Northern Beaches
Secondary College

Manly Selective Campus

2014 HSC -Trial Examination

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes.
- Working time -3 hours .
- Write using blue or black pen.
- Board-approved calculators and templates may be used.
- All necessary working should be shown in every question.
- Multiple choice questions to be completed on the special answer page.
- Each free response questions to be completed in separate booklets.
- If using more than one booklet per question, number booklet " 1 of \qquad

Total marks - 100 marks

- Attempt Questions 1-16
- Multiple Choice - answer question on answer sheet provided.
- Multiple Choice - 1 mark per question
- \quad Short Answer questions marks as indicated.

MULTIPLE CHOICE SECTION.

Answer the following questions on the answer sheet provided.

Q1. If $z=1+2 i$ and $\omega=3-i$ then $z-\bar{\omega}$ is:
$i-2$
$4+i$
$3 i-2$
$4+3 i$

Q2. The directrices of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ are :
A) $\quad x= \pm \frac{16 \sqrt{7}}{7}$
B) $\quad x= \pm \frac{\sqrt{7}}{16}$
C) $x= \pm \frac{16}{5}$
D) $x= \pm \frac{5}{16}$

Q3. Let α, β, γ be the roots of the equation $x^{3}+x-1=0$. The polynomial equation with roots $2 \alpha \beta, 2 \alpha \gamma, 2 \beta \gamma$ is:

A $\quad x^{3}+2 x^{2}+2=0$
B $\quad x^{3}-2 x^{2}-2=0$
C $\quad x^{3}-2 x^{2}-8=0$
D $\quad x^{3}-2 x^{2}+8=0$

Manly Selective Campus

Q4. If $f(x)=\frac{x(x-1)}{x-2}$, which of the following lines will be an asymptote to the graph $y=f(x)$?
A) $y=x+1$
B) $y=x-2$
C) $y=x-1$
D) $y=0$

Q5. $\quad \mathrm{P}(\mathrm{z})$ is a polynomial of degree 4 . Which one of the following statements must be false?
A $\quad \mathrm{P}(\mathrm{z})$ has no real roots.
B $\quad P(z)$ has 1 real root and 3 non-real roots
C $\quad P(z)$ has 2 real roots and 2 non-real roots
D $\quad P(z)$ has 4 non-real roots

Q6. For a certain function $y=f(x)$, the function $=f(|x|)$ is represented by :
A) A reflection of $y=f(x)$ in the y-axis
B) A reflection of $y=f(x)$ in the x-axis.
C) A reflection of $y=f(x)$ in the x axis for $y \geq 0$
D) A reflection of $y=f(x)$ in the y axis for $x \geq 0$

Q7. If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ is equal to :
A) 128ω
B) -128ω
C) $\quad 128 \omega^{2}$
D) $-128 \omega^{2}$

Manly Selective Campus

2014 HSC Mathematics Extension 2 Trial Examination

Q8. The diagram shows a trapezium with an interval of x units drawn parallel to and h units above the base.

An expression for x in terms of h is given by:
A) $x=5-\frac{h}{6}$
B) $x=8+\frac{h}{6}$
C) $x=12+\frac{h}{8}$
D) $x=8+\frac{h}{3}$

Q9. Given the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is e, then the eccentricity of the ellipse $\frac{x^{2}}{a^{2}+b^{2}}+\frac{y^{2}}{b^{2}}=1$ is :
A) \sqrt{e}
B) $\frac{1}{e}$
C) e
D) e^{2}

Q10. The roots of the polynomial $4 x^{3}+4 x-5=0$ and α, β, γ. The value of $(\alpha+\beta-3 \gamma)(b+\gamma-3 \alpha)(\alpha+\gamma-3 \beta)$ is
A) -80
B) $\quad-16$
C) 16
D) 80

FREE RESPONSE SECTION - answer each question in a separate booklet

Question 11 START A NEW BOOKLET

a) (i) Find the Cartesian equation of the locus of of the point z in the complex plane given that $\operatorname{Re}(z)=|z-2|$
(ii) Sketch the locus of z.
b) Let $P(z)$ be a point in the complex plane such that $|z-i|=\frac{1}{2}$. Find the maximum value of $\operatorname{Arg}(z)$
c) (i) Express $\sqrt{8+6 i}$ in the form $x+i y$ where $x>0$
(ii) Solve the equation $z^{2}+2(1+2 i) z-(11+2 i)=0$
d) Let $f(x)$ be a continuous function for $-5 \leq x \leq 10$ and let $g(x)=f(x)+2$.

If $\int_{-5}^{10} f(x) d x=4$, show that $\int_{-5}^{10} g(u) d u=34$
e) Use integration by parts to find $\int_{0}^{1} \frac{\cos ^{-1} x}{\sqrt{1+x}} d x$
a) (i) Prove that any equation of the form

$$
\begin{equation*}
x^{3}-m x^{2}+n=0 \tag{2}
\end{equation*}
$$

where $m, n \neq 0$ cannot have a triple zero.
(ii) If the equation has a double zero, find the relation between m and n
b) Use the table of standard integrals to find $\int \frac{2 x}{\sqrt{x^{4}+16}} d x$
c) The equation $2 x^{2}-k x+17=0$ has one zero, α, such that $\operatorname{Re}(\alpha)=\frac{5}{2}$.

