \frac{16\sqrt{7}}{7}$	A
Q3	$x^{3} + x - 1 = 0$ $\therefore \qquad \alpha\beta\gamma = 1$ $2\alpha\beta = \frac{2\alpha\beta\gamma}{\gamma} = \frac{2}{\gamma}$ $2\alpha\gamma = \frac{2}{\beta}$ $2\beta\gamma = \frac{2}{\alpha}$ $\therefore \qquad x = \frac{2}{X}$ $\frac{8}{X^{3}} + \frac{2}{X} - 1 = 0$ $8 + 2X^{2} - X^{3} = 0$ $\therefore \qquad x^{3} - 2x^{2} - 8 = 0$	С

Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions



Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions



Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions

Q9	$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \qquad e^{2} = \left(\frac{b^{2}}{a^{2}} - 1\right)$ $\therefore \qquad b^{2} = a^{2}(e - 12)$ $\frac{x^{2}}{a^{2} + b^{2}} + \frac{y^{2}}{b^{2}} = 1 \therefore E^{2} = 1 - \frac{b^{2}}{a^{2} + b^{2}}$ $\therefore \qquad E^{2} = \frac{a^{2} + b^{2} - b^{2}}{a^{2} + b^{2}} = \frac{a^{2}}{(a^{2} + b^{2})}$ $= \frac{a^{2}}{a^{2} + a^{2}(e^{2} - 1)} = \frac{1}{e^{2}}$ $\therefore \qquad E = \pm \frac{1}{e}$	В
Q10	$4x^{3} + 4x - 5 = 0$ $\alpha + \beta + \gamma = 0 \alpha\beta\gamma = \frac{5}{4}$ $(\alpha + \beta - 3\gamma)(b + \gamma - 3\alpha)(\alpha + \gamma - 3\beta)$ $= (\alpha + \beta + \gamma - 4\gamma)(\alpha + \beta + \gamma - 4\alpha)(\alpha + \beta + \gamma - 4\beta)$ $= -64\alpha\beta\gamma = -\frac{320}{4} = -80$	А

Question 11

a-i	Let $z = x + iy \rightarrow Re(z) = x$ Re(z) = z - 2 $\therefore x = z - 2 $ $x^2 = (x - 2)^2 + y^2$ $x^2 = x^2 - 4x + 4 + y^2$ $y^2 = 4(x - 1)$	2 marks – correct solution $x = z - 2 $ 1 mark – recognising
a-ii	y ² = 4(x - 1) Focus (2,0) (1,0)	1 mark correct solution with (1,0)
b	$ z - i = \frac{1}{2}$ $x^{2} + (y - 1)^{2} = \frac{1}{4}$ $B_{\frac{1}{2}} \qquad 0$ y $B_{\frac{1}{2}} \qquad 0$ x $A_{\frac{y}{\theta^{0}}} \qquad x$ $A_{\frac{y}{\theta^{0}}} \qquad x$ $\therefore \theta = \frac{\pi}{2} + \frac{\pi}{6} = \frac{2\pi}{3}$	2 marks – correct solution fully demonstrated. 1 mark – diagram showing circle and triangle correctly

c-i	$\sqrt{8+6i} = x + iy$ $\therefore \qquad x^2 - y^2 = 8$ $2xy = 6 \implies y = \frac{3}{x}$ $x^2 + \frac{9}{x^2} = 8$ $x^4 + 9 = 8x^2$ $x^4 - 8x^2 + 9 = 0$ $(x^2 - 9)(x^2 + 1) = 0$ $\therefore \qquad x = \pm 3 \qquad nb \ x \ is \ real \ and \ x > 0$ $x = 3 \therefore y = 1$ $\sqrt{8+6i} = 3 + i$	2 marks correct solution 1 marks – correct except failure to recognise x > 0
c-ii	$0 = z^{2} + 2(1 + 2i)z - (11 + 2i)$ $z = \frac{-2(1 + 2i) \pm \sqrt{4(1 + 2i)^{2} + 4 \times (11 + 2i)}}{2}$ $= \frac{-2(1 + 2i) \pm 2\sqrt{1 - 4 + 4i + 11 + 2i}}{2}$ $= \left(-(1 + 2i) \pm \sqrt{8 + 6i} \right)$ $= -1 - 2i \pm (3 + i)$ $z = -1 - 2i + 3 + i = 2 - i \text{ or } z = -1 - 2i - 3 - i = -4 - 3i$	2 marks – correct solution 1 mark – uses quadratic formula to arrive at non-simplified expression for z

Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions

d	$\int_{-5}^{10} f(x) dx = 4$ $\therefore \int_{-5}^{10} g(x) dx = \int_{-5}^{10} f(x) + 2 dx = 4 + \left[2x \right]_{-5}^{10}$ = 4 + 30 = 34 if $u = x$ then $du = dx$ $nb \int g(x) dx = \int g(u) du = 34$	3 marks – correct solution – MUST include logic for $\int g(x)dx = \int g(u) du$ 2 marks – correct except for explanation. 1 mark – expansion of g(x) integral
e	$\int_{0}^{1} \frac{\cos^{-1}x}{\sqrt{1+x}} dx$ $u = \cos^{-1}x \qquad v' = \frac{1}{\sqrt{1+x}}$ $u' = -\frac{1}{\sqrt{1-x^{2}}} \qquad v = \frac{\sqrt{1+x}}{\frac{1}{2}}$ $I = \left[\cos^{-1}x \times 2\left(\sqrt{1+x}\right)\right]_{0}^{1} + 2\int_{0}^{1} \frac{\sqrt{1+x}}{\sqrt{1+x}\sqrt{1-x}} dx$ $= \left(0 \times 2\sqrt{2} - 2 \times \frac{\pi}{2} \times 1\right) + 2\int_{0}^{1} (1-x)^{-\frac{1}{2}} dx$ $= -\pi + 2 \times -2\left[\sqrt{1-x}\right]_{0}^{1}$ $= -\pi - 4(0-1)$ $= -\pi + 4$	3 marks – correct solution 2 marks – correct value for initial term ieπ 1 mark – correct initial u, u',v and v'

Question 12

а	$f(x) = x^{3} - mx^{2} + n$ $f'(x) = 3x^{2} - 2mx$ $f''(x) = 6x - 2m = 0$ $\therefore \qquad x = \frac{m}{3}$ $if f'\left(\frac{m}{3}\right) = \frac{3m^{2}}{9} - \frac{2m^{2}}{3}$ $= -\frac{m^{2}}{3} \neq 0 \text{ if } m \neq 0$ therefore not possible to have triple root.	2 marks for correct solution 1 mark for $x = \frac{m}{3}$
b	$f(x) = x^{3} - mx^{2} + n$ $f'(x) = 3x^{2} - 2mx$ $\therefore x = 0 \text{ or } x = \frac{2m}{3}$ $x = 0 \text{ not a solution for } f(x)$ $f\left(\frac{2m}{3}\right) = \frac{8m^{3}}{27} - \frac{4m^{3}}{9} + n$ $= -\frac{4m^{3}}{27} + n = 0$ $4m^{3} = 27n$	2 marks for correct solution 1 mark for $x = \frac{2m}{3}$
с	$\int \frac{2x}{\sqrt{x^4 + 16}} dx$ let $u = x^2 \therefore du = 2xdx$ $= \int \frac{1}{\sqrt{u^2 + 4^2}} du$ $= \ln\left(u + \sqrt{u^2 + 16}\right) + C$ $= \ln\left(x^2 + \sqrt{x^4 + 16}\right) + C$	2 marks for correct solution 1 mark for $\int \frac{du}{\sqrt{u^2 + 1}}$

d-i	$2x^{2} - kx + 17 = 0$ $\alpha + \beta = \frac{k}{2}$ $\alpha = \frac{5}{2} + ib$ $\beta = \frac{5}{2} - ib$ $\therefore \qquad \alpha + \beta = 5$ $\therefore \qquad k = 10$ $x = \frac{k \pm \sqrt{k^{2} - 136}}{4}$ $x = \frac{10 \pm \sqrt{100 - 136}}{4}$ $= \frac{5}{2} \pm \frac{3}{2} i$	2 marks for correct solution
d-ii	$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2+2\sin x} = \frac{1}{2}$ $t = \tan \frac{x}{2} \therefore x = 2\tan^{-1}t$ $dx = \frac{2}{1+t^{2}}dt also \sin x = \frac{2t}{1+t^{2}}$ $x = 0 t = 0$ $x = \frac{\pi}{2} t = 1$ $\int_{0}^{1} \frac{dt}{2+2 \times \frac{2t}{1+t^{2}}} \times \frac{2}{1+t^{2}}$ $= \int_{0}^{1} \frac{dt}{t^{2}+2t+1}$ $= \int_{0}^{1} \frac{dt}{(t+1)^{2}}$ $= -1\left[\frac{1}{t+1}\right]_{0}^{1} = 1 - \frac{1}{2} = \frac{1}{2}$	2 marks for correct expression for transform. integral 1 mark for correct simplified expression for $\frac{1}{2+2\sin x}$ in terms of t

