NORTHERN BEACHES SECONDARY COLLEGE

MANLY SELECTIVE CAMPUS

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

2019

Mathematics Extension II

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black pen
- Write your Student Number at the top of each page
- Answer Section I- Multiple Choice on Answer Sheet provided
- Answer Section II - Free Response in a separate booklet for each question.
- NESA approved calculators and templates may be used.

Section I Multiple Choice

- 10 marks
- Attempt all questions
- Allow about 15 minutes for this section

Section II - Free Response

- 90 marks
- Each question is of equal value
- All necessary working should be shown in every question.
- Allow about 2 hours 45 minutes for this section

Weighting: 30\%

Section 1: Multiple Choice (10 marks)

Indicate your answer on answer sheet provided.

Allow approximately 15 minutes for this section.

Q1. A mass of 5 kg moves in a horizontal circle of radius 1.5 metres at a uniform angular speed of 4 radians per second. What is the centripetal force required for this motion?
A. 40 N
B. 80 N
C. 120 N
D. 160 N

Q2. Find $\int \frac{d x}{x^{2}-6 x+13}$
A. $\frac{1}{2} \tan ^{-1}\left(\frac{x-3}{2}\right)+C$
B. $\frac{1}{3} \tan ^{-1}\left(\frac{x+3}{2}\right)+C$
C. $\frac{1}{2} \tan ^{-1}\left(\frac{x-2}{3}\right)+C$
D. $\frac{1}{3} \tan ^{-1}\left(\frac{x+2}{3}\right)+C$

Q3. What is the equation to the chord of contact to the ellipse $9 x^{2}+16 y^{2}=144$ from the point $(8,6)$?
A. $3 x+4 y=6$
B. $3 x+6 y=2$
C. $9 x+16 y=144$
D. $6 x+8 y=12$

Q4. In the Argand diagram $A B C D$ is a square and the vertices A and B correspond the complex numbers ω and z.

Which complex number corresponds to the diagonal $B D$?
A. $(\omega-z)(1-i)$
B. $(\omega-z)(1+i)$
C. $(z-\omega)(1+i)$
D. $(\omega+z)(1-i)$

Q5. The polynomial $P(x)=x^{3}+2 x^{2}-5 x+7$ has roots α, β and γ.
Which polynomial has roots $\alpha+1, \beta+1$ and $\gamma+1$?
A. $x^{3}-x^{2}+6 x+13=0$
B. $x^{3}-x^{2}-6 x+13=0$
C. $x^{3}-x^{2}-6 x-13=0$
D. $x^{3}+x^{2}-6 x-13=0$

Q6. What is an expression for the constant B such that $P(x)=(x-\alpha)^{2} Q(x)+A x+B$?
A. $B=P(\alpha)$
B. $\quad B=P^{`}(\alpha)$
C. $B=P^{`}(\alpha)-\alpha P(\alpha)$
D. $B=P(\alpha)-\alpha P^{`}(\alpha)$

Q7. Let ω be a complex cube root of -1 . The value of $\left(1+\omega-\omega^{2}\right)^{3}$ is:
A. 1
B. -1
C. 8
D. -8

Q8. The equation $\frac{x}{y}+\frac{y}{x}=2$ is an implicit function in x and y. Which graph represents this implicit function?
A

B

C

D

Q9. The diagram below shows the circle $x^{2}+y^{2}=a^{2}$.

Solid A is formed by rotating the area enclosed by the circle around the line $x=2 a$.

The volume of solid A is V_{A}
Another solid, Solid B, is formed by rotating the area enclosed by the circle around the line $x=4 a$.

The volume of solid B is V_{B}

Which of the following gives the correct volume of solid B ?
A. $V_{B}=2 V_{A}$
B. $V_{B}=4 V_{A}$
C. $V_{B}=8 V_{A}$
D. $V_{B}=16 V_{A}$

Q 10 . The graph below shows $y=f(u)$.

The function $g(x)$ is defined as $g(x) \int_{0}^{x} f(u) \mathrm{du}$.
Which of the statements below is true?
A. $g(0)=0$ and $g^{\prime}(0)=0$
B. $g(0)>0$ and $g^{\prime}(2)=0$
C. $g^{\prime \prime}(0)=0$ and $g^{\prime}(2)=0$
D. $\quad g^{\prime \prime}>0$ and $g^{\prime}(2)=0$

Section II Total Marks is 90

Attempt Questions 11 - 16.

Allow approximately $\mathbf{2}$ hours \& $\mathbf{4 5}$ minutes for this section.
Answer all questions, starting each new question in a new booklet.
All necessary working must be shown in each and every question.