If k is real, find the other zero of the equation and the value of k.
d) (i) Use the substitution $t=\tan \frac{x}{2}$ to prove

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+2 \sin x}=\frac{1}{2} \tag{3}
\end{equation*}
$$

(ii) Use the substitution $u=2 a-x$ to prove

$$
\begin{equation*}
\int_{0}^{2 a} f(x) d x=\int_{0}^{a}\{f(x)+f(2 a-x)\} d x \tag{2}
\end{equation*}
$$

(iii) Hence, or otherwise, evaluate

$$
\begin{equation*}
\int_{0}^{\pi} \frac{x}{2+2 \sin x} d x \tag{2}
\end{equation*}
$$

a)

X and Y are points on sides $B C$ and $A C$ of $\triangle A B C$.

$$
\angle A X C=\angle B Y C \text { and } B X=X Y
$$

(i) Copy the diagram into your answer booklet, clearly showing the above information. (Your diagram must be at least $1 / 4$ page in size)
(ii) Prove $A B X Y$ is a cyclic quadrilateral.
(iii) Hence, or otherwise, prove $A X$ bisects $\angle B A C$.

Question 13 continued on next page

2014 HSC Mathematics Extension 2 Trial Examination

Question 13 continueda

b) Consider the function $f(x)=|x|-1$ shown below.

Using diagrams, of at least $1 / 4$ page, sketch the following functions.
Show all essential features on your diagram.
(i) $y=1-f(x)$
(ii) $y=x . f(x)$
(iii) $\quad|y|=f(x)$
(iv) $y=e^{f(x)}$
(v) $y=\sqrt{f(x)}$

2014 HSC Mathematics Extension 2 Trial Examination

Question 14 START A NEW BOOKLET
a) (i) Show that $(2+i)$ is a root of $x^{3}-11 x+20=0$
(ii) Hence, or otherwise solve $x^{3}-11 x+20=0$
b) $\quad A, B, C$ and D are the vertices, in clockwise order, of a square.
(i) Given that A and C represent the points $2+2 i$ and $4+2 i$ respectively, find the coordinates of B and D.
(ii) If the square $A B C D$ is rotated anticlockwise through 90° about the origin, find the coordinates of the new position of the point A.
c) Consider chords of the hyperbola $x y=c^{2}$ which pass through the point $A(6 c, 4 c)$
(i) Find the equation of the chord passing through the points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$. Express your answer in general form.
(ii) Show that $4 p q+6=p+q$
(iii) Find the equation of the locus of the midpoints of the chords $P Q$.
d) (i) Find $\frac{d y}{d x}$ for the implicit function $x^{2}-y^{2}+x y+5=0$.
(ii) Find the x coordinate of the points of the curve $x^{2}-y^{2}+x y+5=0$ where the tangents have a zero gradient.
a) The diagram below shows the hyperbola $H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and the circle $C: x^{2}+y^{2}=a^{2}$

The point $\mathrm{P}(x, y)$ lies on the hyperbola H and the point T lies on the circle C and $\angle T O M=\theta$.
(i) Show that P has the coordinates $(a \sec \theta, b \tan \theta)$.
(ii) The point Q lies on the hyperbola and has coordinates $(a \sec \phi, b \tan \phi)$.

Given that $\theta+\phi=\frac{\pi}{2}$ and $\theta \neq \frac{\pi}{4}$, show that the chord $P Q$ has the equation

$$
\begin{equation*}
a y=b(\cos \theta+\sin \theta) x-a b \tag{4}
\end{equation*}
$$

(iii) Show that every chord $P Q$ passes through a fixed point and find the coordinates of that point.
(iv) Show that, as Θ approaches $\frac{\pi}{2}$, the chord $P Q$ approaches a line parallel to an asymptote.

Question 15 continued on next page

Question 15 continued

b) Let x_{1}, x_{2} be positive real numbers.
(i) Show that $x_{1}+x_{2} \geq 2 \sqrt{x_{1} x_{2}}$
(ii) Hence, or otherwise, prove

$$
\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}>\sqrt[4]{x_{1} x_{2} x_{3} x_{4}}
$$

where $x_{1}, x_{2}, x_{3}, x_{4}$ are positive real numbers.
(iii) By making the substitution $x_{4}=\frac{x_{1}+x_{2}+x_{3}}{3}$ into the result in part (ii), show that

$$
\frac{x_{1}+x_{2}+x_{3}}{3}>\sqrt[3]{x_{1} x_{2} x_{3}}
$$

where x_{1}, x_{2}, x_{3} are positive real numbers.
a) A solid has its base in the ellipse $E: \frac{x^{2}}{36}+\frac{y^{2}}{16}=1$

If each section perpendicular to the major axis is an equilateral triangle, show that the volume of the solid is $128 \sqrt{3}$ cubic units.
b) Let $I_{n}=\int_{0}^{1} x\left(1-x^{5}\right)^{n} d x$ where $n \geq 0$ is an integer
(i) Show that $I_{n}=\frac{5 n}{5 n+2} I_{n-1}$ for $n \geq 1$
(ii) Show that for $n \geq 1$

$$
\begin{equation*}
I_{n}=\frac{5^{n} n!}{2 \times 7 \times 12 \times \ldots \times(5 n+2)} \tag{2}
\end{equation*}
$$

(iii) Evaluate I_{4}
c) Let $f(x), g(x)$ be continuously differentiable functions.
(i) Prove $\int\left\{f^{\prime \prime}(x) g(x)-f(x) g^{\prime \prime}(x)\right\} d x=f^{\prime}(x) g(x)-f(x) g^{\prime}(x)$
(ii) Hence, or otherwise, evaluate $\int_{0}^{\frac{\pi}{4}} \sin 3 x \cos 2 x d x$
(State your answer in simplest exact form)

End of Examination

Northern Beaches Secondary College
Manly Selective Campus

2014 HSC Mathematics Extension 2 Trial Examination

Answer sheet for multiple choice questions 1-10
INSTRUCTIONS:

For Questions 1 to 10, place a cross in the box corresponding to your selected answer.
Student Number: \qquad

Question \#	(A)	(B)	(C)	(D)
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Question 1:

Q1	$\begin{aligned} z & =1+2 i \quad \omega=3-i \therefore \bar{\omega}=3+i \\ z-\bar{\omega} & =1+2 i-(3+i) \\ & =\mathrm{i}-2 \end{aligned}$	A
Q2	$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ Directrices: $\begin{aligned} & x= \pm \frac{a}{e}= \pm \frac{4}{e} \quad e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\frac{\sqrt{7}}{4} \\ & x= \pm \frac{16}{\sqrt{7}}= \pm \frac{16 \sqrt{7}}{7} \end{aligned}$	A
Q3	$\begin{array}{rlrl} x^{3}+x-1 & =0 \\ \alpha \beta \gamma & =1 \\ 2 \alpha \beta & =\frac{2 \alpha \beta \gamma}{\gamma}=\frac{2}{\gamma} \\ 2 \alpha \gamma & =\frac{2}{\beta} \\ 2 \beta \gamma & =\frac{2}{\alpha} \\ x & x & =\frac{2}{X} \\ \therefore \quad \begin{array}{ll} x \\ X^{3} \end{array} \\ & \\ 8+2 X^{2}-X^{3} & =0 \\ \therefore \quad x^{3}-2 x^{2}-8 & =0 \end{array}$	C

Q4	$f(x)=\frac{x(x-1)}{x-2}$	A
Q5	It is not possible to have one real root and 3 unreal roots - see diagram.	B
Q6	Resulting graph is reflection of positive x values in the y axis.	D
Q7	$\begin{aligned} \omega^{3}-1 & =0 \\ \therefore(\omega-1)\left(\omega^{2}+\omega+1\right) & =0 \quad \therefore\left(1+\omega+\omega^{2}\right)=0 \\ \left(1+\omega-\omega^{2}\right)^{7} & =\left(1+\omega+\omega^{2}-\omega^{2}-\omega^{2}\right)^{7} \\ & =\left(-2 \omega^{2}\right)^{7} \\ & =-128 \omega^{14}=-128\left(\omega^{12} \omega^{2}\right) \\ & =-128 \omega^{2} \end{aligned}$	D

Q9	$\begin{array}{rlrl} & & \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} & =1 \quad e^{2}=\left(\frac{b^{2}}{a^{2}}-1\right) \\ & \therefore & b^{2} & =a^{2}(e-12) \\ & \frac{x^{2}}{a^{2}+b^{2}}+\frac{y^{2}}{b^{2}} & =1 \therefore E^{2}=1-\frac{b^{2}}{a^{2}+b^{2}} \\ & \therefore & E & =\frac{a^{2}+b^{2}-b^{2}}{a^{2}+b^{2}}=\frac{a^{2}}{\left(a^{2}+b^{2}\right)} \\ & =\frac{a^{2}}{a^{2}+a^{2}\left(e^{2}-1\right)}=\frac{1}{e^{2}} \\ & & E & = \pm \frac{1}{e} \end{array}$	B
Q10	$\begin{aligned} & 4 x^{3}+4 x-5=0 \\ & \alpha+\beta+\gamma=0 \quad \alpha \beta \gamma=\frac{5}{4} \\ & \begin{aligned} &(\alpha+\beta-3 \gamma)(b+\gamma-3 \alpha)(\alpha+\gamma-3 \beta) \\ &=(\alpha+\beta+\gamma-4 \gamma)(\alpha+\beta+\gamma-4 \alpha)(\alpha+\beta+\gamma-4 \beta) \\ &=-64 \alpha \beta \gamma=-\frac{320}{4}=-80 \end{aligned} \end{aligned}$	A

Question 11

$a-i$	$\begin{aligned} \text { Let } z & =x+i y \rightarrow \operatorname{Re}(z)=x \\ \operatorname{Re}(z) & =\|z-2\| \\ \therefore \quad x & =\|z-2\| \\ x^{2} & =(x-2)^{2}+y^{2} \\ x^{2} & =x^{2}-4 x+4+y^{2} \\ y^{2} & =4(x-1) \end{aligned}$	$\begin{aligned} & 2 \text { marks - correct } \\ & \text { solution } x=\|z-2\| \\ & 1 \text { mark - recognising } \end{aligned}$
$a-i i$		1 mark correct solution with $(1,0)$
b	$\begin{array}{r} \|z-i\|=\frac{1}{2} \\ x^{2}+(y-1)^{2}=\frac{1}{4} \end{array}$ $\therefore \theta=\frac{\pi}{2}+\frac{\pi}{6}=\frac{2 \pi}{3}$	2 marks - correct solution fully demonstrated. 1 mark - diagram showing circle and triangle correctly

$c-i$	$\begin{aligned} \sqrt{8+6 i} & =x+i y \\ \therefore \quad x^{2}-y^{2} & =8 \\ 2 x y & =6 \Rightarrow y=\frac{3}{x} \\ x^{2}+\frac{9}{x^{2}} & =8 \\ x^{4}+9 & =8 x^{2} \\ x^{4}-8 x^{2}+9 & =0 \\ \left(x^{2}-9\right)\left(x^{2}+1\right) & =0 \\ \therefore \quad x & = \pm 3 \quad \text { nb } x \text { is real and } x>0 \\ x & =3 \therefore y=1 \\ \sqrt{8+6 \mathrm{i}} & =3+\mathrm{i} \end{aligned}$	2 marks correct solution 1 marks - correct except failure to recognise $x>0$
$c-i i$	$\begin{aligned} 0 & =z^{2}+2(1+2 i) z-(11+2 i) \\ z & =\frac{\left.-2(1+2 i) \pm \sqrt{4(1+2 i)^{2}+4 \times(11+2 i}\right)}{2} \\ & =\frac{-2(1+2 \mathrm{i}) \pm 2 \sqrt{1-4+4 \mathrm{i}+11+2 \mathrm{i}}}{2} \\ & =(-(1+2 \mathrm{i}) \pm \sqrt{8+6 \mathrm{i}}) \\ & =-1-2 \mathrm{i} \pm(3+\mathrm{i}) \\ z & =-1-2 i+3+i=2-i \text { or } z=-1-2 i-3-i=-4-3 i \end{aligned}$	2 marks - correct solution 1 mark - uses quadratic formula to arrive at non-simplified expression for z