Using u = 2a - x : -du = dxx = 0 u = 2ax = a u = a $-\int_{a}^{a} f(u) \, du = \int^{2a} f(u) \, du$ $nb \int^{2a} f(u) \, du = \int^{2a} f(x) \, dx$ 2 marks for correct solution $\therefore \int_{0}^{a} f(x)dx + \int_{a}^{2a} f(x) dx = \int_{0}^{2a} f(x) dx$ 1 mark for $\int_{0}^{2a} f(x) \, dx = \int_{0}^{a} \{f(x) + f(2a - x)\} \, dx$ decomposition of ... integral in terms of x and u. Alternatively $\int_{-1}^{a} \{f(x) + f(2a-x)\} dx = \left[F(x) - F(2a-x)\right]_{0}^{a}$ = [F(a) - F(a)] - [F(0) - F(2a)]= F(2a) - F(0) $\int_{a}^{2a} f(x)dx = \left[F(x)\right]_{0}^{2a} = F(2a) - F(0)$

Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions

$\int_{0}^{\pi} \frac{x}{2+2\sin x} dx = \int_{0}^{\frac{\pi}{2}} \frac{x}{2+2\sin x} + \frac{\pi - x}{2+2\sin(\pi - x)} dx$	
$= \int_{0}^{\frac{\pi}{2}} \frac{x}{2+2\sin x} + \frac{\pi - x}{2+2\sin(x)} dx$	2 marks for correct solution
$= \int_0^{\frac{\pi}{2}} \frac{\pi}{2+2\mathrm{sinx}} dx$	1 mark for correct transformation of integral
$= \pi \int_0^{\frac{\pi}{2}} \frac{dx}{2 + 2\mathrm{sinx}}$	
$= \pi \times \frac{1}{2} = \frac{\pi}{2}$	

Question 13

a-i	A A A A A A A A A A A A A A A A A A A	1 mark – correct diagram with all given details
a-ii	$ABXY$ is a cyclic quadrilateral. $Let \angle AXC = \angle B$ YC = α given $\angle BXZ = 180^{\circ} - \alpha$ Straight line $\angle AYB = 180^{\circ} - \alpha$ Straight line $\therefore \angle BXZ = \angle AYB$ $\therefore A, B, X, Y$ are concylic $(angles standing on same arc are equal)$ $\therefore ABXY$ is a cyclic quad.	2 marks – correct solution including all supporting statements. 1 mark – correct proof to two angles equal

a-iii	prove AX bisects $\angle BAC$ AX = XY given $\therefore \angle XBY = \angle XYB$ base \angle 's of isos. Δ $\angle XYB = \angle XAB$ angles standing on same arc equal $\angle XBY = \angle XAY$ angles standing on same arc equal $\therefore \angle XBY = \angle XAB$ $\therefore \angle XAY = \angle XAB$ $\therefore \angle XAY = \angle XAB$ $\therefore AX$ bisects $\angle BAY$	3 marks – fully explained correct solution 2 marks – correct logic but incomplete reasoning 1 mark – connection made between 3 equal angles
b-i	y = 1 - f(x) x Intercept $(-2, 0)$ x Intercept $(2, 0)$ x Intercept	1 mark – correct shape and points labelled
b-ii	y = x. f(x)	2 marks – correct shape and points labelled 1 mark – correct shape – no or incorrect corresponding points

Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions

b-iii	y = f(x)	2 marks – correct shape and points labelled 1 mark – correct shape – no or incorrect corresponding points
b-iv	$y = e^{f(x)}$	2 marks – correct shape and points labelled 1 mark – correct shape – no or incorrect corresponding points
<i>b-v</i>	$y = \sqrt{f(x)}$	2 marks – correct shape and points labelled and shape above and below y=1 1 mark – correct shape – no or incorrect corresponding points

