

NORTHERN BEACHES SECONDARY COLLEGE

MANLY SELECTIVE CAMPUS

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

2019

Mathematics Extension II

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- Write your Student Number at the top of each page
- Answer Section I- Multiple Choice on Answer Sheet provided
- Answer Section II Free Response in a separate booklet for each question.
- NESA approved calculators and templates may be used.

Section I Multiple Choice

- 10 marks
- Attempt all questions
- Allow about 15 minutes for this section

Section II – Free Response

- 90 marks
- Each question is of equal value
- All necessary working should be shown in every question.
- Allow about 2 hours 45 minutes for this section

Weighting: 30%

Section 1: Multiple Choice (10 marks)

Indicate your answer on answer sheet provided.

Allow approximately 15 minutes for this section.

- Q1. A mass of 5 kg moves in a horizontal circle of radius 1.5 metres at a uniform angular speed of 4 radians per second. What is the centripetal force required for this motion?
 - A. 40N
 - B. 80N
 - C. 120N
 - D. 160N

Q2. Find
$$\int \frac{dx}{x^2 - 6x + 13}$$

A.
$$\frac{1}{2} \tan^{-1} \left(\frac{x-3}{2} \right) + C$$

B. $\frac{1}{3} \tan^{-1} \left(\frac{x+3}{2} \right) + C$
C. $\frac{1}{2} \tan^{-1} \left(\frac{x-2}{3} \right) + C$
D. $\frac{1}{3} \tan^{-1} \left(\frac{x+2}{3} \right) + C$

- Q3. What is the equation to the chord of contact to the ellipse $9x^2 + 16y^2 = 144$ from the point (8,6)?
 - A. 3x + 4y = 6
 - $B. \qquad 3x+6y=2$
 - C. 9x + 16y = 144

D.
$$6x + 8y = 12$$

Q4. In the Argand diagram *ABCD* is a square and the vertices *A* and *B* correspond the complex numbers ω and *z*.

Which complex number corresponds to the diagonal BD?

- A. $(\omega z)(1 i)$
- B. $(\omega z)(1 + i)$
- C. $(z \omega)(1 + i)$

D.
$$(\omega + z)(1 - i)$$

- Q5. The polynomial $P(x) = x^3 + 2x^2 5x + 7$ has roots α , β and γ . Which polynomial has roots $\alpha + 1$, $\beta + 1$ and $\gamma + 1$?
 - A. $x^3 x^2 + 6x + 13 = 0$
 - B. $x^3 x^2 6x + 13 = 0$
 - C. $x^3 x^2 6x 13 = 0$
 - D. $x^3 + x^2 6x 13 = 0$

Q6. What is an expression for the constant *B* such that $P(x) = (x - \alpha)^2 Q(x) + Ax + B$?

A. $B = P(\alpha)$ B. $B = P'(\alpha)$ C. $B = P'(\alpha) - \alpha P(\alpha)$ D. $B = P(\alpha) - \alpha P'(\alpha)$

Q7. Let ω be a complex cube root of -1. The value of $(1 + \omega - \omega^2)^3$ is:

- A. 1
- B. -1
- C. 8
- D. -8

Q8. The equation $\frac{x}{y} + \frac{y}{x} = 2$ is an implicit function in x and y. Which graph represents this implicit function?

Q9. The diagram below shows the circle $x^2 + y^2 = a^2$.

Solid *A* is formed by rotating the area enclosed by the circle around the line x = 2a.

The volume of solid A is V_A

Another solid, Solid *B*, is formed by rotating the area enclosed by the circle around the line x = 4a.

The volume of solid B is V_B

Which of the following gives the correct volume of solid *B*?

- A. $V_B = 2V_A$
- B. $V_B = 4V_A$
- C. $V_B = 8V_A$
- D. $V_B = 16V_A$

Q10. The graph below shows y = f(u).

The function g(x) is defined as $g(x) \int_0^x f(u) \, du$.

Which of the statements below is true?

- A. g(0) = 0 and g'(0) = 0
- B. g(0) > 0 and g'(2) = 0
- C. g''(0) = 0 and g'(2) = 0
- D. g'' > 0 and g'(2) = 0

End of Multiple Choice

Section II Total Marks is 90

Attempt Questions 11 – 16.

Allow approximately 2 hours & 45 minutes for this section.

