\qquad

2011
TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

Examination Date: Wednesday 17th August
Examiner: Mr. M. Brain

General Instructions

- Reading Time - 5 minutes
- Working Time - 3 hours
- Write using a blue or black pen
- Write your student number on every booklet
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question
- Each question attempted is to be returned in a separate Writing Booklet clearly marked Questions 1 etc.
- If required, additional booklets may be requested

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value
a) Find 3
(i) $\quad \int \frac{d x}{x^{2}-16 x+60}$
(ii) $\int \frac{d x}{x^{2}-16 x+80}$
b) Evaluate
(i)

$$
\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin \theta} d \theta
$$

(ii) $\quad \int_{0}^{\pi} e^{x} \cos x d x$
c) Use the substitution $u=x-2$ to find $\int \frac{2 x}{\sqrt{4 x-x^{2}}} d x$
a) (i) Express $\frac{-1+i}{\sqrt{3}+i}$ in mod-arg form
(ii) Hence express $\cos \frac{7 \pi}{12}$ in surd form
b) Evaluate $\arg ((2+i) \bar{w})$ given that $w=-1-3 i$
c) (i) On an Argand diagram shade the region where both

$$
|z-(1+i)| \leq 1 \text { and } 0 \leq \arg (z-(1+i)) \leq \frac{\pi}{4}
$$

(ii) Find the sets of values of $|z|$ and $\arg z$ for the points in the shaded region
d) $\quad z_{1}$ and z_{2} are two complex numbers such that $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}=2 i$
(i) On an Argand diagram show vectors representing $z_{1}, z_{2}, z_{1}+z_{2}$ and $z_{1}-z_{2}$
(ii) Show that $\left|z_{1}\right|=\left|z_{2}\right|$
(iii) If α is the angle between the vectors representing z_{1} and z_{2} show that $\tan \frac{\alpha}{2}=\frac{1}{2}$
(iv) Show that $z_{2}=\frac{1}{5}(3+4 i) z_{1}$
a) $\quad A$ is a point outside a circle with centre $O . P$ is a second point outside the circle such that $P T=P A$ where $P T$ is a tangent to the circle at $T . A O$ cuts the circle at D and $C . P C$ cuts the circle at B. $A B$ cuts the circle at E.

Copy the diagram into your answer booklet
(i) Show that $\triangle P B T$ is similar to $\triangle P T C$
(ii) Show that $\triangle A P B$ is similar to $\triangle C P A$
(iii) Hence show that $D E$ is parallel to $A P$
b) (i) On the same number plane sketch the graphs of $y=|x|-2$ and $y=4+3 x-x^{2}$
(ii) Hence, or otherwise, solve $\frac{|x|-2}{4+3 x-x^{2}}>0$
c) The area between $y=\sin x$ and $y=\cos x$, from the y-axis to the point of intersection, A, is rotated about the line $y=1$

(i) Find the co-ordinates of point A
(ii) Calculate the generated volume of revolution
d) Solve the equation $8 x^{4}+44 x^{3}+54 x^{2}+25 x+4=0$ given that it has a triple root

Question 4 (Start a new booklet)
a) Find all the roots of $P(x)=x^{4}-8 x^{3}+39 x^{2}-122 x+170$
given that $3-i$ is one of the roots
b) The line through the origin which is perpendicular to the tangent
at $P\left(c p, \frac{c}{p}\right)$ to the rectangular hyperbola $x y=c^{2}$ meets the
tangent at N.