d	$\begin{aligned} \int_{-5}^{10} f(x) d x & =4 \\ \therefore \int_{-5}^{10} g(x) d x & =\int_{-5}^{10} f(x)+2 d x=4+[2 x]_{-5}^{10} \\ & =4+30=34 \\ \text { if } u & =x \text { then } d u=d x \\ n b \int g(x) d x & =\int g(u) d u=34 \end{aligned}$	3 marks - correct solution - MUST include logic for $\int g(x) d x=\int g(u) d u$ 2 marks - correct except for explanation. 1 mark - expansion of $g(x)$ integral
\boldsymbol{e}	$\begin{aligned} & \int_{0}^{1} \frac{\cos ^{-1} x}{\sqrt{1+x}} d x \\ & u=\cos ^{-1} x \quad v^{\prime}=\frac{1}{\sqrt{1+x}} \\ & u^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \quad v=\frac{\sqrt{1+x}}{\frac{1}{2}} \\ & I=\left[\cos ^{-1} x \times 2(\sqrt{1+x})\right]_{0}^{1}+2 \int_{0}^{1} \frac{\sqrt{1+x}}{\sqrt{1+x} \sqrt{1-x}} d x \\ &=\left(0 \times 2 \sqrt{2}-2 \times \frac{\pi}{2} \times 1\right)+2 \int_{0}^{1}(1-x)^{-\frac{1}{2}} d x \\ &=-\pi+2 \times-2[\sqrt{1-x}]_{0}^{1} \\ &=-\pi-4(0-1) \\ &=-\pi+4 \end{aligned}$	3 marks - correct solution 2 marks - correct value for initial term ie. $-\boldsymbol{\pi}$ 1 mark - correct initial u, u^{\prime}, v and v '

Question 12

a	$\begin{aligned} f(x) & =x^{3}-m x^{2}+n \\ f^{\prime}(x) & =3 x^{2}-2 m x \\ f^{\prime \prime}(x) & =6 x-2 m=0 \\ \therefore \quad x & =\frac{m}{3} \\ \text { if } f^{\prime}\left(\frac{m}{3}\right) & =\frac{3 m^{2}}{9}-\frac{2 m^{2}}{3} \\ & =-\frac{m^{2}}{3} \neq 0 \text { if } m \neq 0 \end{aligned}$ therefore not possible to have triple root.	2 marks for correct solution 1 mark for $x=\frac{m}{3}$
b	$\begin{aligned} f(x) & =x^{3}-m x^{2}+n \\ f^{\prime}(x) & =3 x^{2}-2 m x \\ \therefore \quad x & =0 \text { or } x=\frac{2 m}{3} \\ x & =0 \text { not a solution for } f(x) \\ f\left(\frac{2 m}{3}\right) & =\frac{8 m^{3}}{27}-\frac{4 m^{3}}{9}+n \\ & =-\frac{4 m^{3}}{27}+n=0 \\ 4 m^{3} & =27 n \end{aligned}$	2 marks for correct solution 1 mark for $x=\frac{2 m}{3}$
c	$\begin{aligned} & \int \frac{2 x}{\sqrt{x^{4}+16}} d x \\ & \text { let } u=x^{2} \therefore d u=2 x d x \\ = & \int \frac{1}{\sqrt{u^{2}+4^{2}}} d u \\ = & \ln \left(u+\sqrt{u^{2}+16}\right)+C \\ = & \ln \left(x^{2}+\sqrt{x^{4}+16}\right)+C \end{aligned}$	2 marks for correct solution 1 mark for $\int \frac{d u}{\sqrt{u^{2}+1}}$

$d-i$	$\begin{aligned} 2 x^{2}-k x+17 & =0 \\ \alpha+\beta & =\frac{\mathrm{k}}{2} \\ \alpha & =\frac{5}{2}+i b \\ \beta & =\frac{5}{2}-i b \\ \therefore \quad \alpha+\beta & =5 \\ \therefore \quad \mathrm{k} & =10 \\ x & =\frac{k \pm \sqrt{k^{2}-136}}{4} \\ x & =\frac{10 \pm \sqrt{100-136}}{4} \\ & =\frac{5}{2} \pm \frac{3}{2} \mathrm{i} \end{aligned}$	2 marks for correct solution
$d-i i$	$\begin{aligned} & \int_{0}^{\frac{\pi}{2}} \frac{d x}{2+2 \sin x} \end{aligned}=\frac{1}{2} \quad \begin{aligned} t & =\tan \frac{x}{2} \therefore x=2 \tan ^{-1} t \\ d x & =\frac{2}{1+t^{2}} d t \quad \text { also } \sin x=\frac{2 t}{1+t^{2}} \\ x & =0 \quad t=0 \\ x & =\frac{\pi}{2} t=1 \\ = & \int_{0}^{1} \frac{d t}{t^{2}+2 t+1} \\ = & \int_{0}^{1} \frac{d t}{1+2+t^{2}} \\ = & \frac{2 t}{1+t^{2}} \\ = & -1\left[\frac{1}{t+1}\right]_{0}^{1}=1-\frac{1}{2}=\frac{1}{2} \end{aligned}$	2 marks for correct expression for transform. integral 1 mark for correct simplified expression for $\frac{1}{2+2 \sin x}^{\text {in }}$ terms of t