Answer all questions, starting each new question in a new booklet. All necessary working must be shown in each and every question.

Question 11. – Start New Booklet

a.

i Express $z = 2 - 2\sqrt{3}i$ in modulus-argument form 2

15 marks

2

3

- ii Hence, otherwise, evaluate z^5 in simplest Cartesian form. 1
- b. Draw on an Argand diagram, the region defined by $Im(2z + iz) \ge 2$ [Your diagram must be at least one third of a page in size and must be <u>neat</u> and fully labelled.]
- c. Let $x = \alpha$ be a root of the polynomial $P(x) = x^4 + Ax^3 + Bx^2 + Ax + 1$ where A and B are real numbers and $4A^2 \neq (2 + B)^2$
 - i. Show that α cannot be 0, 1 or -1.

ii. Show that
$$P\left(\frac{1}{\alpha}\right) = 0$$
 1

Question 11 continues on the next page.

Question 11 continued.

d. From an external point T, tangents are drawn to a circle with centre O, touching the circle at P and Q. $\angle PTQ$ is acute.

The diameter PB produced meets the tangent TQ at A.

Let $\angle AQB = \theta$

(The diagram has been reproduced in your answer booklet. Answer this question on that page)

i)	Show that $\angle PTQ = 2\theta$	2
ii)	Prove that $\Delta PBQ \parallel \Delta TOQ$	2
iii)	Hence, show that $BQ.OT = 2(OP)^2$	2

End of Question 11

Question 12. – Start New Booklet

a. A vehicle of mass 3000 kg is travelling around a horizontal circular road of radius 100*m* at a speed of 7.5 *m/sec*. Determine the centripetal force acting on the vehicle.

b. i Write
$$\frac{2x^2 + 3x - 3}{x^2 - 1}$$
 in the form $A + \frac{B}{x - 1} + \frac{C}{x + 1}$.

ii Hence find
$$\int \frac{2x^2 + 3x - 3}{x^2 - 1} dx$$
.

c. The diagram shows the curve f(x). The curve f(x) is asymptotic to y = 1. The *y*-intercept is (0,2).

This curve f(x) has been reproduced in your answer booklet. Sketch the following curves showing all intercepts and asymptotes.

i)	y = f(x)	1
ii)	$y = \sqrt{f(x)}$	2
iii)	$y = \frac{1}{f(x)}$	2
iv)	y = f(x)	2
v)	$y = \ln \left[f(x) \right]$	3

End of Question 12

15 marks

1

Question 13. – Start New Booklet

a. Let $P(x) = x^4 + mx^3 + 36x^2 - 35x + n$ where *m* and *n* are real numbers.

It is given that P(5) = 0 and $P\left(\frac{1-\sqrt{3}i}{2}\right) = 0$.

- i) Show that $x^2 x + 1$ is a factor of P(x).
- ii) Find *m* and *n*.
- b. In the diagram below, $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

The tangent at *P* cuts the *x*-axis at *A* and the *y*-axis at *B*.

i. Derive the parametric equation of the tangent at *P* in any form, and find the coordinates of *A* and *B* in parametric form.

ii. Show that
$$\frac{PA}{PB} = \tan^2 \theta$$

- c. A string is 0.5m long and will break if an object of mass exceeding 40kg is hung vertically from it. An object of mass 2kg is attached to one end of the string and it revolves around a horizontal circle with uniform speed. (Let gravity $g = 9.8 m/sec^2$)
 - i. Find the greatest angular velocity which may be imparted to the object without breaking the string
 - ii. Find the tangential speed at which this occurs.

2 2

2

2

Question 13 continues on the next page.

Question 13 continued.

d. The region bounded by the curve $y = \ln x$, x = 1 and y = 1 is shaded in the diagram below. The region is rotated about the line y = 2 to form a solid.

Find the volume of the solid formed using the method of cylindrical shells.

End of Question 13

Question 14. – Start New Booklet

a. Given $t = \tan x$,

i. Show that
$$\frac{dx}{dt} = \frac{1}{1+t^2}$$
. 1

ii Use the substitution $t = \tan x$ to find $\int \frac{dx}{1 + \sin 2x}$ 3

b. The variable points $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right)$, where p > q > 0 lie on the hyperbola $xy = c^2$. *M* is the midpoint of *PQ*.

Given p - q = 4, find the equation of the locus of *M*.

Question 14 continues on next page.

