

Merewether High School

2010

Higher School Certificate Trial Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes \bullet
- Working time -3 hours \bullet
- Board-approved calculators may \bullet be used
- Write using black or blue pen \bullet
- A table of standard integrals is \bullet provided
- All necessary working should be \bullet shown in every question
- Write your student number at the top of every page
- Start each question on a new sheet of paper
- Each question is to be handed in \bullet separately

Total marks - 120

- Attempt Questions $1 8$
- All questions are of equal value

This paper MUST NOT be removed from the examination room

BLANK PAGE

 \sim \sim

Ġ

Marks

 $\ddot{}$

 $\overline{}$

 \mathcal{A}

 $\hat{\mathcal{A}}$

 \sim

b.) Find
$$
\int \frac{\cos x}{\sqrt{4-\sin^2 x}} dx
$$
 [3]

c.) Evaluate in simplest exact form
$$
\int_0^{\frac{\pi}{3} \sec x + \tan x} dx
$$
 [3]

d.) Using partial fractions evaluate $\int_{1}^{2} \frac{3}{3x-x^2} dx$ $[3]$

e.) Evaluate
$$
\int_{-1}^{0} \frac{(x-1)}{x^2 + 2x + 2} dx
$$
 [4]

 $\bar{\beta}$

Question 3 15 Marks Start a new page

- a.) The polynomial $P(x) = x^3 12x^2 + 36x + c$ has a double zero. Find any possible values of the real number c. $[3]$
- $b.)$

The diagram shows the graph of the function $y = f(x)$. The function has a horizontal asymptote as $y = 1$. Draw separate half-page sketches of the graphs of the following functions:

i.
$$
y = |f(x)|
$$
 [2]

ii.
$$
y = \frac{1}{f(x)}
$$
 [2]

$$
iii. \ y = \ln[f(x)] \tag{2}
$$

- c.) $P(x) = x^4 2x^3 + 4x^2 3x + 1$ and the equation $P(x) = 0$ has roots α , β , γ , and δ .
	- i. Show that the equation $P(x) = 0$ has no integer roots $[1]$
	- $[1]$ ii. Show that $P(x) = 0$ has a real root between 0 and 1
	- iii. Show that $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = -4$ $[2]$
	- iv. Hence find the number of real roots of the equation $P(x) = 0$, giving reasons $[2]$

Question 4 15 Marks Start a new page

a.) For the curve $y^3 + 2xy + x^2 + 2 = 0$

i. Show that
$$
\frac{dy}{dx} = \frac{-2(y+x)}{3y^2+2x}
$$
 [3]

- ii. Find the coordinates of any stationary points on the curve $[2]$
- b.) Points $P(a \cos \theta, b \sin \theta)$ and $Q(a \cos \varphi, b \sin \varphi)$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
	- i. Find the equation of the chord PO $[1]$

ii. Hence show that if PQ subtends a right angle at the point $A(a, 0)$ then PQ passes through a fixed point $T(t, 0)$ on the x-axis, where $t = \frac{ae^2}{2te^2}$ $[4]$

c.) Find
$$
\int \sin^{-1} x \, dx
$$
 [2]

d.) The point A represents the complex number z_3 and the point Z_1 represents the complex number z_1 . The point z_1 is rotated about A through a right angle in the positive direction to take up the position Z_2 , representing the complex number z_2 . Show that $z_2 = (1 - i)z_3 + iz_1$ $[3]$

Question 5 15 Marks Start a new page

a.) Use Mathematical Induction to show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2} < 2 - \frac{1}{n}$ for all positive integers $n \geq 2$

 $[4]$

b.) The area below the curve $y = bx - ax^2$ (where $a > 0$ and $b > 0$) and above the x -axis is rotated about the y axis through a complete revolution.

Show, using a slice technique or otherwise, that the volume of the solid so formed is:

$$
\frac{\pi b^4}{6a^3}
$$
 cubic units (3)

 $[1]$

- c.) Patrick's accuracy with darts is such that if he scores a bullseye, the probability of doing the same on the next throw is $\frac{2}{3}$, however if he misses, the probability that he again misses the bullseye on the next throw is $\frac{3}{4}$. The probability of hitting the bullseye on the first throw is $\frac{1}{2}$.
	- $[2]$ i. What is the probability that he throws a bullseye on the second throw?
	- ii. What is the probability that he misses a bullseye on the third throw? $[2]$
- d.) On a certain day, the depth of water in a harbour at high tide at 5 am is 9 m. At the following low tide at 11:20 am the depth is 3 m. Assuming that the tidal motion is simple harmonic, find the latest time before noon that a ship can enter the harbour if a minimum depth of 7.5 m of water is required. $[4]$

- iii. The equations of the directrices
- b.) ABCD is a cyclic quadrilateral whose opposite sides meet at E and F and whose diagonals meet at G.