Show that the locus of N has the equation $\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y$
c) Give a possible equation for the graph below:

Question 5 (Start a new booklet)
a) The equation of a curve is $x^{2} y^{2}-x^{2}+y^{2}=0$
(i) Show that the numerical value of y satisfies $|y|<1$
(ii) Find the equations of the asymptotes
(iii) Show that $\frac{d y}{d x}=\frac{y^{3}}{x^{3}}$
(iv) Sketch the curve
b) Sketch the graph of each equation on a separate number plane:
(i)
(1) $y=\sqrt{x^{2}}$
(2) $y=(\sqrt{x})^{2}$
(ii) (1) $y=\ln \left(e^{x}\right)$
(2) $y=e^{\ln x}$
(iii)
(1) $y=\sin \left(\sin ^{-1} x\right)$
(2) $y=\sin ^{-1}(\sin x)$
a) The inequality $\frac{a+b+c}{3} \geq \sqrt[3]{a b c}$ is true for any real positive numbers a, b and c. Given that $a+b+c=1$ show:
(i) $\frac{1}{a b c} \geq 27$
(ii) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 9$
(iii) $(1-a)(1-b)(1-c) \geq 8 a b c$
b) (i) Show that the area, A, of a regular pentagon of side length P is given by

$$
A=\frac{5}{2} P^{2} \frac{\sin ^{2} 54^{\circ}}{\sin 72^{\circ}}
$$

(ii) The area enclosed by $y=x^{2}$ and $y=3$ is the base of a solid.

Cross-sections of the solid, parallel to the x-axis, are regular pentagons with one side of the pentagon on the base of the solid. Calculate the volume of the solid, correct to one decimal place

Question 6 continued on next page

Question 6 continued

c) In the diagram below the circle with the equation $(x-2)^{2}+y^{2}=1$
is drawn. The region bounded by the circle is rotated about the line $x=1$

(i) Use the method of cylindrical shells to show that the volume, V, of the solid so formed is given by

$$
V=4 \pi \int_{1}^{3}(x-1) \sqrt{1-(x-2)^{2}} d x
$$

(ii) By using the substitution $x-2=\sin \theta$ calculate the volume of the solid formed

Question 7 (Start a new booklet)

a) For the diagram below:

(i) Show that the tangent at $P(a \sec \theta, b \tan \theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ has equation $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}-1=0$
(ii) Show that if the tangent at P is also a tangent to the circle with centre $(a e, 0)$ and radius $a \sqrt{e^{2}+1}$ then $\sec \theta=-e$
(iii) Given that $\sec \theta=-e$, deduce that the points of contact, P and Q on the hyperbola, of the common tangents to the circle and the hyperbola are the extremities of a latus rectum $(x=-a e)$ of the hyperbola and state the coordinates of P and Q
(iv) Find the equations of the common tangents to the circle and the hyperbola and find the coordinates of their points of contact with the circle
b) (i) Show that $\frac{\sin (A+B)-\sin (A-B)}{2 \sin B}=\cos A$
(ii) Hence show that

$$
\cos x+\cos 3 x+\cos 5 x+\ldots+\cos (2 n-3) x+\cos (2 n-1) x=\frac{\sin 2 n x}{2 \sin x}
$$

(iii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin 8 x}{\sin x} d x$

Question 8 (Start a new booklet)
a) In the diagram below $A B C$ is a triangle in which $A B=A C$ and $B C=1 . D$ is the point on $B C$ such that $\angle B A D=\theta$, $\angle C A D=2 \theta$

(i) Letting $B D=x$ show that $\cos \theta=\frac{1-x}{2 x}$
(ii) Hence show that $\frac{1}{3}<x<\frac{1}{2}$
b) Let α, β and γ be the non-zero roots of $x^{3}+3 p x+q=0$
(i) Obtain the monic equation which has the roots $\frac{\alpha \beta}{\gamma}, \frac{\alpha \gamma}{\beta}$ and $\frac{\beta \gamma}{\alpha}$
(ii) Show that if $\alpha \beta=\gamma$ then $(3 p-q)^{2}+q=0$
c) (i) Prove that $\cos x=\sin \left(x+\frac{\pi}{2}\right)$
(ii) Given that $y=5 \sin (x+\alpha)$ prove, by mathematical induction, that $\frac{d^{n} y}{d x^{n}}=5 \sin \left(x+\alpha+\frac{n \pi}{2}\right)$ for $n \geq 1$

$$
\begin{aligned}
& \int x^{n} d x \\
& =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \\
& =\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE $: \ln x=\log _{\mathrm{e}} x, \quad x>0$