15 marks

Question 14 continued

c. The diagram below shows a particle P of mass M kilograms suspended from a fixed point O by an inextensible string of length L metres.

P moves in a circle with centre directly below and distance *h* from *O* with uniform angular speed ω radians/sec.

The string makes an angle θ with the vertical and the acceleration due to gravity is $g ms^{-2}$.

i. Prove that the period of this motion is $2\pi \sqrt{\frac{h}{g}}$

ii. By considering the forces acting on the particle show that $\cos\theta = \frac{g}{L\omega^2}$.

iii. The angular speed of the particle is increased to μ radians/sec. At that speed the string makes an angle 2θ with the vertical.

Show that
$$\mu^2 = \frac{gL\omega^4}{2g^2 - L^2\omega^4}$$
.

2

3

End of Question 14

Question 15. – Start New Booklet

15 marks

a. Find

i
$$\int xe^{2x} dx$$
 3

ii
$$\int_{0}^{\frac{\pi}{2}} \sin\theta (1 - \cos\theta)^2 d\theta$$
 3

b. i. Find the non-real solutions for of the equation $z^7 - 1 = 0$ 2

ii Express
$$z^7 - 1$$
 as a product of linear and quadratic factors with real coefficients. 2
iii Hence prove that $\cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7} = \frac{1}{2}$ 2

c. The diagram below shows the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

The point $P(x_1, y_1)$ is a point on the hyperbola. The points Q and R lie on the asymptotes of the hyperbola such that $\angle PQO = \angle PRO = 90^\circ$. The eccentricity of the hyperbola is *e*. Show that $PQ \times PR = \frac{b^2}{e^2}$.

3

End of Question 15

a. A wedge is cut out of a circular cylinder of radius 5 cm. One plane is perpendicular to the axis of the cylinder. The other intersects the first plane at an angle of 30° along the diameter of the cylinder.

The cross section is a triangle with its base perpendicular to the diameter.

Find the volume of the shape.

$$\int \frac{\ln(1+x)}{1+x^2} dx = \int \ln (1+\tan\theta) d\theta$$

$$\det x = \tan\theta \implies dx = \sec^2 \theta$$

$$\therefore \qquad I = \int \frac{\ln(1+\tan x)}{1+\tan^2 x} \sec^2 \theta \ d\theta$$

$$= \int \frac{\ln(1+\tan x)}{\sec^2 \theta} \sec^2 \theta \ d\theta$$
b. i Show
$$= \int \ln(1+\tan\theta) \ d\theta$$
ii Hence, or otherwise, evaluate
$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx$$

15 marks

4

1

c. The integral I_n is defined as $I_n = \int_0^1 \frac{1}{(1+x^2)^n} dx$ (for integers $n \ge 1$).

i. Show that
$$\int \frac{x}{(1+x^2)^n} dx = \frac{-1}{2(n-1)} \times \frac{1}{(1+x^2)^{n-1}} + C$$
 2

ii. By considering
$$\frac{1}{(1+x^2)^n} = \frac{1+x^2}{(1+x^2)^n} - \frac{x^2}{(1+x^2)^n}$$
, or otherwise,

show that
$$I_n = \frac{2n-3}{2(n-1)}I_{n-1} + \frac{1}{(n-1)\times 2^n}$$
 for $n \ge 2$. 3

iii. Show that
$$I_n > \frac{1}{2^n}$$
 for $n \ge 1$.

End of Examination

MSC HSC Mathematics X2 Solutions Multiple Choice

Q1. C Q2. A Q3.A Q4.A Q5.B Q6D* Q7C Q8B Q9A Q10.C

Q1	$F = mr\omega^{2}$ = 5 × 1.5 × 4 ² = 120N	С
Q2	$\int \frac{dx}{x^2 - 6x + 13} = \int \frac{dx}{x^2 - 6x + 9 + 4} = \int \frac{dx}{(x - 3)^2 + 2^2}$	A
	$=\frac{1}{2}\tan^{-1}\frac{x-3}{2}+C$	
03	$9x^{2} + 16y^{2} = 144$ $\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1$ $\frac{x x_{0}}{16} + \frac{y y_{0}}{9} = 1$	Α.
C.	$\frac{8x}{16} + \frac{6y}{9} = 1$ $\frac{x}{2} + \frac{2y}{3} = 1$ $3x + 4y = 6$	
	$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD}$ $\overrightarrow{BA} = \omega - z$	
Q4	$\overrightarrow{AB} = z - \omega$ $\overrightarrow{AD} = i\overrightarrow{AB} = i(z - \omega)$	А
	$\overrightarrow{BD} = (\omega - z) + i(z - \omega)$ $= (\omega - z)(i - i)$	

.