- $[3]$ i. If BD bisects the angles at B and D, prove that \angle BAD is a right angle.
- $[3]$ ii. What is the relation between the angles EAF and ECF?

 $[3]$

 $[3]$

- c.) By taking strips parallel to the axis of rotation, use the method of cylindrical shells to find the volume of the solid obtained by rotating the region $\{(x, y): 0 \le y \le 2x - x^2\}$ about the y-axis. $[3]$
- d.) By using two applications of integration by parts, evaluate $\int_{0}^{\frac{\pi}{2}} e^{x} \cos x \, dx$

Question 7 15 Marks Start a new page

a.) The solid shown has a semicircular base of radius 2 units. Vertical cross-sections perpendicular to the diameter are right-angled triangles whose height is bounded by the parabola $z = 4 - x^2$.

- i. By slicing at right angles to the x-axis, show that the volume of the solid is given by $V = \int_0^2 (4 - x^2)^{3/2} dx$, $[3]$
- ii. and hence calculate this volume.
- b.) For positive real numbers $a, b, c, a_1, a_2, \dots, a_n$:
	- i. Show that $a + \frac{1}{a} \ge 2$ $[1]$
	- ii. Hence show that $(a + b) \left(\frac{1}{a} + \frac{1}{b}\right) \ge 4$ and $(a+b+c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \ge 9$ $[2]$

iii. Show that
$$
(a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) \ge n^2
$$
 [2]

- c.) $P\left(cp, \frac{c}{n}\right)$, $Q\left(cq, \frac{c}{q}\right)$, $R\left(cr, \frac{c}{r}\right)$ are three points on the rectangular hyperbola $xy = c²$ such that the parameters p, q, r are in geometric progression.
	- i. Explain why P and R must lie on the same branch of the hyperbola. Under what condition will Q lie on the opposite branch to P and R ? $[1]$
	- ii. Show that the chord PR is parallel to the tangent to the hyperbola at Q . $[3]$

ii. Show that
$$
(n + 1)I_n = 2\ln 2 - \frac{1}{n+1} - nI_{n-1}
$$
, $n = 1, 2, \cdots$ [2]

iii. Evaluate $3I_2$ and $4I_3$ $[2]$

iv. Show that
$$
(n + 1)I_n = \begin{bmatrix} \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots - \frac{1}{n+1}, & n \text{ odd} \\ 2\ln 2 - (\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots - \frac{1}{n+1}), & n \text{ even} \end{bmatrix}
$$
 [2]

b.) i. If
$$
t = \tan x
$$
 prove that $\tan 4x = \frac{4t(1-t^2)}{t^4 - 6t^2 + 1}$ [2]

- ii. If $\tan x \tan 4x = 1$ deduce that $5t^4 10t^2 + 1 = 0$ $[1]$
- iii. Prove that $x = 18^{\circ}$ and $x = 54^{\circ}$ satisfy the equation tan x tan $4x = 1$ $[2]$

iv. Deduce that
$$
\tan 54^\circ = \sqrt{\frac{5 + 2\sqrt{5}}{5}}
$$
 [3]

End of paper.

STANDARD INTEGRALS

 $\langle \cdot \rangle$

 \mathfrak{p}

 $\sim 10^7$

 \sim

 ~ 10

 \bar{z}

 $\bar{\mathcal{A}}$

$$
\int x^n dx = \frac{1}{n+1}x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0
$$

$$
\int \frac{1}{x} dx = \ln x, \quad x > 0
$$

$$
\int e^{ax} dx = \frac{1}{a}e^{ax}, \quad a \neq 0
$$

$$
\int \cos ax dx = \frac{1}{a}\sin ax, \quad a \neq 0
$$

$$
\int \sin ax dx = -\frac{1}{a}\cos ax, \quad a \neq 0
$$

$$
\int \sec^2 ax dx = \frac{1}{a}\tan ax, \quad a \neq 0
$$

$$
\int \sec ax \tan ax dx = \frac{1}{a}\sec ax, \quad a \neq 0
$$

$$
\int \frac{1}{a^2 + x^2} dx = \frac{1}{a}\tan^{-1}\frac{x}{a}, \quad a \neq 0
$$