Year 12 TRIAL Ext 2011
(1) a)(i) $\int \frac{d x}{x^{2}-16 x+60}$

$$
\begin{aligned}
& x^{2}=16 x+60=(x-6)(x-10) \\
\therefore & \int=\int \frac{d x}{(x-6)(x-10)}
\end{aligned}
$$

Letting: $\frac{1}{(x-6)^{(x-10)}}=\frac{A}{x-6}+\frac{B}{x-10}$

$$
\therefore \quad 1=A(x-10)+B(x-6)
$$

For $x=10 \quad \therefore \quad 1=4 B \quad \therefore B=\frac{1}{4}$

$$
\begin{align*}
x & =6: 1=-4 A: A=-\frac{1}{4} \\
\therefore & =\frac{1}{4} \int \frac{1}{x-10}-\frac{1}{x-6} d x \\
& =\frac{1}{4}\{\ln |x-10|-\ln |x-6|+c\} \\
\text { or } & =\frac{1}{4}\left\{\ln \left|\frac{x-10}{x-6}\right|+c\right\} \\
\text { or } & =\ln \left|\frac{x-10}{x-6}\right|^{1 / 4}+c \tag{2}
\end{align*}
$$

(ii)

$$
\begin{align*}
& \int \frac{d x}{x^{2}-16 x+80} \\
= & \int \frac{d x}{(x-8)^{2}+16} \\
= & \frac{1}{4} \tan ^{-1}\left(\frac{x-8}{4}\right)+C \tag{1}
\end{align*}
$$

b) (i) Letting $\tan \frac{6}{2}=t$

$$
\begin{aligned}
\therefore \frac{d t}{d \theta} & =\frac{1}{2}\left(\sec ^{2} \frac{\theta}{2}\right) \\
& =\frac{1}{2}\left(\tan ^{2} \frac{\theta}{2}+1\right) \\
& =\frac{1}{2}\left(t^{2}+1\right) \\
\therefore d \theta & =\frac{2}{t^{2}+1} d t
\end{aligned}
$$

$$
\text { and } \sin \theta=\frac{2 t}{t^{2}+1}
$$

and at $\theta=\frac{\pi}{2}: t=\tan \pi / 4=1$

$$
\theta=0: t=\tan 0=0
$$

$$
\begin{align*}
& \therefore \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin \theta} d \theta \\
& =\int_{0}^{1} \frac{1}{1+\frac{2 t}{t^{2}+1} \times \frac{2}{t^{2}+1} d t} \\
& =\int_{0}^{1} \frac{2}{t^{2}+1+2 t} d t \\
& =\int_{0}^{1} \frac{2}{(t+1)^{2}} d t \\
& =2 \int_{0}^{1}(t+1)^{-2} d t \\
& =2\left[\frac{-1}{t+1}\right]_{0}^{1} \\
& =-2\left(\frac{1}{1+1}-\frac{1}{1+0}\right) \\
& =-2\left(\frac{1}{2}-1\right) \\
& =1 \tag{4}
\end{align*}
$$