MSC HSC Mathematics X2 Solutions

Q5	$X = x + 1 \implies X - 1$ $(X - 1)^{3} + 2(X - 1)^{2} - 5(X - 1) + 7$ $= X^{3} - 3X^{2} + 3X - 1 + 2X^{2} - 4X + 2$ -5X + 5 + 7 $= X^{3} - X^{2} - 6X + 13$ $= x^{3} - x^{2} - 6x + 13$	В	
Q6	$P(x) = (x - \alpha)^{2}Q(x) + Ax + B$ let $x = \alpha$ $P(\alpha) = A \alpha + B$ $P'(x) = 2(x - \alpha)Q(x) + (x - \alpha)^{2}Q'(x) + A$ $P'(\alpha) = A$ $P(\alpha) - \alpha P'(\alpha) = A \alpha + B - \alpha A$ $B = P(\alpha) - \alpha P'(\alpha)$	D	
Q7	$z^{3} + 1 = 0$ $(z + 1)(1 - z + z^{2}) = 0$ if ω is a complex root $\therefore 1 - \omega + \omega^{2} = 0$ $1 - \omega = -\omega^{2}$ $(1 + \omega - \omega^{2})^{3}$ $= (1 + \omega + 1 - \omega)^{3}$ $= (2)^{3}$ = 8	С	
Q8	$\frac{x}{y} + \frac{y}{x} = 2$ $x^{2} + y^{2} = 2xy$ $x^{2} - 2xy + y^{2} = 0$ $(x - y)^{2} = 0$ $y = x$ $x \neq 0; y \neq 0$	В	

MSC HSC Mathematics X2 Solutions

Α

MSC HSC Mathematics X2 Solutions Question 11

MSC HSC Mathematics X2 Solutions					
	$P\left(\frac{1}{\alpha}\right) = \left(\frac{1}{\alpha}\right)^4 + A\left(\frac{1}{\alpha}\right)^3 + B\left(\frac{1}{\alpha}\right)^2 + A\left(\frac{1}{\alpha}\right) + 1$	1 mark correct solution			
	$= \frac{1}{\alpha^4} + \frac{A}{\alpha^3} + \frac{B}{\alpha^2} + \frac{A}{\alpha} + 1$				
cii	$= \frac{1}{\alpha^4} (A\alpha + B\alpha^2 + A\alpha^3 + \alpha^4)$				
	and $P(\alpha) = 0$ ie $A\alpha + B\alpha^2 + A\alpha^3 + \alpha^4 = 0$ $P(\alpha) = \frac{1}{2} - \frac{1}{2} = 0$				
	$\frac{1}{\alpha} r\left(\frac{1}{\alpha}\right) - \frac{1}{\alpha^4} \times 0$ $= 0$				
	$\angle BPQ = \theta$ (alternate segment)	2 marks-correct solution			
di	$\angle BOQ = 2\theta(\angle \text{ centre is } 2 \times \angle \text{ at circumference})$ $\angle POQ + \angle BOQ = 180^{\circ}(\text{supplementary})$	1 mark- one correctly			
	$\angle PTQ + \angle tPOQ = 180^{\circ}(\angle \text{ sum } \Delta)$	theorem in a progress to proof.			
		2 marks-correct			
	$\angle PQB = 90^{\circ}(\angle \text{ in semicircle})$	solution			
	$\angle OQT = 90^{\circ}(tangent \perp radii)$	1 mark- one correctly			
	$\therefore \ \angle PQB = \angle OQT$	used relevant			
	ΔPOQ isosceles(equal radii)	theorem in a progress			
dii	$\angle TOQ = \frac{180 - 2\theta}{2}$ (base \angle of Isos \triangle)	to proof.			
	$=90-\theta$				
	$\therefore \angle TOQ = \angle PBQ$				
	$\therefore \Delta PBQ \Delta TOQ \ (equiangular)$				
	$\frac{OT}{BP} = \frac{OQ}{BO}$ (corresponding sides in equal ratı)	2 marks-correct solution			
	BP = OP + OB (diameter-given)	1 mark- one correctly			
	$OP = OB = OQ (equ\alpha \text{ radii})$ BP = 2OP	used relevant			
diii		theorem in a progress to proof.			
	OT OP	• • • • • • • • • • • • • • • • • • • •			
	$\overline{2OP} = \overline{BQ}$				
	BQ.OT = 2OP.OP				
	= 2(OP)				