	$\int_{0}^{\pi} \frac{x}{2+2 \sin x} d x$ $=\int_{0}^{\frac{\pi}{2}} \frac{x}{2+2 \sin x}+\frac{\pi-x}{2+2 \sin (\pi-x)} d x$ $=\int_{0}^{\frac{\pi}{2}} \frac{x}{2+2 \sin x}+\frac{\pi-x}{2+2 \sin (x)} d x$ 2 marks for correct solution 1 mark for correct transformation of integral $=\int_{0}^{\frac{\pi}{2}} \frac{\pi}{2+2 \sin x} d x$ $=\pi \int_{0}^{\frac{\pi}{2}} \frac{d x}{2+2 \sin x}$ $=\pi \times \frac{1}{2}=\frac{\pi}{2}$

Manly Selective Campus
 2014 Mathematics Extension 2 Trial - solutions

Question 13

$a-i$		1 mark - correct diagram with all given details
$a-i i$	$A B X Y$ is a cyclic quadrilateral. $\begin{array}{ll} \text { Let } \angle A X C=\angle B Y C=\alpha & \text { given } \\ \angle B X Z=180^{\circ}-\alpha & \text { Straight line } \\ \angle A Y B=180^{\circ}-\alpha & \text { Straight line } \\ \therefore & \angle B X Z=\angle A Y B \end{array}$ $\therefore A B X Y$ is a cyclic quad.	2 marks correct solution including all supporting statements. 1 mark - correct proof to two angles equal

$a-i i i$	prove $A X$ bisects $\angle B A C$	3 marks - fully explained correct solution 2 marks - correct logic but incomplete reasoning 1 mark connection made between 3 equal angles
$b-i$	$y=1-f(x)$	1 mark - correct shape and points labelled
$b-i i$	$y=x . f(x)$	2 marks - correct shape and points labelled 1 mark - correct shape - no or incorrect corresponding points

$b-i i i$		2 marks - correct shape and points labelled 1 mark - correct shape - no or incorrect corresponding points
$b-i v$	$y=e^{f(x)}$	2 marks - correct shape and points labelled 1 mark - correct shape - no or incorrect corresponding points
$b-v$		2 marks - correct shape and points labelled and shape above and below $y=1$ 1 mark - correct shape - no or incorrect corresponding points

Q14

$a-i$	$\begin{aligned} x^{3}-11 x+20 & =0 \\ x & =2+i \\ \therefore \quad(2+i)^{3}-11(2+i)+20 & =0 \\ 8+12 \mathrm{i}+6 \mathrm{i}^{2}+\mathrm{i}^{3}-22-11 \mathrm{i}+20 & =0 \\ (8-6-22+20)+(12 \mathrm{i}-\mathrm{i}-11 \mathrm{i}) & =0 \\ 0 & =0 \end{aligned}$ therefore $(\mathrm{z}+i)$ is a root of the equation.	3 marks for correct solution 2 marks for $\begin{aligned} P(2+\mathrm{i}) & =0 \\ \therefore P(2-\mathrm{i}) & =0 \end{aligned}$ 1 mark for $P(2+i)=0$
$a-i i$	Since all coefficients are real then the conjugate is also a root ie; $(\mathrm{z}-i)$. therefore $x^{2}-2 \operatorname{Re}(x)+\|x\|^{2}$ is a factor.	
$b-i$	Find the coordinates of $B(3+3 \mathrm{i})$ and $\mathrm{D}(3+\mathrm{i})$	2 marks - correct solution 1 mark - correct B or C
$b-i i$	$\begin{aligned} A & =2+2 \mathrm{i} \\ \mathrm{i} A & =\mathrm{i}(2+2 \mathrm{i})=-2+2 \mathrm{i} \end{aligned}$	1 mark - correct answer.

$c-i$	$\begin{aligned} m & =\frac{\frac{c}{p}-\frac{c}{q}}{c p-c q}=\frac{q-p}{p q} \times \frac{1}{p-q}=-\frac{1}{p q} \\ y-\frac{c}{p} & =-\frac{1}{p q}(x-c p) \\ y p q-c q & =-x+c p \\ x+y p q & =(p+q) c \end{aligned}$ Given the chord passes through $A(6 c, 4 c)$	2 marks for correct solution 1 mark for correct gradient
$c-i i$	Given the chord passes through $A(6 c, 4 c)$ $\begin{aligned} x+y p q & =(p+q) c \\ 6 c+4 c p q & =(p+q) c \\ 6+4 p q & =(p+q) \end{aligned}$	1 mark - correct solution
$c-i i i$	$\begin{aligned} & x=\frac{c(p+q)}{2} \quad y=\frac{c(p+q)}{2 p q}=\frac{x}{p q} \\ & \therefore \quad \begin{aligned} x & =p q \\ \text { also } 4 p q+6 & =p+q \\ y & =\frac{c(4 p q+6)}{2 p q} \\ y p q & =\frac{c}{2}(4 p q+6) \\ y \times \frac{x}{y} & =\frac{c}{2}\left(\frac{4 x}{y}+6\right) \\ x y & =2 c x+3 c y \\ (x-3 c) y & =2 c x \\ y & =\frac{2 c x}{x-3 c} \end{aligned} \end{aligned}$	2 marks for correct solution 1 mark for correct x or y coordinate of midpoint.

x	$=\frac{c(p+q)}{2}$
x	$=p q$
y	$y=\frac{c(p+q)}{2 p q}=\frac{x}{p q}$
also $4 p q+6$	$=p+q$
x	$=\frac{c}{2}(4 p q+6)$
x	$=\frac{2 c x}{y}+3 c$
$x-3 c$	$=\frac{2 c x}{y}$
y	$=\frac{2 c x}{x-3 c}$
$C H E C K$	
$y p q$	$=\frac{c}{2}(4 p q+6)$
$y \times \frac{x}{y}$	$=\frac{c}{2}\left(\frac{4 x}{y}+6\right)$
$x y$	$=2 c x+3 c y$
$(x-3 c) y$	$=2 c x$
y	$=\frac{2 c x}{x-3 c}$
x	