(ii) $\int_{0}^{\pi} e^{x} \cos x d x=I$

$$
u=e^{x} \quad v^{\prime}=\cos x
$$

$$
u^{\prime}=e^{x} \quad v=\sin x
$$

$$
=u v-\int v u^{\prime}
$$

$$
=\left[e^{x} \sin x\right]_{0}^{\pi}-\int_{0}^{\pi} e^{x} \sin x d x
$$

$$
u=e^{x} \quad v^{\prime}=\sin x
$$

$$
u^{\prime}=e^{x t} \quad v=-\cos x
$$

$$
=\left\{e^{x} \sin x\right]_{0}^{\pi}-\left[\left[-e^{x} \cos x\right]_{0}^{\pi}+\int_{0}^{\pi} e^{x} \cos x d x\right]
$$

$$
\therefore I=\left[e^{x} \sin x+e^{x} \cos x\right]_{0}^{\pi}-I
$$

$$
\therefore 21=\left[e^{x}(\sin x+\cos x)\right]_{0}^{\pi}
$$

$$
\begin{equation*}
\therefore \pm=\frac{1}{2}\left\{\left(e^{\pi}(0-1)\right)-\left(e^{0}(0+1)\right\}\right. \tag{4}
\end{equation*}
$$

$$
=\frac{1}{2}\left(-e^{\pi}-1\right)
$$

$$
\text { c) } \begin{aligned}
& \int \frac{2 x}{\sqrt{4 x-x^{2}}} d x=\int \frac{2(u+2)}{\sqrt{4(u+2)-(u+2)^{2}}} d u \quad \therefore d u=d x \\
= & \rightarrow \int \frac{u+2}{\sqrt{4-u^{2}}} d u \\
= & 2 \int \frac{u}{\sqrt{4-u^{2}}} d u+4 \int \frac{1}{\sqrt{4-u^{2}}} d u \quad u^{2}=w \\
= & 2\left\{\frac{1}{2} \int \frac{2 u}{\sqrt{4-w}} d u\right\}+4 \sin ^{-1}\left(\frac{u}{2}\right)+c \& \\
= & \int(4-w)^{-\frac{1}{2}} d u+4 \sin ^{-1}(u / 2)+C
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(4-w)^{\frac{1}{2}}}{-\frac{1}{2}}+4 \sin ^{-1}\left(\frac{y}{2}\right)+c \\
& =-2 \sqrt{4-u^{2}}+4 \sin ^{-1}\left(\frac{y}{2}\right)+c \\
& =-2 \sqrt{4-(x-2)^{2}}+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+c \\
& =-2 \sqrt{4 x-x^{2}}+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+c
\end{aligned}
$$

(2)

$$
\text { a) (i) } \begin{align*}
& \frac{-1+i}{\sqrt{3}+i}=\frac{\sqrt{2} \operatorname{cis} \frac{3 \pi}{4}}{2 \operatorname{cis} \pi / 6} \\
= & \frac{\sqrt{2}}{2} \operatorname{cis}(3 \pi / 4-\pi / 6) \\
= & \frac{1}{\sqrt{2}} \operatorname{cis}(7 \pi / 12) \tag{1}
\end{align*}
$$

(ii) $\frac{-1+i}{\sqrt{3}+i} \times \sqrt{3}-i=\frac{1-\sqrt{3}+(1+\sqrt{3}) i}{4}$
\therefore equating real parts of (i) and (ii):

$$
\begin{align*}
\frac{1}{\sqrt{2}} \cos \left(\frac{7 \pi}{12}\right) & =\frac{1-\sqrt{3}}{4} \\
\therefore \cos \left(\frac{7 \pi}{12}\right) & =\frac{\sqrt{2}-\sqrt{6}}{4} \tag{2}
\end{align*}
$$

b) $\quad \arg ((2+i)-\bar{w})=\arg ((2+i)(-1+3 i))$

$$
=\arg (-5+5 i)
$$

$$
=3 \pi / 4
$$

(1)
C) (i)

$$
\begin{align*}
& O C<|z|<O P \tag{ii}\\
\therefore & \sqrt{2}<|z|<\sqrt{2}+1
\end{align*}
$$