Q14

a-i	$x^{3} - 11x + 20 = 0$ x = 2 + i $\therefore \qquad (2 + i)^{3} - 11(2 + i) + 20 = 0$ $8 + 12i + 6i^{2} + i^{3} - 22 - 11i + 20 = 0$ (8 - 6 - 22 + 20) + (12i - i - 11i) = 0 0 = 0 therefore $(z + i)$ is a root of the equation.	3 marks for correct solution 2 marks for P(2 + i) = 0 $\therefore P(2 - i) = 0$ 1 mark for P(2 + i) = 0
a-ii	Since all coefficients are real then the conjugate is also a root ie; $(z - i)$. therefore $x^2 - 2Re(x) + x ^2$ is a factor. $\therefore x^2 - 4x + 2^2 + 1^2 = x^2 - 4x + 5$ is s factor $x^3 - 11x + 20 = (x^2 - 4x + 5)(x + \alpha)$ $\therefore \qquad 20 = 5 \times \alpha$ $\alpha = 4$ $\therefore \qquad (x^3 - 11x + 20) = (x^2 - 4x + 5)(x + 4)$ $x = 2 + 1 \qquad x = 2 - i \qquad x = -4$	
b-i	Find the coordinates of B (3 + 3i) and D (3 + i) Im(z) $A (2,2)$ $D (3,1)$ $Re(z)$	2 marks – correct solution 1 mark – correct B or C
b-ii	A = 2 + 2i iA = i(2 + 2i) = -2 + 2i	1 mark – correct answer.

Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions

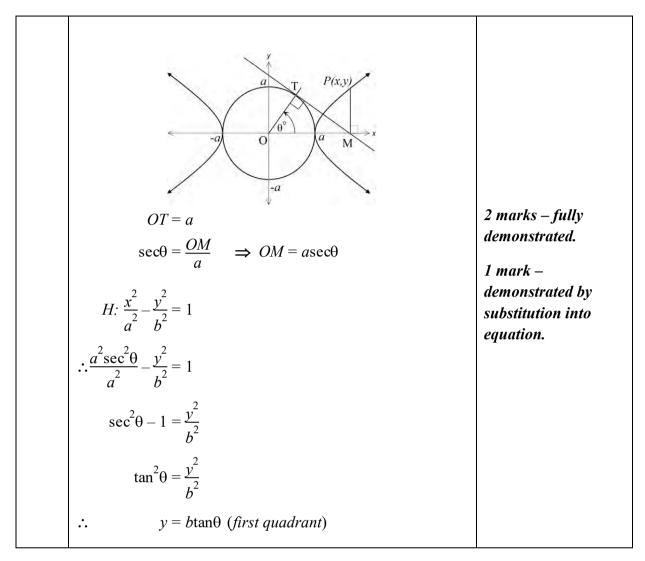
c-i	$m = \frac{\frac{c}{p} - \frac{c}{q}}{cp - cq} = \frac{q - p}{pq} \times \frac{1}{p - q} = -\frac{1}{pq}$ $y - \frac{c}{p} = -\frac{1}{pq}(x - cp)$ $ypq - cq = -x + cp$ $x + ypq = (p + q)c$ Given the chord passes through A (6c, 4c)	2 marks for correct solution 1 mark for correct gradient
с-іі	Given the chord passes through A (6c, 4c) x + ypq = (p + q)c 6c + 4cpq = (p + q)c 6 + 4pq = (p + q)	1 mark – correct solution
c-iii	$x = \frac{c(p+q)}{2} \qquad y = \frac{c(p+q)}{2pq} = \frac{x}{pq}$ $\therefore \qquad \frac{x}{y} = pq$ also 4pq + 6 = p + q $y = \frac{c(4pq + 6)}{2pq}$ $ypq = \frac{c}{2}(4pq + 6)$ $y \times \frac{x}{y} = \frac{c}{2}\left(\frac{4x}{y} + 6\right)$ xy = 2cx + 3cy (x - 3c)y = 2cx $y = \frac{2cx}{x - 3c}$	2 marks for correct solution 1 mark for correct x or y coordinate of midpoint.

Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions

	$x = \frac{c(p+q)}{2}$	$y = \frac{c (p+q)}{2pq} = \frac{x}{pq}$	
	$\therefore \qquad \frac{x}{y} = pq$		
	also 4pq + 6 = p + q		
	$x = \frac{c}{2}(4pq + 6)$		
	$x = \frac{2cx}{y} + 3c$		
	$x-3c=\frac{2cx}{y}$		
d-i	$y = \frac{2cx}{x - 3c}$		
	CHECK		
	$ypq = \frac{c}{2}(4pq + 6)$		
	$y \times \frac{x}{y} = \frac{c}{2} \left(\frac{4x}{y} + 6 \right)$		
	xy = 2cx + 3cy		
	(x-3c)y=2cx		
	$y = \frac{2cx}{x - 3c}$		