$d-i i$	$\begin{aligned} x^{2}-y^{2}+x y+5 & =0 \\ 2 x-\frac{2 y d y}{d x}+y+\frac{x d y}{d x} & =0 \\ (x-2 y) \frac{d y}{d x} & =-(2 x+y) \\ \frac{d y}{d x} & =-\frac{2 x+y}{x-2 y} \end{aligned}$	2 marks for correct solution 1 mark for correct derivative expression
	Zero gradient at $-2 x=y$ $\begin{aligned} x^{2}-y^{2}+x y+5 & =0 \\ x^{2}-4 x^{2}-2 x^{2}+5 & =0 \\ -5 x^{2}+5 & =0 \\ x & = \pm 1 \\ \therefore-2 x & =y \\ x & =1 \quad y=-2 \\ x & =-1 \quad y=2 \\ & \\ & \\ & \\ \substack{\text { Local Minimum } \\ (-1,2)} & \begin{array}{c} \text { Local Maximum } \\ (1),-2) \end{array} \end{aligned}$	2 marks for correct solution 1 mark ofr correct equation from $\frac{d y}{d x}=0$

Question 15

Given that $\theta+\phi=\frac{\pi}{2}$ and $\theta \neq \frac{\pi}{2}$, show that the chord $P Q$ has the equation	4 marks - correct solution fully detailed. 3 marks-gradient equal to $m=\frac{b(\cos \theta+\sin \theta)}{a}$ 2 marks - some further simplification of gradient using complementary angles 1 mark - recognition and some use of complementary angles - initial partially simplified expression for gradient in terms of $\boldsymbol{\theta}$ and $\boldsymbol{\phi}$

$\begin{aligned} a y & =b(\cos \theta+\sin \theta) x-a b \\ x & =0 \quad y=-b \end{aligned}$ Therefore for all chords PQ $x=0, y$ will equal $-b$ irrespective of angle Θ ie. all chords will pass through the fixed point ($0,-b$) since b is a constant.	2 marks - correct solution fully explained. 1 mark - partial explanation.
$\begin{aligned} a y & =b(\cos \theta+\sin \theta) x-a b \\ \text { asymptote } y & = \pm \frac{b}{a} x \\ \text { as } \theta & \rightarrow \frac{\pi}{2} \\ \cos \theta & \rightarrow \cos \frac{\pi}{2}=0 \\ \sin \theta & \rightarrow \sin \frac{\pi}{2}=1 \\ \therefore \quad a y & =b(0+1) x-a b \\ \therefore & =\frac{b}{a} x-b \end{aligned}$ ie. parallel to asymptote	2 marks - correct solution - did require identification of equation to the asymptote $y= \pm \frac{b}{a} x$ 1 mark - correct equation without explanation.
$\begin{aligned} x_{1}+x_{2} & \geq 2 \sqrt{x_{1} x_{2}} \\ (x+y)^{2} & \geq 0 \quad \text { for all } x, y \\ x^{2}+2 x y+y^{2} & \geq 0 \\ x^{2}+y^{2} & \geq 2 x y \\ \text { Let } x & \rightarrow \sqrt{x} \quad y \rightarrow \sqrt{y} \\ \therefore(\sqrt{x})^{2}+(\text { sty } y)^{2} & \geq 2 \sqrt{x} \sqrt{y} \\ x+y & \geq 2 \sqrt{x y} \end{aligned}$	1 mark - a correct solution.

	$\begin{align*} \frac{x_{1}+x_{2}+x_{3}+x_{4}}{4} & \geq \sqrt[4]{x_{1} x_{2} x_{3} x_{4}} \\ x_{1}+x_{2} & \geq 2 \sqrt{x_{1} x_{2}} \\ x_{3}+x_{4} & \geq 2 \sqrt{x_{3} x_{4}} \\ \therefore\left(x_{1}+x_{2}\right)+\left(x_{3}+x_{4}\right) & \geq 2 \sqrt{x_{1} x_{2}}+2 \sqrt{x_{3} x_{4}} \tag{a}\\ \frac{\left(x_{1}+x_{2}\right)+\left(x_{3}+x_{4}\right)}{2} & \geq \sqrt{x_{1} x_{2}}+\sqrt{x_{3} x_{4}} \\ \sqrt{x_{1} x_{2}}+\sqrt{x_{3} x_{4}} & \geq 2 \sqrt{\sqrt{x_{1} x_{2}} \sqrt{x_{3} x_{4}}} \\ \therefore \frac{\left(x_{1}+x_{2}\right)+\left(x_{3}+x_{4}\right)}{2} & \geq 2 \times \sqrt[4]{x_{1} x_{2} x_{3} x_{4}} \\ \frac{\left(x_{1}+x_{2}\right)+\left(x_{3}+x_{4}\right)}{4} & \geq \sqrt[4]{x_{1} x_{2} x_{3} x_{4}} \end{align*}$	$\begin{aligned} & 2 \text { marks - correct } \\ & \text { solution } \\ & 1 \text { mark - correct to } \\ & \text { line (a) } \end{aligned}$
	$\begin{align*} \frac{x_{1}+x_{2}+x_{3}+x_{4}}{4} & >\sqrt[4]{x_{1} x_{2} x_{3} x_{4}} \\ \text { let } \frac{\left(x_{1}+x_{2}+x_{3}\right)}{3} & =x_{4} \\ \frac{x_{1}+x_{2}+x_{3}}{4}+\frac{x_{1}+x_{2}+x_{3}}{12} & >\sqrt[4]{\frac{x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right)}{3}} \\ \frac{4\left(x_{1}+x_{2}+x_{3}\right)}{12} & \geq \sqrt[4]{\frac{x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right)}{3}} \\ \frac{x_{1}+x_{2}+x_{3}}{3} & \geq\left(x_{1} x_{2} x_{3}\right)^{\frac{1}{4}} \times\left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)^{\frac{1}{4}} \tag{a}\\ \left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)^{\frac{3}{4}} & \geq\left(x_{1} x_{2} x_{3}\right)^{\frac{1}{4}} \\ \left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)^{3} & \geq\left(x_{1} x_{2} x_{3}\right) \\ \left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)^{2} & \geq \sqrt[3]{\left(x_{1} x_{2} x_{3}\right)} \end{align*}$	2 marks - correct solution. 1 mark - correct to line (a)