Question 11. - Start New Booklet

a. \quad Express $z=2-2 \sqrt{3} i$ in modulus-argument form 2 ii Hence, otherwise, evaluate z^{5} in simplest Cartesian form.
b. Draw on an Argand diagram, the region defined by $\operatorname{Im}(2 z+i z) \geq 2$
[Your diagram must be at least one third of a page in size and must be neat and fully labelled.]
c. Let $x=\alpha$ be a root of the polynomial $P(x)=x^{4}+A x^{3}+B x^{2}+A x+1$ where A and B are real numbers and $4 A^{2} \neq(2+B)^{2}$
i. Show that α cannot be 0,1 or -1 . 3
ii. Show that $P\left(\frac{1}{\alpha}\right)=0$

Question 11 continues on the next page.

Question 11 continued.

d. From an external point T, tangents are drawn to a circle with centre O, touching the circle at P and $Q . \quad \angle P T Q$ is acute.

The diameter $P B$ produced meets the tangent $T Q$ at A.
Let $\angle A Q B=\theta$

(The diagram has been reproduced in your answer booklet. Answer this question on that page)
i) Show that $\angle P T Q=2 \theta \quad 2$
ii) Prove that $\triangle P B Q \| \Delta T O Q$
iii) Hence, show that $B Q . O T=2(O P)^{2}$

End of Question 11

a. A vehicle of mass 3000 kg is travelling around a horizontal circular road of radius 100 m at a speed of $7.5 \mathrm{~m} / \mathrm{sec}$. Determine the centripetal force acting on the vehicle.
b. i Write $\frac{2 x^{2}+3 x-3}{x^{2}-1}$ in the form $A+\frac{B}{x-1}+\frac{C}{x+1}$.
ii Hence find $\int \frac{2 x^{2}+3 x-3}{x^{2}-1} d x$.
c. The diagram shows the curve $f(x)$. The curve $f(x)$ is asymptotic to $y=1$. The y-intercept is $(0,2)$.

This curve $f(x)$ has been reproduced in your answer booklet.
Sketch the following curves showing all intercepts and asymptotes.
i) $\quad y=f(|x|)$
ii) $y=\sqrt{f(x)}$
iii) $y=\frac{1}{f(x)}$
iv) $\quad|y|=f(x)$
v) $y=\ln [f(x)]$

End of Question 12

a. Let $P(x)=x^{4}+m x^{3}+36 x^{2}-35 x+n$ where m and n are real numbers.

It is given that $P(5)=0$ and $P\left(\frac{1-\sqrt{3} i}{2}\right)=0$.
i) Show that $x^{2}-x+1$ is a factor of $P(x)$.
ii) Find m and n.
b. In the diagram below, $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ The tangent at P cuts the x-axis at A and the y-axis at B.

i. Derive the parametric equation of the tangent at P in any form, and find the coordinates of A and B in parametric form.
ii. Show that $\frac{P A}{P B}=\tan ^{2} \theta$
c. A string is 0.5 m long and will break if an object of mass exceeding 40 kg is hung vertically from it. An object of mass 2 kg is attached to one end of the string and it revolves around a horizontal circle with uniform speed. (Let gravity $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$)
i. Find the greatest angular velocity which may be imparted to the object without breaking the string
ii. Find the tangential speed at which this occurs.

Question 13 continues on the next page.

Question 13 continued.

d. The region bounded by the curve $\mathrm{y}=\ln x, x=1$ and $y=1$ is shaded in the diagram below. The region is rotated about the line $y=2$ to form a solid.

Find the volume of the solid formed using the method of cylindrical shells.
a. Given $t=\tan x$,
i. Show that $\frac{d x}{d t}=\frac{1}{1+t^{2}}$.
ii Use the substitution $t=\tan x$ to find $\int \frac{d x}{1+\sin 2 x}$
b. The variable points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$, where $p>q>0$ lie on the hyperbola $x y=c^{2} . M$ is the midpoint of $P Q$.

Given $p-q=4$, find the equation of the locus of M.

Question 14 continued

c. The diagram below shows a particle P of mass M kilograms suspended from a fixed point O by an inextensible string of length L metres.

P moves in a circle with centre directly below and distance h from O with uniform angular speed ω radians $/ \mathrm{sec}$.

The string makes an angle θ with the vertical and the acceleration due to gravity is $g m s^{-2}$ 。
i. Prove that the period of this motion is $2 \pi \sqrt{\frac{5}{g}}$
ii. By considering the forces acting on the particle show that $\cos \theta=\frac{g}{L \omega^{2}}$.
iii. The angular speed of the particle is increased to μ radians/sec. At that speed the string makes an angle 2θ with the vertical.

Show that $\mu^{2}=\frac{g L \omega^{4}}{2 g^{2}-L^{2} \omega^{4}}$.