	$x^{2} - y^{2} + xy + 5 = 0$ $2x - \frac{2ydy}{dx} + y + \frac{xdy}{dx} = 0$	2 marks for correct solution
d-ii	$(x-2y)\frac{dy}{dx} = -(2x+y)$ $\frac{dy}{dx} = -\frac{2x+y}{x-2y}$	1 mark for correct derivative expression
	Zero gradient at $-2x = y$ $x^{2} - y^{2} + xy + 5 = 0$ $x^{2} - 4x^{2} - 2x^{2} + 5 = 0$ $-5x^{2} + 5 = 0$ $x = \pm 1$ \therefore $-2x = y$ x = 1 $y = -2x = -1$ $y = 2Local Minimum(1,-2)Local Maximum(1,-2)$	2 marks for correct solution 1 mark ofr correct equation from $\frac{dy}{dx} = 0$

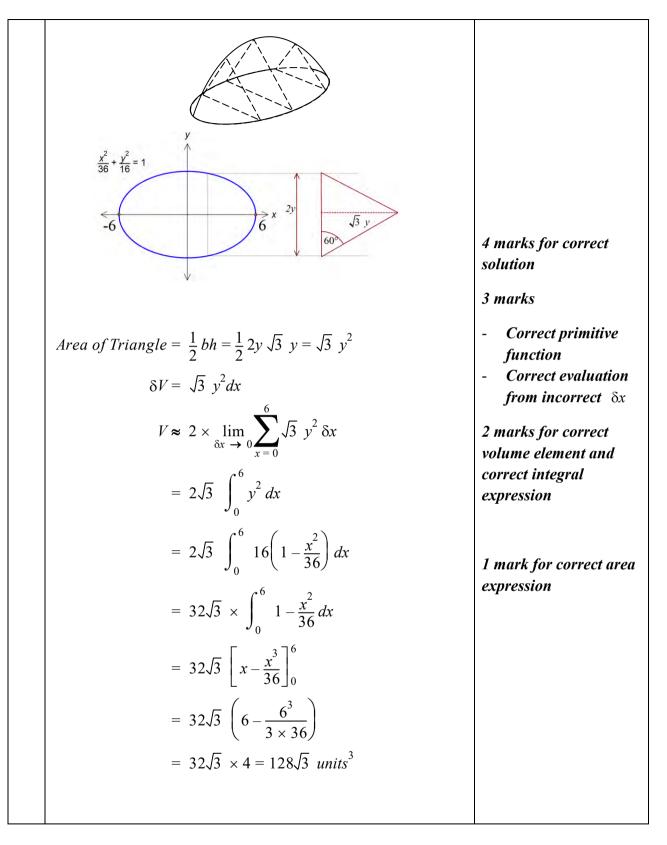
Question 15



Given that $0 \pm \phi = \pi$ and $0 \pm \pi$ show that the shord PO	
Given that $\theta + \phi = \frac{\pi}{2}$ and $\theta \neq \frac{\pi}{2}$, show that the chord PQ	
has the equation	
$ay = b(\cos\theta + \sin\theta)x - ab$	
$m = \frac{b(\cos \theta + \sin \theta)}{a(\sec \theta - \sec \phi)}$ $= \frac{b}{a} \left\{ \frac{\sin \theta - \tan \phi}{\cos \theta} - \frac{\sin \phi}{\cos \theta} \right\} \div \left\{ \frac{1}{\cos \theta} - \frac{1}{\cos \phi} \right\}$ $= \frac{b}{a} \left\{ \frac{\sin \theta \cos \phi - \sin \phi \cos \theta}{\cos \theta \cos \phi} \right\} \times \left\{ \frac{\cos \theta \cos \phi}{\cos \phi - \cos \theta} \right\}$ $= \frac{b}{a} \frac{\sin(\theta - \phi)}{a\cos \phi - \cos \theta}$ $nb \phi = \frac{\pi}{2} - \theta \qquad \therefore \qquad \cos \phi = \sin \theta$ $= \frac{b}{a} \frac{\sin(\theta - (\frac{\pi}{2} - \theta))}{\sin \theta - \cos \theta} = \frac{b\sin((-(\frac{\pi}{2} - 2\theta)))}{a(\sin \theta - \cos \theta)}$ $= \frac{b}{a} \frac{(-\cos 2\theta)}{a(\sin \theta - \cos \theta)}$ $= \frac{-b(\cos^2 \theta - \sin^2 \theta)}{a(\sin \theta - \sin \theta)}$ $= \frac{-b(\cos \theta - \sin \theta)(\cos \theta + \sin \theta)}{a(\sin \theta - \cos \theta)}$ $= \frac{b(\cos \theta + \sin \theta)}{a}$ $y - b\tan \theta = \frac{b(\cos \theta + \sin \theta)}{a}(x - a \sec \theta)$ $ay = b(\cos \theta + \sin \theta)x - ab$	4 marks – correct solution fully detailed. 3 marks – gradient equal to $m = \frac{b(\cos\theta + \sin\theta)}{a}$ 2 marks – some further simplification of gradient using complementary angles 1 mark – recognition and some use of complementary angles - initial partially simplified expression for gradient in terms of Θ and Φ