Question 12	Marks
c correct	
(a) $F_c = mv^2 \implies F_c = 3000 \times 7.5^2$	2 Marles
٢	Connect solution
=1687.5 N	1 Mark
	Lorre et sabsmennen
(b) (c) $2x^2 + 3x - 3 = A + B + C$	2Marks
$\frac{\chi^2 - 1}{\chi^2 - 1} = \frac{\chi - 1}{\chi + 1}$	Correct solution
$\frac{2 \chi^2 + 3 \chi - 3}{2 \chi^2 + 3 \chi - 3} = A(5 \xi - 1) + B(3 \xi + 1) + C(3 \xi + 3 \chi - 3)$	-0
m in a progress $\chi = 1 \Rightarrow B = 1$; $\chi = -1 \Rightarrow C = 2$; $\chi = 0 \Rightarrow A = 0$	21 Mark
is-correct	Obtains one
$\frac{2\pi^2 + 3\chi - 3}{2} = 2 + \frac{1}{2}$	connect value.
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	for AorBorc
n in a progress	
(ii) $\frac{2x^2+3x-3}{x^2-1}$ obc = $\begin{cases} 2+\frac{1}{x-1}+\frac{2}{x+1} \end{cases}$	dx 1 Mark
	Correct solution
$= 2x + \log_{e}(x-1) + 2\log(x-1)$	x+1)
is-correct in the second secon	
- one correctly (c) (i)	Mark
m in a progress $y = f(z)$	Correct graph
2	
	· .
-2 ~	
	F

	Marks		Marks
$(ii) \forall = \sqrt{f(x)}$	2 Marks	(v) ²	
12	Correct graph		3 Mache
			Coment and
	1 Mark	lia	Correct graph
	Connect 145		2 Machs
	including y	0 1/2 3 4/5 67	Contractor
- 2	Intercept,	Jr i	A H cao
······································	Implicit.		asymptotes.
	2 Marka		Compet Ann
(acc)	Conget and		Compate V
	Correct grayn		The secont
	1. Mark		evolucitor
	Two of three		implicit
	featuries		implicit
	correct		1 Mark
			Two correct
		-	components
(EV) 4 A			other than
y = f(x)	2 Marks		asymptotic
2	Correct graph	· · · · ·	behaviours
	. 0 '		graph
	1 Mark		
	Correct LHS and		
	BASS but exclud		
-2	growth for 1.55×54.5		

MSG	C HSC Mathematics X2 Solutions Q/3	
	$P(x) = (x-5)(x^2 - x + 1)(x + a)$	
	$\begin{array}{l} x = 0 \\ n = -5a \end{array}$	
	x = 1	
	1 + m + 36 - 35 + n = -4 - 4a m + n + 2 = -4 - 4a	
	m - 5a = -6 - 4a	
	m-a=-6	
a-ii	m = a - 6	
	r = -1	
	$1 - m + 36 + 35 + n = -6 \times 3 \times (a - 1)$	
	n - m + 72 = 18 - 18a	
	-5a - m + 18a = -54	
	13a - (a - 6) = -54	
	12a + 6 = -54	
	12a = -60	
	a = -3	
	\therefore $m = -11$ $n = 25$	
	•	