End of Question 14

a. Find
i $\int x e^{2 x} d x$
ii $\int_{0}^{\frac{\pi}{2}} \sin \theta(1-\cos \theta)^{2} d \theta$
b. i. Find the non-real solutions for of the equation $z^{7}-1=0 \quad 2$
ii Express $z^{7}-1$ as a product of linear and quadratic factors with real coefficients. $\quad 2$
iii Hence prove that $\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{5 \pi}{7}=\frac{1}{2}$
c. The diagram below shows the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

The point $P\left(x_{1}, y_{1}\right)$ is a point on the hyperbola.
The points Q and R lie on the asymptotes of the hyperbola such that $\angle P Q O=\angle P R O=90^{\circ}$. The eccentricity of the hyperbola is e.
Show that $P Q \times P R=\frac{b^{2}}{e^{2}}$.

End of Question 15

a. A wedge is cut out of a circular cylinder of radius 5 cm . One plane is perpendicular to the axis of the cylinder. The other intersects the first plane at an angle of 30° along the diameter of the cylinder.

The cross section is a triangle with its base perpendicular to the diameter.
Find the volume of the shape.

$$
\begin{aligned}
& \int \frac{\ln (1+x)}{1+x^{2}} d x=\int \ln (1+\tan \theta) d \theta \\
& \text { let } x=\tan \theta \Rightarrow d x=\sec ^{2} \theta \\
& \begin{aligned}
\therefore \quad I & =\int \frac{\ln (1+\tan x)}{1+\tan ^{2} x} \sec ^{2} \theta d \theta \\
& =\int \frac{\ln (1+\tan x)}{\sec ^{2} \theta} \sec ^{2} \theta d \theta
\end{aligned}
\end{aligned}
$$

b. i Show

$$
=\int \ln (1+\tan \theta) d \theta
$$

c. The integral I_{n} is defined as $I_{n}=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} d x \quad$ (for integers $n \geq 1$).
i. Show that $\int \frac{x}{\left(1+x^{2}\right)^{n}} d x=\frac{-1}{2(n-1)} \times \frac{1}{\left(1+x^{2}\right)^{n-1}}+C$
ii. By considering $\frac{1}{\left(1+x^{2}\right)^{n}}=\frac{1+x^{2}}{\left(1+x^{2}\right)^{n}}-\frac{x^{2}}{\left(1+x^{2}\right)^{n}}$, or otherwise,
show that $I_{n}=\frac{2 n-3}{2(n-1)} I_{n-1}+\frac{1}{(n-1) \times 2^{n}}$ for $n \geq 2$.
iii. Show that $I_{n}>\frac{1}{2^{n}}$ for $n \geq 1$.

MSC HSC Mathematics X2 Solutions
Multiple Choice
Q1.C Q2. A Q3.A Q4.A Q5.B Q6D* Q7C Q8B Q9A Q10.C

Q1	$\begin{aligned} F & =m r \omega^{2} \\ & =5 \times 1.5 \times 4^{2} \\ & =120 \mathrm{~N} \end{aligned}$	C
Q2	$\begin{aligned} & \int \frac{d x}{x^{2}-6 x+13} \\ & =\int \frac{d x}{x^{2}-6 x+9+4} \\ & =\int \frac{d x}{(x-3)^{2}+2^{2}} \\ & =\frac{1}{2} \tan ^{-1} \frac{x-3}{2}+C \end{aligned}$	A
Q3	$\begin{aligned} 9 x^{2}+16 y^{2} & =144 \\ \frac{x^{2}}{16}+\frac{y^{2}}{9} & =1 \\ \frac{x x_{0}}{16}+\frac{y y_{0}}{9} & =1 \\ \frac{8 x}{16}+\frac{6 y}{9} & =1 \\ \frac{x}{2}+\frac{2 y}{3} & =1 \\ 3 x+4 y & =6 \end{aligned}$	A
Q4	$\begin{aligned} \overrightarrow{B D} & =\overrightarrow{B A}+\overrightarrow{A D} \\ \overrightarrow{B A} & =\omega-z \\ \overrightarrow{A B} & =z-\omega \\ \overrightarrow{A D} & =\overrightarrow{i A B}=i(z-\omega) \\ \overrightarrow{B D} & =(\omega-z)+i(z-\omega) \\ & =(\omega-z)(i-i) \end{aligned}$	A