$ay = b(\cos\theta + \sin\theta)x - ab$ $x = 0 \qquad y = -b$ Therefore for all chords PQ $x = 0$, y will equal $-b$ irrespective of angle Θ ie. all chords will pass through the fixed point (0, $-b$) since b is a constant.	2 marks – correct solution fully explained. 1 mark – partial explanation.
$ay = b(\cos\theta + \sin\theta)x - ab$ $asymptote \ y = \pm \frac{b}{a}x$ $as \ \theta \rightarrow \frac{\pi}{2}$ $\cos\theta \rightarrow \cos\frac{\pi}{2} = 0$ $\sin\theta \rightarrow \sin\frac{\pi}{2} = 1$ $\therefore \qquad ay = b(0+1)x - ab$ $y = \frac{b}{a}x - b$ ie. parallel to asymptote	2 marks – correct solution – did require identification of equation to the asymptote $y = \pm \frac{b}{a}x$ 1 mark – correct equation without explanation.
$x_{1} + x_{2} \ge 2\sqrt{x_{1} x_{2}}$ $(x + y)^{2} \ge 0 \qquad \text{for all } x, y$ $x^{2} + 2xy + y^{2} \ge 0$ $x^{2} + y^{2} \ge 2xy$ $Let x \rightarrow \sqrt{x} \qquad y \rightarrow \sqrt{y}$ $\therefore (\sqrt{x})^{2} + (sty)^{2} \ge 2\sqrt{x} \sqrt{y}$ $x + y \ge 2\sqrt{xy}$	1 mark – a correct solution.

$\frac{x_1 + x_2 + x_3 + x_4}{4} \ge 4\sqrt{x_1 x_2 x_3 x_4}$ $x_1 + x_2 \ge 2\sqrt{x_1 x_2}$ $x_3 + x_4 \ge 2\sqrt{x_3 x_4}$ $\therefore (x_1 + x_2) + (x_3 + x_4) \ge 2\sqrt{x_1 x_2} + 2\sqrt{x_3 x_4}$ $\frac{(x_1 + x_2) + (x_3 + x_4)}{2} \ge \sqrt{x_1 x_2} + \sqrt{x_3 x_4}$ $\sqrt{x_1 x_2} + \sqrt{x_3 x_4} \ge 2\sqrt{\sqrt{x_1 x_2} \sqrt{x_3 x_4}}$ $\frac{(x_1 + x_2) + (x_3 + x_4)}{2} \ge 2 \times 4\sqrt{x_1 x_2 x_3 x_4}$ $\frac{(x_1 + x_2) + (x_3 + x_4)}{2} \ge 2 \times 4\sqrt{x_1 x_2 x_3 x_4}$	(a)	2 marks – correct solution 1 mark – correct to line (a)
$\frac{x_1 + x_2 + x_3 + x_4}{4} > 4\sqrt{x_1 x_2 x_3 x_4}$		
$let \ \frac{(x_1 + x_2 + x_3)}{3} = x_4$ $\frac{x_1 + x_2 + x_3}{4} + \frac{x_1 + x_2 + x_3}{12} > 4\sqrt{\frac{x_1 x_2 x_3 (x_1 + x_2 + x_3)}{3}}$ $\frac{4(x_1 + x_2 + x_3)}{12} \ge 4\sqrt{\frac{x_1 x_2 x_3 (x_1 + x_2 + x_3)}{3}}$		2 marks – correct solution.
$\frac{x_1 + x_2 + x_3}{3} \ge (x_1 x_2 x_3)^{\frac{1}{4}} \times \left(\frac{x_1 + x_2 + x_3}{3}\right)^{\frac{1}{4}}$	(<i>a</i>)	1 mark – correct to line (a)
$\left(\frac{x_1 + x_2 + x_3}{3}\right)^{\frac{3}{4}} \ge (x_1 x_2 x_3)^{\frac{1}{4}}$ $\left(\frac{x_1 + x_2 + x_3}{3}\right)^{\frac{3}{4}} \ge (x_1 x_2 x_3)$ $\left(\frac{x_1 + x_2 + x_3}{3}\right) \ge \sqrt[3]{(x_1 x_2 x_3)}$		



Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions

$I_n = \int_0^1 x(1-x^5)^n dx$	
$u = \left(1 - x^5\right)^n \qquad \qquad v' = x$	
$u' = -5nx^{4}(1-5x)^{n-1} \qquad v = \frac{x^{2}}{2}$	
$I_n = \left[\frac{x^2}{2} \times (1-x^5)n\right]_0^1 - \int -\frac{5n}{2} x^4 (1-5x)^{n-1} x^2 dx$	
$= 0 + \frac{5n}{2} \int_0^1 x^6 (1 - 5x)^{n-1} dx$	3 marks for correct solution
$= \frac{5n}{2} \int_0^1 (-x) (-x^5) (1-5x)^{n-1} dx$	2 marks for correct decomposition of I _n
$= \frac{5n}{2} \int_0^1 (-x) \{ (1-x^5) - 1 \} (1-x^5)^{n-1} dx$	<i>using</i> $x^{6} = = x\{(1-x)^{5}-1\}$
$= \frac{5n}{2} \int_0^1 (-x) (1-x^5)^n - (-x) (1-x^5)^{n-1} dx$	1 mark for correct
$= -\frac{5n}{2} \int_0^1 (x) (1-x^5)^n - (x) (1-x^5)^{n-1} dx$	application fo IBP to obtain
$I_n = -\frac{5n}{2}(I_n - I_{(n-1)})$	$\frac{5n}{2} \int_0^1 (1-5x)^{n-1} dx$
$I_n = -\frac{5n}{2} I_n + \frac{5n}{2} I_{n-1}$	
$I_n + \frac{5n}{2} I_n = \frac{5n}{2} I_{n-1}$	
$2I_n + 5n I_n = 5n I_{n-1}$	
$(2+5n)I_n = 5n I_{n-1}$	
$I_n=\frac{5n}{5n+2}I_{n-1}$	

Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions

	$\int_{0}^{1} (-x)(1-x^{5})^{n} - (-x)(1-x^{5})^{n-1} dx$ $I_{n} = \frac{5n}{5n+2} I_{n-1}$ $I_{n-1} = \frac{5(n-1)}{5(n-1)+2} I_{n-2} = \frac{5n-5}{5n-3} I_{n-2}$	
	$I_{n-2} = \frac{5(n-2)}{5(n-2)+2} I_{n-3} = \frac{5n-10}{5n-8} I_{n-4}$ $\therefore I_{n-4} = \frac{5n-15}{5n-13} I_{n-4} \dots$	2 marks for correct solution
b-ii	$I_2 = \frac{5 \times 2}{5 \times 2 + 2} I_1$ $I_1 = \frac{5}{5 + 2} I_0$	1 mark for correct expression of initial three terms
	$I_0 = \int_0^1 x(1-x)^0 dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}$	Or 1 mark for evaluation of I ₀
	$:: I_n = \frac{5n}{5n+2} \times \frac{5n+5}{5n-3} \times \frac{5n-10}{5n-8} \times \dots \times \frac{10}{12} \times \frac{5}{7} \times \frac{1}{2}$ $= \frac{5(n) \times 5(n-1) \times 5(n-2) \times \dots \times 5(2) \times 5(1) \times 1}{2 \times 7 \times 12 \times \dots \times (5n+2)}$	
	$= \frac{5^{n} n!}{2 \times 7 \times 12 \times \dots \times (5n+2)}$	
	$I_4 = \frac{5^4 \times 4!}{2 \times 7 \times 12 \times 17} = \frac{625}{119}$	1 mark for correct answer