3

MSC HSC Mathematics X2 Solutions

Question 13

	$P(x) = x^4 + mx^3 + 36x^2 - 35x + n$	
	$P(x) = (x - 5)(x - z)(-\overline{z})(x^2 + ax + b)$	i)
	1(x) - (x - 3)(x - 2)(-2)(x + 4x + 0)	2 marks
	$(x-z)(x-\overline{z}) = x^{2} - 2Re(z) + (z)^{2}$	
	$z = \frac{1}{2} - \frac{\sqrt{3}}{2}i$	
	$ z = \sqrt{\frac{1+3}{2}} = 1$	
		ii) 2 marks
	$r(x) = (x - 5) \left(x^2 - 2 \times \frac{1}{2} x + (1)^2 \right) (x + b)$	1 mark –
	$p(x) = (x - 5)(x - 2 \times \frac{2}{2}x + (1))(ax + b)$	Subst method
	$P(x) = (x - 5)(x^2 - x + 1)(x + b)$ Method 1. Substitution	one term in
		simul eqn
	Let $x = 1$ LHS = 1 × -4 × (1 - β) = 4 β - 4	1 mark – correct
	RHS = 1 + m + 36 - 35 + n	expansion
	$\therefore \qquad 4\beta - 6 = m + n \ (1)$	
a	Let $x = 0$	
	$LHS = 5\beta$ $RHS = n$	
	\therefore 5 $\beta = n$ (2)	
	Let $x = 1$	
	$LHS = 3 \times -6 \times (-1 - \beta)$	
	$= 18 + 18\beta$ RHS = 1 - m + 36 + 35 + n	
	= 72 + n - m	
	$\therefore 18\beta - 54 = n - m (3)$	
	(1) + (3) $22\beta - 60 = 2n$	
	Subst 2	
	$22b^2 - 60 = 10\beta$ $12\beta = 60$	
	$\beta = 5$	
	$\therefore \qquad n=5\beta=25$	
	$4 \times 5 - 6 = 25 + m$ from (1) m = -11	

-19

.

MSC HSC Mathematics X2 Solutions Could also be done by equating coefficients $(x-5)(x^2-x+1)(x-\beta) = x^4 - (6+b)x^3 + 6(\beta+1)x^2 - (5+6\beta)x + 5\beta$ $n = 5\beta$ Coefficient of x^2 $6(\beta + 1) = 36$ $\beta = 5$ n = 25 $m = -(6 + \beta) = -11$ 2 marks $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 1 mark $\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0$ $\frac{dy}{dx} = -\frac{b^2x}{a^2y}$ $y - y_1 = -\frac{b^2 x_1}{a^2 y_1} (x - x_1)$ $a^{2}y_{1}y - a^{2}y_{1}^{2} = -b^{2}x_{1}x + b^{2}x_{1}^{2}$ $b^{2}x_{1}x + a^{2}y_{1}y = a^{2}y_{1}^{2} + b^{2}x_{1}^{2}$ $\div a^2\beta$ $\frac{x_1 x}{a^2} + \frac{y_1 y}{b^2} = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2}$ $\frac{x_1 x}{a^2} + \frac{y_1 y}{b^2} = 1$ $x = a\cos\theta$ $y = b\sin\theta$ $\frac{a\cos\theta x}{a^2} + \frac{b\sin\theta y}{b^2} = 1$ $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$ at x = 0 $y = \frac{b}{\sin\theta}$ at $y = 0 x = \frac{a}{\cos \theta}$

MSC HSC Mathematics X2 Solutions

$\delta V = 2\pi r.h.w$	
$= 2\pi(2-y)(x-1)\delta y$	
$y = \ln x \implies x = e^y$	
$\delta V = 2\pi(2-y)(e^{y}-1)\delta y$	
$V \cong \lim_{s \to \infty} \sum_{x=1}^{1} 2\pi (2-y)(e^{y}-1)\delta y$	
$V = 2\pi \int_{0}^{1} (2-y)(e^{y}-1)dy$	
$= 2\pi \int_0^1 2 e^y - 2 - y e^y + y dy$	
$= 2\pi \left\{ \left[2e^{y} - 2y + \frac{y^{2}}{2} \right]_{0}^{1} - \int ye^{y} dy \right\}$	
Let $m = ye^{y}$ $\frac{dm}{dy} = e^{y} + ye^{y}$	
$\therefore ye^{y} = \int e^{y} + ye^{y} dy$	
$\int y e^{y} dy = y e^{y} - \int e^{y dy} = y e^{y} - e^{y} + C$	
$V = 2\pi \left[2e^{y} - 2y + \frac{y^{2}}{2} - ye^{y} + e^{y} \right]_{0}^{1} = 2\pi$	
$= 2\pi \left\{ \left(3e - 2 + \frac{1}{2} - e \right) - (3 - 0 - 0) \right\}$	
$= 2\pi \left(2e-\frac{9}{2}\right)$	
$= (4e-9)\pi u^3$	

.