$\arg z_{\min }$ at $Q, \arg z_{\max }$ at p

$$
\therefore \tan ^{-1} \frac{1}{2}<\arg z<\tan ^{-1} 1
$$

$\operatorname{or} \tan ^{-1} \frac{1}{2}<\arg z<\pi / 4$
d) (i)

$$
O A=Z_{1}, O B=Z_{2}, O C=Z_{1}+Z_{2}, B A=Z_{1}-Z_{2}
$$

Note: $A O B C$ is parallelogram (by addition of vectors)
(ii) $\arg \left(\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right)=\arg (2 i)$

$$
\therefore \operatorname{avg}\left(z_{1}+z_{2}\right)-\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{2}
$$

\therefore angle between diagonals of parallelogram $=90^{\circ}$
\therefore AOBC is rhombus

$$
\begin{equation*}
\therefore\left|z_{1}\right|=\left|z_{2}\right| \quad(Q E D) \tag{1}
\end{equation*}
$$

(iii)

$$
\begin{align*}
& \left|\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right|=|2 C| \\
& \therefore \quad \frac{\left|z_{1}+z_{2}\right|}{\left|z_{1}-z_{2}\right|}=2 \\
& \therefore|O C|=2 \times|A B| \\
& \therefore O D=2 \times A D \tag{12}
\end{align*}
$$

and $\tan \alpha / 2=\frac{A D}{O D}=\frac{A D}{2 A D}=\frac{1}{2}(Q E D)$
(iv) $\frac{1}{5}(3+4 i)=\frac{1}{5} \times 5 \operatorname{cis}\left(\tan ^{-14 / 3}\right)$

$$
\begin{gathered}
=\operatorname{cis}\left(\tan ^{-1}\left(\frac{4}{3}\right)\right) \\
\therefore\left|\frac{1}{5}(3+4 i)\right|=1 \\
\quad \arg \left(\frac{1}{5}(3+4 i)\right)=\tan ^{-1}\left(\frac{4}{3}\right)
\end{gathered}
$$

$\therefore z_{1} \times\left(\frac{1}{5}\left(3 * 4 x^{\prime}\right)\right.$ is same modulus as
z_{1}, rotated through $\tan ^{-1}\left(\frac{4}{3}\right)$

From diagram: $\tan \frac{\alpha}{2}=\frac{1}{2}$

$$
\begin{align*}
\therefore \tan \alpha & =\frac{2 \times \frac{1}{2}}{1-\left(\frac{1}{2}\right)^{2}} \\
& =\frac{4}{3} \\
& \therefore \alpha=\tan ^{-1}\left(\frac{4}{3}\right) \text { and }\left|z_{1}\right|=\left|z_{2}\right| \\
\therefore z_{2} & =\frac{1}{5}(3+4 i) z_{1} \quad(Q E D) \tag{2}
\end{align*}
$$

(3)
a)

(i) $\angle B P T=\angle C P T$ (common) (A)
$\angle P T B=\angle D C T(\angle$ bet. tang. + chord $)(A)$
$\therefore \angle P B T=\angle P T C \quad(\angle$ sum $\triangle)(A)$
$\therefore \triangle P B T \| P I C \quad$ (AAA)
$(Q E D)$
(ii) $\angle A P B=\angle C P A$ (common) (A) and $\frac{P B}{P T}=\frac{P T}{P C}$ (corves. sides ||I Δ 's, from (i)) but $P T=P A \quad$ (given)

$$
\begin{align*}
& \therefore \quad \frac{P B}{P A}=\frac{P A}{P C} \quad(s, s) \\
& \therefore \triangle A P B\|\| \triangle P A \quad(S . A . S)(Q E D)
\end{align*}
$$