MSC HSC Mathematics X2 Solutions

Q5	$\begin{aligned} & X=x+1 \Rightarrow X-1 \\ & (X-1)^{3}+2(X-1)^{2}-5(X-1)+7 \\ & =X^{3}-3 X^{2}+3 X-1+2 X^{2}-4 X+2 \\ & -5 X+5+7 \\ & \quad=X^{3}-X^{2}-6 X+13 \\ & =x^{3}-x^{2}-6 x+13 \end{aligned}$	B
Q6	$\begin{aligned} & P(x)=(x-\alpha)^{2} Q(x)+A x+B \\ & \text { let } x=\alpha \\ & P(\alpha)=A \alpha+B \\ & P^{\prime}(x)=2(x-\alpha) Q(x)+(x-\alpha)^{2} Q^{\prime}(x)+A \\ & P^{\prime}(\alpha)=A \\ & P(\alpha)-\alpha P^{\prime}(\alpha)=A \alpha+B-\alpha A \\ & B=P(\alpha)-\alpha P^{\prime}(\alpha) \end{aligned}$	D
Q7	$\begin{array}{r} z^{3}+1=0 \\ (z+1)\left(1-z+z^{2}\right)=0 \end{array}$ if ω is a complex root $\begin{aligned} & 1-\omega+\omega^{2}=0 \\ & 1-\omega=-\omega^{2} \\ &\left(1+\omega-\omega^{2}\right)^{3} \\ &=(1+\omega+1-\omega)^{3} \\ &=(2)^{3} \\ &=8 \end{aligned}$	C
Q8	$\begin{aligned} \frac{x}{y}+\frac{y}{x} & =2 \\ x^{2}+y^{2} & =2 x y \\ x^{2}-2 x y+y^{2} & =0 \\ (x-y)^{2} & =0 \\ y & =x \\ x & \neq 0 ; y \neq 0 \end{aligned}$	B

Short solution
 Taking slices of width Δy perpendicular to axis of rotation:

$V_{A}=\pi \int_{-a}^{a}\left[(2 a+x)^{2}-(2 a-x)^{2}\right] d y$
$=\pi \int_{-a}^{a}(8 a x) d y$
$=4 \pi^{2} a^{3} u n i t s^{3}$ (given)
$V_{B}=\pi \int_{-a}^{a}\left[(4 a+x)^{2}-(4 a-x)^{2}\right] d y$
$=\pi \int_{-a}^{a}(16 a x) d y$ $=2 \times V_{A}$
$=8 \pi^{2} a^{3}$ units 3
Long solution
Voume $=\pi\left(R^{2}-r^{2}\right)$ height
$=\pi(R+r)(R-r) \delta y$
$R=4 a+x$
$r=4 a-x$
$V=\pi 8 a \times 2 x \delta y$
$=16 \pi a \int_{-a}^{a} x d y$
$=2 \times 16 \pi a \int_{0}^{a} \sqrt{a^{2}-y^{2}} d y$
$=32 \pi a \int_{0}^{a} \sqrt{a^{2}-y^{2}} d y$
let $y=a \sin \theta d y=a \cos \theta$
$y=a \Rightarrow a \sin \theta=a \Rightarrow \theta=\frac{\pi}{2}$
$=32 \pi a \int_{0}^{\frac{\pi}{2}} \operatorname{acos} \theta \operatorname{acos} \theta d \theta$
$=32 \pi a^{3} \int_{0}^{\frac{\pi}{2}} \frac{1}{2}(\cos 2 \theta+1) d \theta$
$=16 \pi a^{3}\left[\frac{1}{2} \sin 2 \theta+\theta\right]_{0}^{\frac{\pi}{2}}$
$=16 \pi a^{3}\left\{\left(\frac{1}{2} \sin \pi+\frac{\pi}{2}\right)-(0+0)\right\}$
$=8 \pi^{2} a^{3}$