$$
\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\frac{x}{a}, \quad a > 0, \quad -a < x < a
$$

$$
\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0
$$

$$
\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})
$$

NOTE: $\ln x = \log_e x, \quad x > 0$

 \sim \sim

BLANK PAGE

 \sim λ

 $\bar{\mathbf{r}}$

$$
\frac{z_{x}te^{-1}sin(2x)}{16} = \int \frac{dx}{x} dx
$$
\n
$$
I = \int \frac{du}{u} dx
$$
\n
$$
= \ln (1+x) + C
$$
\n
$$
= \int \frac{2du}{4-3u^{2}} dx = I
$$
\n
$$
= \ln (1+x) + C
$$
\n
$$
= \ln |1+x| + C
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\n
$$
= \ln |3-x| + \ln |x| = 2
$$
\

l

$$
\frac{1005 \pm 0.025}{2} = 1 + \frac{111}{1-1}
$$
\n
$$
= 1 + \frac{(111)^{2}}{(1-1)(1+1)}
$$
\n
$$
= 1 + \frac{(111)^{2}}{(1-1)(1+1)}
$$
\n
$$
= 1 + \frac{(111)^{2}}{2} = \frac{1 + \tan \phi}{2}
$$
\n
$$
= 1 + \frac{111}{2} = \frac{1}{12}
$$
\n
$$
= 1 + \frac{1}{2}
$$
\n
$$
= 1
$$

2d)
$$
|\vec{a} \cdot \vec{b} \cdot \vec{c}| = r \cos \theta
$$

\nThen $r = \sqrt{(2\sqrt{3})^2 + (-2)^2}$
\n $= \sqrt{16}$
\n $= 4$
\n $\tan \theta = \frac{-2}{2\sqrt{3}}$
\n $= \frac{-1}{\sqrt{3}}$
\n $\theta = -\frac{\pi}{6}$
\n $\therefore 2\sqrt{3} - 2i = 4 \cos(-\frac{\pi}{6})$ (1)
\n $\ln (2\sqrt{3} - 2i)^7 = [4 \cos(-\frac{\pi}{6})]$
\n $= 4^7 \cos(-\frac{\pi}{6})$ (1)
\n $= 16384 \cos(2\frac{\pi}{6}) + i \sin(\frac{\pi}{6})$
\n $= 16384 \cos(2\frac{\pi}{6}) + i \sin(\frac{\pi}{6})$
\n $= -8192\sqrt{3} + 8192i$ (1)
\n $= -8192\sqrt{3} + 8192i$ (1)

 $\label{eq:2} \frac{1}{2} \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} \, \frac$

 $\Delta \phi$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

Question 1	
a) $h(x) = x^3 - 12x^2 + 36x + C$	
f'(x) = 3x^2 - 24x + 36	
= 3(x-6)(x-2)	
i. $P(x) = 0$ for $x = 6, 2$	
o. $P(2) = P(2) = 0$	
Hence $P(2) = 2^3 - 12(2^2) + 36(2)C$	
l. $8 - 48 + 72 = -C$	
l. $C = -32$	
Also $P'(6) = P(6) = 0$	
Hence $P(6) = 6^3 - 12(6^2) + 36(6) + C = 0$	
l. $P(x)$ has a double zero	
if and only if $C = -32$ or $C = 0$	
b)	g=1
g=1	
h	g
h	h
h	h
h	h
h	h
h	h
h	h
h	h
h	h
h	h
h	h
h	h
h	h
h	h
h	

36) in)
$$
\frac{1}{10}
$$

\n 9π
\n<

 $\bar{\beta}$

 $4b)$) $P(a\cos\theta, b\sin\theta)$, $Q(a\cos\phi, b\sin\phi)$ ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$ gradient of PQ is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}} = \frac{b(sin\theta-sin\theta)}{a(cos\theta-cos\phi)} = \frac{b}{a} \cdot \frac{2 sin(\frac{\theta-d}{2}) cos(\frac{\theta+d}{2})}{\frac{a}{2} sin(\frac{\theta+d}{2})}$ $=\frac{-b}{\frac{b}{a}}\frac{cos(\frac{b+d}{2})}{sin(\frac{b+d}{2})}$ the equation of chard Pa is $ys-bsin\theta = -b$ $cos\left(\frac{\theta + d}{2}\right)$ $(x - acos\theta)$ $\frac{x}{\alpha} \cos\left(\frac{\theta+Q}{2}\right) + \frac{y}{b} \sin\left(\frac{\theta+Q}{2}\right) = \cos\theta \cos\left(\frac{\theta+Q}{2}\right)$ $+ sin\theta sin(\theta + \phi)$ $\frac{x}{\alpha}\cos(\frac{\theta+d}{2})+\frac{y}{b}\sin(\frac{\theta+\phi}{2})=\cos(\frac{\theta-\phi}{2})$ where P, a have parameters θ , ϕ .