(iii) $\quad \angle P A E=\angle B C D$ (corves. Lis in $\|\| \Delta$'s, from(ii)) and $\angle B C D=\angle D E A$ (ext. Lot cyclic quad)

$$
\begin{align*}
& \therefore \quad \angle P A E=\angle D E A \\
& \therefore D E \| A P \text { (alt. LS are }=\text {). (QED) } \tag{2}
\end{align*}
$$

b) (i) $y=|x|-2 \quad y=4+3 x-x^{2}$

$$
=-(x+1)(x-4)
$$

(ii) For $\frac{|x|-2}{4+3 x-x^{2}}>0$
ie. $\frac{|x|-2}{4+3 x-x^{2}}$ POSITIVE
ie when BoTH graphs on same side of x-axis
\therefore Solution is:
$-2<x<-1$ or $\quad 2<x<4$.
C) (i) For A: $\sin x=\cos x$

$$
\begin{aligned}
& \therefore \tan x=1 \\
& \therefore x=\pi / 4, y=\frac{1}{\sqrt{2}}
\end{aligned}
$$

(ii) $A(x)=$ area of annulus

$$
\begin{align*}
&=\pi\left\{(1-\sin x)^{2}-(1-\cos x)^{2}\right\} \\
& \therefore V=\lim _{\delta x \rightarrow 0} \sum_{a}^{b} A(x) \delta x \\
&=\pi \int_{0}^{\pi / 4}\left(1-2 \sin x+\sin ^{2} x-1+2 \cos x-\cos ^{2} x\right) d x \\
&=\pi \int_{0}^{\pi / 4}(2 \cos x-2 \sin x-\cos 2 x) d x \\
&=\pi\left[2 \sin x+2 \cos x-\frac{1}{2} \sin 2 x\right]_{0}^{\pi / 4} \\
&=\pi\left(\left(2 \times \frac{1}{\sqrt{2}}+2 \times \frac{1}{\sqrt{2}}-\frac{1}{2}\right)-(0+2-0)\right) \\
& \text { tiV }=\pi\left(\frac{4}{\sqrt{2}}-\frac{5}{2}\right) \tag{3}\\
& 0 \pi \frac{\pi}{4}(2 \sqrt{2}-2 \cdot 5) u^{3}
\end{align*}
$$

d) For $P(x)=8 x^{4}+44 x^{3}+54 x^{2}+25 x+4=0$

$$
\begin{aligned}
\therefore P^{\prime}(x) & =32 x^{3}+132 x^{2}+108 x+25 \\
\therefore P^{\prime \prime}(x) & =96 x^{2}+264 x+108 \\
& =12(4 x+9)(2 x+1)
\end{aligned}
$$

$\therefore(4 x+9)$ or $(2 x+1)$ is multiple factor
Now: $P\left(-\frac{1}{2}\right)=8\left(-\frac{1}{2}\right)^{4}+44\left(-\frac{1}{2}\right)^{3}+54\left(-\frac{1}{2}\right)^{2}$

$$
+25\left(-\frac{1}{2}\right)+4
$$

$=0$

$$
\left.\therefore P(x)=(2 x+1)^{3} \times Q(x)\right\}
$$

$$
\text { ie. } P(x)=(2 x+1)^{3}(x+4)
$$

$$
\therefore x=-\frac{1}{2} \text { or }-4
$$

(4) a) $P(x)$ has real coefficients
\therefore roots in conjugate pairs
$\therefore 3-i$ is root $\Rightarrow 3+i$ is root
$\therefore(x-(3-i))(x-(3+i))$ is factor of $P(x)$
ie. $x^{2}-6 x+10$ is factor
\therefore by division or by inspection:

$$
P(x)=\left(x^{2}-6 x+10\right)\left(x^{2}-2 x+17\right)
$$

For $x^{2}-2 x+17=0: x=\frac{2 \pm \sqrt{-64}}{2}$

$$
=1 \pm 4 i
$$

\therefore Roots are: $3 \pm i, 1 \pm 4 i$
b)

$$
\begin{gathered}
y=\frac{c^{2}}{x^{\prime}} \\
\therefore y^{\prime}=\frac{-c^{2}}{x^{2}}
\end{gathered}
$$