MSC HSC Mathematics X2 Solutions

MSC HSC Mathematics X2 Solutions Question 11

ai	$\begin{aligned} \|z\| & =\sqrt{2^{2}=(-2 \sqrt{3})^{2}} \\ & =\sqrt{16} \\ & =4 \\ \operatorname{Arg}(z) & =-\tan ^{-1}\left(\frac{2 \sqrt{3}}{2}\right) \\ & =-\tan ^{-1}(\sqrt{3}) \\ & =-\frac{\pi}{3} \\ \therefore \quad z & =4 \operatorname{cis}\left(-\frac{\pi}{3}\right) \end{aligned}$	2 marks-correct solution 1 mark-correct mod or arg
aii	$\begin{aligned} z^{5} & =\left[4 \operatorname{cis}\left(-\frac{\pi}{3}\right)\right]^{5} \\ & =4^{5} \operatorname{cis}\left(-\frac{5 \pi}{3}\right) \\ & =1024\left(\cos \left(-\frac{5 \pi}{3}\right)+i \sin \left(-\frac{5 \pi}{3}\right)\right) \\ & =1024\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \\ & =1024\left(\frac{1}{2}+i \sqrt{\frac{3}{2}}\right) \\ & =512+512 \sqrt{3} i \end{aligned}$	1 mark-correct answer
b	$\begin{aligned} \text { let } z & =x+i y \\ 2 z+i z & =2 x+2 \dot{y}+i y+i^{2} y \\ & =2 x-y+i(x+2 y) \\ I m(2 z+z) & =x+2 y \\ \therefore \quad x+2 y & \geq 2 \end{aligned}$	2 marks-correct solution 1 mark-correct inequality but incorrect region
ci	$P(0)=1 \therefore \alpha \neq 0$ $P(1)=2+2 A+B$ $P(-1)=2-2 A+B$ if $\alpha=1$ then $P(1)=0$ if $\alpha=-1$ then $P(-1)=0$ then $2+B=-2 A$ $(2+B)^{2}=(2 A)^{2}$ $(2+B)^{2}=(-2 A)^{2}$ $(2+B)^{2}=4 A^{2}$ $(2+B)^{2}=4 A^{2}$ but $(2+B)^{2} \neq 4 A^{2}$ but $(2+B)^{2} \neq 4 A^{2}$ $\therefore \quad \alpha \neq-1$ $\therefore \quad \alpha \neq 1$	3 marks -correct solution 2 marks-ONLY one error in correct progress to proof 1 mark- ONLY one correct root shown

MSC HSC Mathematics X2 Solutions

cii	$\begin{aligned} & \quad P\left(\frac{1}{\alpha}\right)=\left(\frac{1}{\alpha}\right)^{4}+A\left(\frac{1}{\alpha}\right)^{3}+B\left(\frac{1}{\alpha}\right)^{2}+A\left(\frac{1}{\alpha}\right)+1 \\ & =\frac{1}{\alpha^{4}}+\frac{A}{\alpha^{3}}+\frac{B}{\alpha^{2}}+\frac{A}{\alpha}+1 \\ & =\frac{1}{\alpha^{4}}\left(A \alpha+B \alpha^{2}+A \alpha^{3}+\alpha^{4}\right) \\ & \text { and } P(\alpha)=0 \text { ie } A \alpha+B \alpha^{2}+A \alpha^{3}+\alpha^{4}=0 \\ & \therefore P\left(\frac{1}{\alpha}\right)=\frac{1}{\alpha^{4}} \times 0 \\ & = \end{aligned}$	1 mark correct solution	
di	$\begin{aligned} \angle B P Q & =\theta(\text { altemate segment }) \\ \angle B O Q & =2 \theta(\angle \text { centre is } 2 x \angle \text { at circumference }) \\ \angle P O Q+\angle B O Q & =180^{\circ}(\text { supplementary }) \\ \angle T P O & =\angle T Q O=90^{\circ} \text { (tangent } \perp \text { radii) } \\ \angle P T Q+\angle t P O Q & =180^{\circ}(\angle \text { sum } \triangle) \\ \angle P T Q & =\angle B O Q=2 \theta \end{aligned}$	2 marks-correct solution 1 mark- one correctly used relevant theorem in a progress to proof.	
dii	$\begin{aligned} & \triangle P B Q \triangle T O Q \\ & \angle P Q B=90^{\circ}(\angle \text { in semicircle) } \\ & \angle O Q T=90^{\circ} \text { (tangent } \perp \text { radii) } \\ \therefore & \angle P Q B=\angle O Q T \\ & \triangle P O Q \text { isosceles(equal radii) } \\ & \angle T O Q=\frac{180-2 \theta}{2}(\text { base } \angle \text { of Isos } \triangle) \\ & =90-\theta \\ & \angle P B Q=90-\theta(\angle \operatorname{sum} \triangle) \\ \therefore & \angle T O Q=\angle P B Q \\ \therefore & \triangle P B Q \\| \triangle T O Q \text { (equiangular) } \end{aligned}$	2 marks-correct solution 1 mark- one correctly used relevant theorem in a progress to proof.	
diii	$\begin{aligned} & \frac{O T}{B P}=\frac{O Q}{B Q}(\text { corresponding sides in equal ratı }) \\ & B P=O P+O B(\text { diameter-given }) \\ & \therefore \quad O P=O B=O Q \text { (equa radii) } \\ & \text { hence } \\ & \frac{O T}{\frac{O P}{2 O P}}=\frac{O P}{B Q} \\ & B Q . O T=2 O P . O P \\ &=2(O P)^{2} \end{aligned}$	2 marks-correct solution 1 mark- one correctly used relevant theorem in a progress to proof.	