$\begin{aligned} \text { Area of Triangle } & =\frac{1}{2} b h=\frac{1}{2} 2 y \sqrt{3} y=\sqrt{3} y^{2} \\ \delta V & =\sqrt{3} y^{2} d x \\ V & \approx 2 \times \lim _{\delta x \rightarrow 0} \sum_{x=0}^{6} \sqrt{3} y^{2} \delta x \\ & =2 \sqrt{3} \int_{0}^{6} y^{2} d x \\ & =2 \sqrt{3} \int_{0}^{6} 16\left(1-\frac{x^{2}}{36}\right) d x \\ & =32 \sqrt{3} \times \int_{0}^{6} 1-\frac{x^{2}}{36} d x \\ & =32 \sqrt{3}\left[x-\frac{x^{3}}{36}\right]_{0}^{6} \\ & =32 \sqrt{3}\left(6-\frac{6^{3}}{3 \times 36}\right) \\ & =32 \sqrt{3} \times 4=128 \sqrt{3} \text { units }^{3} \end{aligned}$	4 marks for correct solution 3 marks - Correct primitive function - Correct evaluation from incorrect δx 2 marks for correct volume element and correct integral expression 1 mark for correct area expression

$$
\begin{aligned}
& I_{n}=\int_{0}^{1} x\left(1-x^{5}\right)^{n} d x \\
& u=\left(1-x^{5}\right)^{n} \quad v^{\prime}=x \\
& u^{\prime}=-5 n x^{4}(1-5 x)^{n-1} \quad v=\frac{x^{2}}{2} \\
& I_{n}=\left[\frac{x^{2}}{2} \times\left(1-x^{5}\right) n\right]_{0}^{1}-\int-\frac{5 n}{2} x^{4}(1-5 x)^{n-1} x^{2} d x \\
& =0+\frac{5 n}{2} \int_{0}^{1} x^{6}(1-5 x)^{n-1} d x \\
& =\frac{5 n}{2} \int_{0}^{1}(-x)\left(-x^{5}\right)(1-5 x)^{n-1} d x \\
& =\frac{5 n}{2} \int_{0}^{1}(-x)\left\{\left(1-x^{5}\right)-1\right\}\left(1-x^{5}\right)^{n-1} d x \\
& =\frac{5 n}{2} \int_{0}^{1}(-x)\left(1-x^{5}\right)^{n}-(-x)\left(1-x^{5}\right)^{n-1} d x \\
& =-\frac{5 n}{2} \int_{0}^{1}(x)\left(1-x^{5}\right)^{n}-(x)\left(1-x^{5}\right)^{n-1} d x \\
& I_{n}=-\frac{5 n}{2}\left(I_{n}-I_{(n-1)}\right) \\
& I_{n}=-\frac{5 n}{2} I_{n}+\frac{5 n}{2} I_{n-1} \\
& I_{n}+\frac{5 n}{2} I_{n}=\frac{5 n}{2} I_{n-1} \\
& 2 I_{n}+5 n I_{n}=5 n I_{n-1} \\
& (2+5 n) I_{n}=5 n I_{n-1} \\
& I_{n}=\frac{5 n}{5 n+2} I_{n-1} \\
& 3 \text { marks for correct } \\
& \text { solution } \\
& 2 \text { marks for correct } \\
& \text { decomposition of } I_{n} \\
& \text { using } \\
& x^{6}==x\left\{(1-x)^{5}-1\right\} \\
& 1 \text { mark for correct } \\
& \text { application fo IBP to } \\
& \text { obtain } \\
& \frac{5 n}{2} \int_{0}^{1}(1-5 x)^{n-1} d x
\end{aligned}
$$

$b-i i$	$\begin{aligned} & \int_{0}^{1} \\ & I_{n}=\frac{5 n}{5 n+2} I_{n-1} \\ & I_{n-1}=\frac{5(n-1)}{5(n-1)+2} I_{n-2}=\frac{5 n-5}{5 n-3} I_{n-2} \\ & I_{n-2}=\frac{5(n-2)}{5(n-2)+2} I_{n-3}=\frac{5 n-10}{5 n-8} I_{n-4} \\ & \therefore I_{n-4}=\frac{5 n-15}{5 n-13} I_{n-4} \ldots \\ & I_{2}=\frac{5 \times 2}{5 \times 2+2} I_{1} \\ & I_{1}=\frac{5}{5+2} I_{0} \\ & I_{0}=\int_{0}^{1} x(1-x)^{0} d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2} \\ & \therefore \\ & I_{n}=\frac{5 n}{5 n+2} \times \frac{5 n+5}{5 n-3} \times \frac{5 n-10}{5 n-8} \times \ldots \times \frac{10}{12} \times \frac{5}{7} \times \frac{1}{2} \\ &=\frac{5(n) \times 5(n-1) \times 5(n-2) \times \ldots \times 5(2) \times 5(1) \times 1}{2 \times 7 \times 12 \times \ldots \times(5 n+2)} \\ &=\frac{5^{n} n!}{2 \times 7 \times 12 \times \ldots(5 n+2)} \end{aligned}$	2 marks for correct solution 1 mark for correct expression of initial three terms Or 1 mark for evaluation of I_{0}
	$I_{4}=\frac{5^{4} \times 4!}{2 \times 7 \times 12 \times 17}=\frac{625}{119}$	1 mark for correct answer