4. b) i)
$$
\frac{1}{\sqrt{6}}
$$

\n $-\frac{1}{\sqrt{6}}$
\n $-\$

4) c)
$$
\int \sin^{-1} x \, dx \, dx \, dx
$$

\n $= x \sin^{-1} x - \int x \frac{1}{\sqrt{1-x^2}} dx$
\n $= x \sin^{-1} x - \int x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x - \int x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x - \int x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x - \int x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1}{2}} dx$
\n $= x \sin^{-1} x + \frac{1}{2} \int -2x (1-x^2)^{-\frac{1$

5)6)
$$
y_0
$$

\n y_0
\n y_1
\n y_2
\n y_3
\n y_4
\n y_5
\n y_6
\n y_7
\n y_8
\n y_9
\n y_1
\n y_1
\n y_2
\n y_3
\n y_1
\n y_1
\n y_2
\n y_3
\n y_1
\n y_1
\n y_2
\n y_3
\n y_1
\n

 $\mathcal{A}^{\text{max}}_{\text{max}}$

c)
\n
$$
\frac{y}{2} + \frac{y}{2x - x^2}
$$
\n
$$
\frac{y}{2} + \frac{y}{2x - x^2}
$$
\n
$$
\frac{y}{2} + \frac{z}{2x}
$$
\n
$$
\frac{z}{2} + \frac{z}{2}
$$
\n
$$
\frac{z}{2} +
$$

 $\mathcal{L}_{\mathrm{max}}$

$$
e^{x}e^{x}e^{x} = \int_{c}^{\frac{\pi}{4}} e^{x}cos x \, dx
$$
\n
$$
= \left[e^{x}cos x\right]_{c}^{\frac{\pi}{4}} + \int_{c}^{\frac{\pi}{4}} e^{x}sin x \, dx
$$
\n
$$
= \left[e^{x}cos x\right]_{c}^{\frac{\pi}{4}} + \int_{c}^{\frac{\pi}{4}} e^{x}sin x \, dx
$$
\n
$$
= 1 + \left[e^{x}sin x\right]_{c}^{\frac{\pi}{4}} - \int_{c}^{\frac{\pi}{4}} e^{x}cos x \, dx
$$
\n
$$
= -1 + \left[e^{x}sin x\right]_{c}^{\frac{\pi}{4}} - \int_{c}^{\frac{\pi}{4}} e^{x}cos x \, dx
$$
\n
$$
= -1 + e^{\frac{\pi}{4}} - \int_{c}^{\frac{\pi}{4}} e^{x}cos x \, dx
$$
\n
$$
= -1 + e^{\frac{\pi}{4}} - \int_{c}^{\frac{\pi}{4}} e^{x}cos x \, dx
$$
\n
$$
= \frac{(\frac{\pi}{4} - x)^{3}}{2} \int_{c}^{\frac{\pi}{4}} e^{x}cos x \, dx
$$
\n
$$
= \frac{(\frac{\pi}{4} - x)^{3}}{2} \int_{c}^{\frac{\pi}{4}} e^{x}cos x \, dx
$$
\n
$$
= \frac{(\frac{\pi}{4} - x)^{3}}{2} \int_{c}^{\frac{\pi}{4}} e^{x}cos x \, dx
$$
\n
$$
= \frac{1}{2} \int_{c}^{\frac{\pi}{4}} (4 - x^{2})^{3} \, dx
$$
\n
$$
= \frac{1}{2} \int_{c}^{2} (4 - x^{2})^{3} \, dx
$$
\n
$$
= \frac{1}{2} \int_{c}^{2} (4 - x^{2})^{3} \, dx
$$
\n
$$
= 16 \int_{c}^{\frac{\pi}{4}} (1 - 9i)^{2} \, i \, dx
$$
\n
$$
= 16 \int_{c}^{\frac{\pi}{4}} (1 - 9i)^{2} \, i \, dx
$$
\n
$$
= 16 \int_{c}^{\frac{\pi}{4}} (1 - 9i)^{2} \
$$