Question 13

$$
P(x)=(x-5)\left(x^{2}-x+1\right)(x+a)
$$

$$
x=0
$$

$$
n=-5 a
$$

$$
x=1
$$

$1+m+36-35+n=-4-4 a$

$$
\begin{aligned}
P(x) & =x^{4}+m x^{3}+36 x^{2}-35 x+n \\
P(x) & =(x-5)(x-z)(-\bar{z})\left(x^{2}+a x+b\right) \\
(x-z)(x-\bar{z}) & =x^{2}-2 \operatorname{Re}(z)+(|z|)^{2} \\
z & =\frac{1}{2}-\frac{\sqrt{3}}{2} i \\
\mid z & =\sqrt{\frac{1}{4}+\frac{3}{4}}=1 \\
p(x) & =(x-5)\left(x^{2}-2 \times \frac{1}{2} x+(1)^{2}\right)(a x+b) \\
P(x) & =(x-5)\left(x^{2}-x+1\right)(x+b)
\end{aligned}
$$

Method 1. Substitution.

Let $x=1$

$\mathrm{L} H S=1 \times-4 \times(1-\beta)=4 \beta-4$
$R H S=1+m+36-35+n$
$\therefore \quad 4 \beta-6=m+n(1)$
Let $x=0$
$\mathrm{L} H S=5 \beta$
$R H S=n$
$\therefore \quad 5 \beta=n(2)$
Let $x=1$
$\mathrm{L} H S=3 \times-6 \times(-1-\beta)$
$=18+18 \beta$
$R H S=1-m+36+35+n$
$=72+n-m$
$\therefore 18 \beta-54=n-m(3)$
(1) + (3)
$22 \beta-60=2 n$
Subst (2)
$22 b^{2}-60=10 \beta$
$12 \beta=60$
$\beta=5$
$\therefore \quad n=5 \beta=25$
$4 \times 5-6=25+m$ from (1)
$m=-11$

1 mark -

MSC HSC Mathematics X2 Solutions
013

c^{-1}	String will break above $\begin{aligned} T & =m g=40 \times 9.8=392 N \\ F & =m r \omega^{2} \\ 392 & =\frac{1}{2} \times 2 \times \omega^{2} \\ \omega & =\sqrt{392}=14 \sqrt{2} \mathrm{~m} / \mathrm{s} \cong 19.8 \end{aligned}$	2 marks
$c^{\prime \prime}$	$\begin{aligned} v & =r \omega \\ v & =\frac{1}{2} \times 14 \sqrt{2} \\ =7 \sqrt{2} \mathrm{~m} / \mathrm{s} & =9.9 \end{aligned}$	1 mark
13^{-8}	 8) $\longleftarrow 2 \pi$	4 marks 3 marks 2 marks 1 mark - Correct δV

$$
\begin{aligned}
\delta V & =2 \pi r . h \cdot w \\
& =2 \pi(2-y)(x-1) \delta y \\
y & =\ln x \Rightarrow x=e^{y} \\
\delta V & =2 \pi(2-y)\left(e^{y}-1\right) \delta y \\
V & \cong \lim _{\delta y \rightarrow 0} \sum_{0}^{1} 2 \pi(2-y)\left(e^{y}-1\right) \delta y \\
V & =2 \pi \int_{0}^{1}(2-y)\left(e^{y}-1\right) d y \\
& =2 \pi \int_{0}^{1} 2 e^{y}-2-y e^{y}+y d y \\
& =2 \pi\left\{\left[2 e^{y}-2 y+\frac{y^{2}}{2}\right]_{0}^{1}-\int y e^{y} d y\right\}
\end{aligned}
$$

Let $m=y e^{y}$

$$
\frac{d m}{d y}=e^{y}+y e^{y}
$$

$$
\therefore \quad y e^{y}=\int e^{y}+y e^{y} d y
$$

$$
\int y e^{y} d y=y e^{y}-\int e^{y d y}=y e^{y}-e^{y}+C
$$

$V=2 \pi\left[2 e^{y}-2 y+\frac{y^{2}}{2}-y e^{y}+e^{y}\right]_{0}^{1}=2 \pi$
$=2 \pi\left\{\left(3 e-2+\frac{1}{2}-e\right)-(3-0-0-0)\right\}$
$=2 \pi\left(2 e-\frac{9}{2}\right)$
$=(4 e-9) \pi u^{3}$