Manly Selective Campus 2014 Mathematics Extension 2 Trial - solutions

Т

Т

	$\int \{f''(x) g(x) - f(x) g''(x)\} dx = f'(x) g(x) - f(x) g'(x)$	
	$\therefore \int \{f''(x) g(x) - f(x) g''(x)\} dx = \int f''(x) g(x) dx - \int f(x) g''(x) dx$	
	$\int f''(x) g(x) dx$ $u = g(x) \qquad v' = f''(x)$	2 marks for correct solution
	$u' = g'(x) \qquad v = f'(x)$ $\therefore \int f''(x) g(x) dx = g(x) f'(x) - \int f'(x) g'(x) dx \qquad ①$	1 mark for
С	$\int f(x) g''(x) dx - g(x) f'(x) - \int f'(x) g'(x) dx = 0$ $\int f(x) g''(x) dx$ $u = f(x) \qquad v' = g''(x)$	- Correct application of product rule to RHS
	$u' = f'(x) \qquad v = g'(x)$ $\therefore \int f(x) g''(x) dx = g'(x) f(x) - \int f'(x) g'(x) dx \qquad \textcircled{0}$	- Correct application of IBP to LHS
	$\therefore \int \{f''(x) g(x) - f(x) g''(x)\} dx = f'(x) g(x) - f(x) g'(x)$	

	$f(x) = \sin 3x \qquad g(x) = \cos 2x$ $f'(x) = 3\cos 3x \qquad g'(x) - 2\sin 2x$ $f''(x) = -9\sin 3x \qquad g''(x) = -4\cos 2x$ $\int f''(x) g(x) - f(x)g''(x) dx$ $= \int -9\sin 3x\cos 2x - \sin^3 x \times (-4\cos 2x) dx$ $= \int -5\sin 3x\cos 2x dx$	3 marks for correct solution
c-iii	$= -5 \int \sin 3x \cos 2x dx$ From the previous part (i) therefore $\int f''(x) g(x) - f(x)g''(x) dx = f'(x)g(x) - f(x) g'(x)$ $= -5 \int \sin 3x \cos 2x dx$	2 marks for substantial progress towards solution 1 mark for
	$= -5\{3\cos 3x\cos 2x - \sin 3x \times (-2\sin 2x)\} \\= -5\left[3\cos 3x\cos 2x + 2\sin 3x\sin 2x\right]_{0}^{\frac{\pi}{4}} \\= -5\left\{\left(3 \times -\frac{1}{\sqrt{2}} \times 0 + 2 \times \frac{1}{\sqrt{2}} \times 1\right) - (3 \times 1 \times 1 + 2 \times 0 \times 0)\right\} \\= -5\left(\frac{2}{\sqrt{2}} - 3\right) \\\therefore \int \sin 3x \cos 2x = \frac{1}{5} \times \left(3 - \frac{2}{\sqrt{2}}\right)$	relevant initial progress to a solution.

Or Method 2	
$\int_0^{\frac{\pi}{4}} \sin 3x \cos 2x dx$	
$\int \{f''(x) g(x) - f(x) g''(x)\} dx = f'(x) g(x) - f(x) g'(x)$	
$u = \sin 3x$ $v' = \cos 2x$	
$u' = 3\cos 3x \qquad \qquad v = \frac{1}{2}\sin 2x$	
$I = \frac{1}{2}\sin 3x\sin 2x - \frac{3}{2}\int \cos 3x\sin 2x$	
$u = \cos 3x$ $v' = \sin 2x$	
$u' = -3\sin 3x \qquad v = -\frac{1}{2}\cos 2x$	
$I_2 = -\frac{1}{2}\cos 3x \cos 2x - \frac{3}{2} \int \sin 3x \cos 2x dx$	
$= -\frac{1}{2}\cos 3x\cos 2x - \frac{3}{2}I$	
$I = \frac{1}{2}\sin 3x \sin 2x - \frac{3}{2} \left\{ -\frac{1}{2}\cos 3x\cos 2x - \frac{3}{2}I \right\}$	
$=\frac{1}{2}\sin 3x \sin 2x + \frac{3}{4}\cos 3x \cos 2x + \frac{9}{4}I$	
$-\frac{5}{4}I = \left[\frac{1}{2}\sin 3x \sin 2x + \frac{3}{4}\cos 3x \cos 2x\right]_{0}^{\frac{\pi}{4}}$	
$-5 I = \left[2\sin 3x \sin 2x + 3\cos 3x \cos 2x \right]_{0}^{\frac{\pi}{4}}$	
$-5I = \left(2 \times \frac{1}{\sqrt{2}} \times 1 + 3 \times -\frac{1}{\sqrt{2}} \times 0\right) - (2 \times 0 \times 0 + 3 \times 1 \times 1)$	
$I = \frac{-1}{5} \left(\frac{2}{\sqrt{2}} - 3 \right) = \frac{1}{5} \left(3 - \frac{2}{\sqrt{2}} \right)$	