	$\begin{align*} & \int\left\{f^{\prime \prime}(x) g(x)-f(x) g^{\prime \prime}(x)\right\} d x=f^{\prime}(x) g(x)-f(x) g^{\prime}(x) \\ & \therefore \int\left\{f^{\prime \prime}(x) g(x)-f(x) g^{\prime \prime}(x)\right\} d x=\int f^{\prime \prime}(x) g(x) d x-\int f(x) g^{\prime \prime}(x) d x \\ & \int f^{\prime \prime}(x) g(x) d x \\ & u=g(x) \quad v^{\prime}=f^{\prime \prime}(x) \\ & u^{\prime}=g^{\prime}(x) \quad v=f^{\prime}(x) \\ & \therefore \int f^{\prime \prime}(x) g(x) d x=g(x) f^{\prime}(x)-\int f^{\prime}(x) g^{\prime}(x) d x \\ & \int f(x) g^{\prime \prime}(x) d x \\ & u=f(x) \\ & u^{\prime}=f^{\prime}(x) \\ & \therefore \int f(x) g^{\prime \prime}(x) d x=g^{\prime}(x) f(x)-\int f^{\prime}(x) g^{\prime}(x) d x \tag{2}\\ & \text { (1) } \quad v=g^{\prime \prime}(x) \\ & g(x) f^{\prime}(x)-\int f^{\prime}(x) g^{\prime}(x) d x-\left\{g^{\prime}(x) f(x)-\int f^{\prime}(x) g^{\prime}(x) d x\right\} \\ & =g(x) f^{\prime}(x)-g^{\prime}(x) f(x) \\ & \therefore \int\left\{f^{\prime \prime}(x) g(x)-f(x) g^{\prime \prime}(x)\right\} d x=f^{\prime}(x) g(x)-f(x) g^{\prime}(x) \end{align*}$	2 marks for correct solution 1 mark for - Correct application of product rule to RHS - Correct application of IBP to LHS

$c-i i i$	From the previous part (i) therefore $\begin{aligned} &\left.\begin{array}{l} \\ \\ \\ f^{\prime \prime}(x) g(x)-f(x) g^{\prime \prime}(x) d x=f^{\prime}(x) g(x)-f(x) g^{\prime}(x) \\ = \end{array}\right)-5 \int \sin 3 x \cos 2 x d x \\ &=-5\{3 \cos 3 x \cos 2 x-\sin 3 x \times(-2 \sin 2 x)\} \\ &=-5[3 \cos 3 x \cos 2 x+2 \sin 3 x \sin 2 x]_{0}^{\frac{\pi}{4}} \\ &=-5\left\{\left(3 \times-\frac{1}{\sqrt{2}} \times 0+2 \times \frac{1}{\sqrt{2}} \times 1\right)-(3 \times 1 \times 1+2 \times 0 \times 0)\right\} \\ &=-5\left(\frac{2}{\sqrt{2}}-3\right) \\ & \therefore \int \sin 3 x \cos 2 x=\frac{1}{5} \times\left(3-\frac{2}{\sqrt{2}}\right) \end{aligned}$	3 marks for correct solution 2 marks for substantial progress towards solution 1 mark for relevant initial progress to a solution.

Or Method 2 $\begin{aligned} & \int_{0}^{\frac{\pi}{4}} \sin 3 x \cos 2 x d x \\ & \int^{f}\left\{f^{\prime \prime}(x) g(x)-f(x) g^{\prime \prime}(x)\right\} d x=f^{\prime}(x) g(x)-f(x) g^{\prime}(x) \\ & u=\sin 3 x \quad v^{\prime}=\cos 2 x \\ & u^{\prime}=3 \cos 3 x \quad v=\frac{1}{2} \sin 2 x \\ & I=\frac{1}{2} \sin 3 x \sin 2 x-\frac{3}{2} \int \cos 3 x \sin 2 x \\ & u=\cos 3 x \quad v^{\prime}=\sin 2 x \\ & u^{\prime}=-3 \sin 3 x \quad v=-\frac{1}{2} \cos 2 x \\ & I_{2}=-\frac{1}{2} \cos 3 x \cos 2 x-\frac{3}{2} \int \sin 3 x \cos 2 x d x \\ & =-\frac{1}{2} \cos 3 x \cos 2 x-\frac{3}{2} I \\ & I=\frac{1}{2} \sin 3 x \sin 2 x-\frac{3}{2}\left\{-\frac{1}{2} \cos 3 x \cos 2 x-\frac{3}{2} I\right\} \\ & =\frac{1}{2} \sin 3 x \sin 2 x+\frac{3}{4} \cos 3 x \cos 2 x+\frac{9}{4} I \\ & -\frac{5}{4} I=\left[\frac{1}{2} \sin 3 x \sin 2 x+\frac{3}{4} \cos 3 x \cos 2 x\right]_{0}^{\frac{\pi}{4}} \\ & -5 I=[2 \sin 3 x \sin 2 x+3 \cos 3 x \cos 2 x]_{0}^{\frac{\pi}{4}} \\ & -5 I=\left(2 \times \frac{1}{\sqrt{2}} \times 1+3 \times-\frac{1}{\sqrt{2}} \times 0\right)-(2 \times 0 \times 0+3 \times 1 \times 1) \\ & I=\frac{1}{5}\left(\frac{2}{\sqrt{2}}-3\right)=\frac{1}{5}\left(3-\frac{2}{\sqrt{2}}\right) \end{aligned}$	