MSC HSC Mathematics X2 Solution
Question 14

ai	$\begin{aligned} & \frac{d t}{d x}=\sec ^{2} x \\ = & 1+\tan ^{2} x \\ = & 1+t^{2} \\ \therefore & \frac{d x}{d t}=\frac{1}{1+t^{2}} \end{aligned}$	1 mark correct solution
aii	$\begin{aligned} & \int\left(\frac{1}{1+\left[\frac{2 t}{1+t^{2}}\right]} \times\left(\frac{d t}{1+t^{2}}\right)\right. \\ = & \int \frac{1+t^{2}}{1+t^{2}+2 t} \times \frac{d t}{1+t^{2}} \\ = & \int \frac{d t}{(1+t)^{2}} \\ = & \int(1+t)^{-2} \mathrm{dt} \\ = & -(1+t)^{-1}+c \\ = & \frac{1}{1+\tan x}+c \end{aligned}$	3 marks-correct solution 2 marks- correct substitutions and integration with ONLY one error in correct progress to answer. 1 mark-correct substitions
b	$\begin{array}{rlrl} M_{P Q} & \left(\frac{c(p+q)}{2}, \frac{c}{2}\left(\frac{1}{p}+\frac{1}{q}\right)\right) & y & =\left(\frac{1}{2}\left(\frac{c p+c p}{p q}\right)\right. \\ =\left(\frac{c(p+q)}{2}, \frac{c}{2} \frac{(p+q)}{p q}\right) & & =\frac{c}{2}\left(\frac{p+q}{p q}\right) \\ p-q=4 \Rightarrow p=4+q & & =\frac{c}{2}\left(\frac{4+2 q}{(4+q) q}\right) \\ x & =\frac{c}{2}(4+2 q) & & \frac{2 c}{2}\left(\frac{2+q}{(4+q) q}\right) \\ x & =c(2+q) & & =\frac{c\left(\frac{x}{c}\right)}{\left(\frac{x}{c}+2\right)\left(\frac{x}{c}-\right.} \\ \frac{2 x}{c} & =2 p-2 & & =\frac{x}{\left(\frac{x}{c}\right)^{2}}-4 \\ \frac{x}{c} & =2=q & & =\frac{x}{x}-2 \end{array}$	3 marks- correct solution 2 marks- one error in correct progress to locus using given info without QS 1 mark-one correct use of given info simplify x or y

MSC HSC Mathematics X2 Solutions

ci	$\begin{array}{rlrl} r & =h \tan \theta & \text { perı } d & =\frac{2 \pi}{\omega} \\ T \sin \theta & =M(h \tan \theta) \omega^{2} & & =\frac{2 \pi}{\sqrt{g}} \\ T \cos \theta & =M g & & =2 \pi \\ \therefore \quad \tan \theta & =\frac{h \tan \theta \omega^{2}}{g} & \\ \omega^{2} & =\frac{g}{h} & \\ \omega & =\sqrt{\frac{g}{h}} & \end{array}$	2 marks-correct solution 1 mark-correct equations for motion
cii	$\begin{array}{rlrl} T \cos \theta & =M g & \cos \theta & =\frac{M g}{\frac{m r \omega^{2}}{\sin \theta}} \\ \cos \theta=\frac{M g}{T} & & =\frac{M g \sin \theta}{m r \omega^{2}} \\ T \sin \theta & =M r \omega^{2} & & \frac{g \sin \theta}{r \omega^{2}} \\ T & =\frac{m r \omega^{2}}{\sin \theta} & & \frac{g\left(\frac{r}{\mathrm{~L}}\right)}{r \omega^{2}} \operatorname{since} \sin \theta=\frac{r}{\mathrm{~L}} \\ & =\frac{g}{\mathrm{~L} \omega^{2}} \end{array}$	3 marks- correct solution 2 marks- correct use of equations of motion to create equation in cos and significant relevant progress to expression 1 mark-demonstration of use of equations of motion to obtain required result
ciii	$\begin{aligned} \cos 2 \theta & =2 \cos ^{2} \theta-1 \\ \cos 2 \theta & =\frac{g}{L \mu^{2}} \\ \therefore \quad \frac{g}{L \mu^{2}} & =2\left(\frac{g}{L \omega^{2}}\right)-{ }^{2}-1 \text { from part ii } \\ & =\frac{2 g^{2}}{\mathrm{~L}^{2} \omega^{4}}-1 \\ & =\frac{2 g^{2} L^{2} \omega^{4}}{\mathrm{~L}^{2} \omega^{4}} \\ \therefore \quad \mu^{2} & =\frac{g L^{2} \omega^{4}}{\mathrm{~L}\left(2 g^{2}-\mathrm{L}^{2} \omega^{4}\right)} \\ & =\frac{g \mathrm{~L} \omega^{4}}{2 g^{2}-\mathrm{L}^{2} \omega^{4}} \end{aligned}$	3 marks- correct solution 2 marks- correct use of both cos equations and significant relevant progress to expression 1 mark-recognise the of use of both cos result to create/equate