MSC HSC Mathematics X2 Solutions Question 14

MSC HSC Mathematics X2 Solutions

MSC HSC Mathematics X2 Solutions

T

$$\Sigma \alpha = -\frac{b}{a} = \frac{0}{1}$$

$$1 + cis\frac{2\pi}{7} + cis\frac{4\pi}{7} + cis\frac{6\pi}{7} + cis\frac{8\pi}{7} + cis\frac{10\pi}{7} + cis\frac{12\pi}{7} = 0$$

$$\therefore$$

$$cos\frac{2\pi}{7} + cos\frac{4\pi}{7} + cos\frac{6\pi}{7} + cos\frac{8\pi}{7} + cos\frac{10\pi}{7} + cos\frac{12\pi}{7} = -1$$

$$cos\frac{2\pi}{7} + cos\frac{4\pi}{7} + cos\frac{6\pi}{7} + cos - \frac{6\pi}{7} + cos - \frac{4\pi}{7} + cos - \frac{2\pi}{7} = -1$$
as $cosx = cos(-x)$

$$cos\frac{2\pi}{7} + cos\frac{4\pi}{7} + cos\frac{6\pi}{7} + cos\frac{6\pi}{7} + cos\frac{4\pi}{7} + cos\frac{2\pi}{7} = -1$$

$$2\left(cos\frac{2\pi}{7} + cos\frac{4\pi}{7} + cos\frac{6\pi}{7} = -\frac{1}{2}\right)$$
as $cos(\pi - x) = -cosx$

$$-cos\frac{5\pi}{7} - cos\frac{3\pi}{7} - cos\frac{\pi}{7} = -\frac{1}{2}$$

$$cos\frac{5\pi}{7} + cos\frac{3\pi}{7} + cos\frac{\pi}{7} = \frac{1}{2}$$

MSC HSC Mathematics X2 Solutions

· T

Asymptotes
$$y = \frac{b}{a}x$$
 $m_{pg} = -\frac{a}{b}$ $m_{pg} = \frac{a}{b}$
 \therefore equations are
 $bx - ay = 0$
 $bx + ay = 0$
PR and PQ are perpendicular distances.
 $dist = \frac{|dx_1 + By_1 + C|}{\sqrt{a^2 + b^2}}$
 $PR = \frac{|bx_1 + ay_1|}{\sqrt{a^2 + b^2}}$
 $PQ = PR = \frac{|bx_1 - ay_1|}{\sqrt{a^2 + b^2}}$
 $PRPQ = \frac{|bx_1 + ay_1|}{\sqrt{a^2 + b^2}} \times \frac{|bx_1 - ay_1|}{\sqrt{a^2 + b^2}}$
 $= \frac{|b^2x_1^2 - a^2y_1|}{\sqrt{a^2 + b^2}}$
 $e^2 = 1 + \frac{b^2}{a^2} \Rightarrow a^2e^2 = a^2 + b^2$
 $\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1$
 $b^2x_1^2 - a^2x_2 = a^2b^2$
 3 marks
 1 mark

.

.

Marks Question 16 Marks $\frac{\int \log(1+x) dx = \int \log(1+\tan\theta) \cdot \sec^2 d\theta}{1+x^2}$ 3 Marks b) (i) a h 1 Mark Correct solution $\chi = tan \Theta$ dr=sec20de Correct solution = log (1+tane) secodo with sufficient 30 2 Marks $\chi = 0 \Rightarrow \Theta = 0$ 2=1 => 0= 1/4 Sec 0 Obtains a working out h= y tan 30' = 1 y = log (1 + Cano) do provided correct Volume Sxi element AND $A = \frac{1}{2}yh = \frac{1}{2\sqrt{3}}y^2$ connect primitive $I = \int \log_{e} (1 + \tan \theta) d\theta = \int \log_{e} [1 + \tan(\frac{\pi}{4} - \theta)] d\theta$ (ii) 3Marks function $SV = AS_X \Rightarrow SV = 1 y^2 S_X$ Correct solution $1 + \tan\left(\frac{\pi}{4} - \Theta\right) = 1 + \tan \frac{\pi}{4} - \tan \Theta$ 1 Mark $V = \int \underbrace{1}_{q^2} \frac{y^2}{dx} = 2 \times \underbrace{1}_{q/3} \int \underbrace{y^2}_{q} \frac{dx}{dx}$ 1+ tan Ttan O Obtains a 2 Marks correct volume Attempts to $y^2 = 25 - \chi^2 \implies \sqrt{=1} \int (25 - \chi^2) d\chi$ $= 1 + 1 - tan \theta$ element use 1 + Tano ff(n) ehr = f(a-zc)do = 1+ Tano +1 - tano $= \frac{1}{\sqrt{3}} \frac{15 \times -\chi^3}{3}$ 1 + Tano $\frac{V = 1}{\sqrt{2}} \left(\frac{125 - 125}{2} \right) = 0$ 1. Mark Attempts to use 1 + Tano $V = 250 = 250\sqrt{3} u^{3}$ Integration by parts and T = log S 2 7 de obtains a correct log 2 do - log (1+ tano) do relevant expression $\mathbf{I} = \left[\left(\log 2 \right) \Theta \right]$