(a) b) i)
$$
(a + \frac{1}{a})^2 = (a - \frac{1}{a})^2 + 4 \ge 4
$$

\nSince $(a - \frac{1}{a})^2 = 20$
\n \therefore $(a + \frac{1}{a})^2 \ge 0$
\n \therefore $(a + \frac{1}{a})^2 \ge 2$ for a >0 (1)
\nii) $(0 + b) (\frac{1}{a} + \frac{1}{b})$
\n $= 1 + 1 + \frac{a}{b} + \frac{b}{a}$
\n $= 2 + \frac{a}{b} + \frac{b}{a} \ge 4$,
\nusing part 1) with $a \Rightarrow \frac{a}{b}$ (1)
\n $(a + b + c) (\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$
\n $= 1 + 1 + 1 + (\frac{a}{b} + \frac{b}{a}) + (\frac{b}{c} + \frac{c}{b}) + (\frac{c}{a} + \frac{a}{c})$
\n $= 1 + 1 + 1 + (\frac{a}{b} + \frac{b}{a}) + (\frac{b}{c} + \frac{c}{b}) + (\frac{c}{a} + \frac{a}{c})$
\n $= 3 + 3 \times 2$
\n $= 9$ (1)
\niii) $(a + a + a) (\frac{1}{a}, a + \frac{1}{a})$
\n $= \sum_{i=1}^{\infty} \frac{a_i}{a_i} + \sum_{i=1}^{\infty} (\frac{a_i}{a_j} + \frac{a_i}{a_i})$ (1)
\n $= nx + \sum_{i=1}^{\infty} (\frac{a_i}{a_j} + \frac{a_i}{a_i})$
\nThere are 10₂ ways of selecting
\nthree three are 10₂ ways of selecting
\nthree three are 11₂ ways of $a + b$ ₂ is 1
\nFrom $\frac{a_1}{a_1} + \frac{a_1}{a_1}$ works i *a*

$$
ln(0, +a_{2} + ... + a_{n})\left(\frac{1}{a_{1}} + \frac{1}{a_{2}} + ... + \frac{1}{a_{n}}\right)
$$
\n
$$
\ge n + n_{2} \times 2
$$
\n
$$
= n + n(n-1)
$$
\n
$$
= n^{2}
$$
\n(1)
\nC) i) $q = r$
\n $p = q^{2} > 0$
\nHence, P and r must have.
\n f the same sign, and P and R
\n m with the same branch of the graph
\n Q will lie on the opposite
\n Q will lie on the opposite
\n Q will lie on the opposite
\n Q is negative. (1)
\n Q is negative. (2)
\n Q is negative. (3)
\n Q is negative.
\n Q

(a)
$$
\frac{1}{2}
$$
 (1) $\frac{1}{2}$
\n(b) $\frac{1}{2}$
\n $\frac{1}{2}$ (1) $\frac{1}{2}$
\n $\frac{$

3) (b)
$$
\tan x \tan \theta x = 1
$$

\n $\frac{t}{t^4 - 6t^2 + 1} = 1$ form part (i)
\n $\frac{t}{t^4 - 6t^2 + 1} = 1$ form part (i)
\n $4t^2 - 4t^4 = t^4 - 6t^2 + 1$
\n $4t^2 - 4t^4 = t^4 - 6t^2 + 1$
\n5) $x = 15^e$ tan x tan² = tan¹⁵ tan² sin³ $= 1$
\n(ii) $x = 54^e$ tan x tan² $= \tan 54^e$ tan³ $= 1$
\n $= \tan 54^e$ tan³ $= 1$
\n(i) $x = 4$ tan³ $= 1$
\n(iv) $5t^4 - 16t^2 + 1 = 0$
\n $t^2 = \frac{10 + \sqrt{100 - 20}}{10}$
\n $= \frac{5 \pm 2.55}{5}$ (i)
\nNow the roots of the above equation are $\pm \tan 15^{\circ}$
\nand $\pm \tan 54^e$ and
\nsince $\tan 15^{\circ}$ and
\n $\frac{3}{10}$ tan $\frac{54^e}{5}$ = $\frac{5 \pm 2.15}{5}$ (i)
\nThus, then $54^e = \frac{5 \pm 2.15}{5}$ (i)

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\mathcal{A}^{\text{max}}_{\text{max}}$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

 $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}})) = \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}))$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$