MSC HSC Mathematics X2 Solutions

$a 1$	$\begin{aligned} & \int x e^{2 x} d x \\ & u=x \quad v^{\prime}=e^{2 x} \\ & u^{\prime}=1 \quad v=\frac{1}{2} e^{2 x} \\ & I=\frac{x}{2} e^{2 x}-\frac{1}{2} \int e^{2 x} d x \\ & \\ & =\frac{x}{2} e^{2 x}-\frac{1}{4} e^{2 x}+C \end{aligned}$	3 marks - correct solution 2 marks - one error 1 mark - correct separation into parts
$a-11$	$\begin{aligned} & \int_{0}^{\frac{\pi}{2}} \sin \theta(1-\cos \theta)^{2} d \theta \\ & =\int_{0}^{\frac{\pi}{2}} \sin \theta\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta \\ & =\int_{0}^{\frac{\pi}{2}} \sin \theta-2 \sin \theta \cos \theta+\sin \theta \cos ^{2} \theta d \theta \\ & =\int_{0}^{\frac{\pi}{2}} \sin \theta-\sin 2 \theta+\sin \theta \cos ^{2} \theta d \theta \\ & =\left[-\cos \theta+\frac{\cos 2 \theta}{2}-\frac{\cos ^{3} \theta}{3}\right]_{0}^{\frac{\pi}{2}} \\ & {[} \\ & =\left[-\cos \frac{\pi}{2}+\frac{\cos \pi}{2}-\frac{\cos ^{3 \pi}}{3}\right]-\left[-\cos 0+\frac{\cos 0}{2}-\frac{\cos ^{3} 0}{3}\right] \\ & =\left[-\frac{1}{2}+0\right]-\left[-1+\frac{1}{2}-\frac{1}{3}\right] \\ & =-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}=\frac{1}{3} \end{aligned}$ Better version	3 marks

MSC HSC Mathematics X2 Solutions

,	$\begin{aligned} & \text { let } u=1-\cos \theta \\ & d u=\sin \theta d \theta \\ & \theta=\frac{\pi}{2} \Rightarrow u=1 \\ & \theta=0 \Rightarrow u=0 \\ & \int_{0}^{1} u^{2} d u \\ & =\left[\frac{u^{3}}{3}\right]_{0}^{1}=\frac{1}{3} \end{aligned}$	
b-1		2 marks - all solutions correct 1 mark -
$b-i n$	$\begin{aligned} & P(z)=(z-1)\left(z-\omega_{1}\right)\left(z-\omega_{2}\right)\left(z-\omega_{3}\right)\left(z-\omega_{4}\right)\left(x-\omega_{3}\right)\left(z-\omega_{6}\right) \\ & P(z)=(z-1)\left(z-\omega_{1}\right)\left(z-\omega_{6}\right)\left(z-\omega_{2}\right)\left(z-\omega_{3}\right)\left(z-\omega_{3}\right)\left(z-\omega_{4}\right) \\ & =(z-1)\left(z-\omega_{1}\right)\left(z-\omega_{1}\right)\left(z-\omega_{2}\right)\left(z-\omega_{2}\right)\left(z-\omega_{3}\right)\left(z-\bar{\omega}_{3}\right) \\ & =(z-1)\left(z^{2}-2 \operatorname{Re}\left(\omega_{1}\right) z+\left(\left\|\omega_{1}\right\|\right)^{2}\right)\left(x^{2}-2 \operatorname{Re}\left(\omega_{2}\right) z+\left(\left\|\omega_{2}\right\|\right)^{2}\right)\left(x^{2}-2 \operatorname{Re}\left(\omega_{3}\right) z\right] \\ & =(z-1)\left(z^{2}-2 \cos \frac{2 \pi}{7} \theta z+1\right)\left(z^{2}-2 \cos \frac{4 \pi}{7} \theta z+1\right)\left(z^{2}-2 \cos \frac{6 \pi}{7} \theta z+1\right) \end{aligned}$	
	2marks 1 mark	

2-manko - coneal sothtiar
1-mark - one enor

MSC HSC Mathematics X2 Solutions

	Marks
$\left(1+x^{2}\right)^{n} \leq 2^{n} \Rightarrow 1 \geq 1$	
$\cdots{ }^{1+x^{2}} 2^{n} \cdots \cdots \cdots$	1 Mark
$\int^{1} 1 d x \geqslant 1^{4} d x$	Sufficient
$\int_{0}^{1+x^{2}} \frac{1}{0} \frac{1}{2^{n}}$	relevant progess
$\geqslant 1[x]^{\prime}$	uing a valid
	method.
$I_{n} \geqslant \frac{1}{2^{n}}(1-0) \geq \frac{1}{2^{n}}$	
\cdots	
	.
	\ldots
-	