Marks $2T = \frac{1}{2T} \log_2 2 - 0$ I= Tlog_2 $log (1+2) dx = \pi log 2$ $1 + x^2$ 8 $\frac{\chi}{(1+\chi^2)^n} d\chi = \int \chi (1+\chi^2)^n d\chi = \frac{1}{2} \int \chi (1+\chi^2)^n d\chi = \frac{1}{2$ (c) (j) Correct solution $=\frac{1}{2}\left(\frac{1+2^{2}}{-n+1}\right)=\frac{1}{2}\left(\frac{1+2^{2}}{-n+1}\right)$ with sufficience working 1 Mark $\frac{= -1) 1}{2(n-1) ((1+x^2)^{n-1})}$ Obtains a correct roverse chain rule $I_n = \int$ (i) $\int \frac{1}{0(1+x^2)^n} dx =$ $\frac{1+\chi^2-\chi^2}{(1+\chi^2)^2}$ 3 Marks $\frac{1+x^2}{(1+x^2)^n} dx = \int_{-\infty}^{\infty} \frac{1+x^2}{(1+x^2)^n} dx = \int_{$ $\int_{0}^{1} \frac{\chi^{2}}{(1+\chi^{3})^{n}} d\chi$ Correct solution $\int \frac{1}{(1+x^2)^{n-1}} dx - \int \frac{1}{2e^2(1+x^2)^n} dx$ 2 Marks Obtains expressions $I_n = I_{n-1} - \int \chi^2 (1 + \chi^2)^{-n}$ de and (2) $\int \chi^2 \left(1 + \chi^2 \right)^{-n} d\chi = \int \chi^2 \left\{ \chi \left(1 + \chi^2 \right)^{-n} \right\} d\chi$ But 1 Mark. Obtains expression (1) $\underline{u=\chi \Rightarrow u'=1}$ $dv = \chi (1+\chi^2)^n \Rightarrow v = \int \chi (1+\chi^2)^n dx = \frac{1}{2(n-1)}$

Marks $\chi^2 (1 + \chi^2)^n d\chi =$ $\frac{-2c}{2(n-1)(1+x^2)^{n-1}} = \int_{0}^{1} \frac{-1}{(2(n-1)(1+x^2)^{n-1})} dx$ = -1 0 + 1 In-1 2(n-1) (2"-1) 2(1-1) (2)1 In-1 ÷ -1 2° (n-1) 2(n-1) $I_{n} = I_{n-1} - \int -1$ 1 In-1 2" (n-1) 2(n-1) 2n(n-1) 2(1-1) - 1 In-1 2(n-1) 2° (n-1) $\frac{\int 1 - 1}{2(n-1)}$ 2° (n-1) $= \frac{2n-2-1}{2(n-1)} \frac{T_{n-1}}{2}$ 2n (n-1) $\frac{\prod_{n} = \int 2n - 3 \sum_{n-1} + (2(n-1))$ 2" (n-1) (iii) $0 \le x \le 1 \implies (1+x^2) \ge 0$ and $(1+x^2) \le (1+x^2) \le 2$ 2 Marks Correct solution $\ll x \leq 1 \Rightarrow o \leq (1+x^2)^n \leq 2^n$

Marks $(1+2^2)^n \leq 2^n \Rightarrow 1$ > 1 1+22 2n 1 Mark ·-- --- * Sufficient 1 dx 2 2" 0 1 +x² relevant progress ้อ่ using a valid method. 2ⁿ $I_n \geq \frac{1}{2^n} (1-0) \geq$. 4 . na 1 . . 4 . .