\therefore Equation of tangent at P :

$$
\begin{align*}
& y-4 / p=-\frac{1}{p^{2}}(x-c p) \\
& \therefore x+p^{2} y=2 c p \cdots \tag{1}
\end{align*}
$$

and: Equation of $O N$ is

$$
y=p^{2} x \cdots(2)
$$

\therefore (2) into (1): $x+p^{2}\left(p^{2} x\right)=2 c p$

$$
\begin{aligned}
& \therefore x=\frac{2 c p}{1+p^{4}} \\
& \therefore y=\frac{2 x p^{3}}{1+p^{4}}
\end{aligned}
$$

Now: $x\left(1+p^{4}\right)=2 c p$ and $p^{2}=y / x$

$$
\begin{gather*}
\therefore x^{2}\left(1+\frac{y^{2}}{x^{2}}\right)^{2}=4 c^{2}(y / x) \quad\left(x \text { BS. } x^{2}\right) \\
\left.\therefore\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y\right) \quad(Q E D) \tag{7}
\end{gather*}
$$

c) Graph is of the form:

$$
y=\frac{1}{a(x-2)(x-4)}
$$

ie. reciprocal graph of parabola

- with turning point at $x=3$

But at $x=3:$

$$
\begin{align*}
& -\frac{1}{2}=\frac{1}{a(3-2)(3-4)} \\
& -\frac{1}{2}=\frac{1}{-a} \\
& \therefore a=2
\end{align*}
$$

\therefore Equation is: $\quad y=\frac{1}{2(x-2)(x-4)}$
(5) a) (i)

$$
\begin{aligned}
& x^{2} y^{2}-x^{2}+y^{2}=0 \\
& \therefore y^{2}\left(x^{2}+1\right)=x^{2} \\
& \therefore y^{2}=\frac{x^{2}}{x^{2}+1}
\end{aligned}
$$

Now: RHS $\geqslant 0$ for all x and Denominator $>$ Numerator

$$
\begin{aligned}
& \therefore \text { RMS }<1 \\
& \therefore \quad 0 \leqslant y^{2}<1
\end{aligned}
$$

ie. $|y|<1 \quad(Q E D)$
(ii) as $x \rightarrow \infty \quad y^{2} \rightarrow 1$

$$
\therefore y \rightarrow \pm 1
$$

\therefore asymptotes: $y= \pm 1$
(iii) By implicit differentiation:

$$
\begin{aligned}
& x^{2} 2 y y^{\prime}+2 x y^{2}-2 x+2 y y^{\prime}=0 \\
& \therefore y^{\prime}\left(2 x^{2} y+2 y\right)=2 x-2 x y^{2} \\
& \therefore \frac{d y}{d x}=\frac{2 x\left(1-y^{2}\right)}{2 y\left(x^{2}+1\right)}
\end{aligned}
$$

but from (1) $y^{2}\left(x^{2}+1\right)=x^{2}$

$$
\therefore y\left(x^{2}+1\right)=x^{2} / y
$$

and $\quad x^{2}\left(1-y^{2}\right)=y^{2}$

$$
\therefore x\left(1-y^{2}\right)=y^{2} / x
$$

$$
\begin{aligned}
\therefore \frac{d y}{d x} & =y^{2} / x \div x^{2} / y \\
& i e \frac{d y}{d x}=y^{3} / x^{3}
\end{aligned}
$$

(iv) at $x=0 \quad y^{2}=0 \quad \therefore y=0$

$$
\therefore \text { as } x \rightarrow 0, y \rightarrow 0
$$

ie $y \rightarrow x$

$$
\therefore \frac{d y}{d x} \rightarrow 1
$$

$$
\operatorname{as} x \rightarrow \pm \infty \frac{d y}{d x} \rightarrow 0
$$

(MOTE : even in x and y
\therefore symmetry about both axes)
b) (i) (1)

(2) $y=\sin ^{-1}(\sin x) \quad\left\{\begin{array}{l}\text { Domain: } x \in \mathbb{R} \\ \text { for } \sin x\end{array}\right.$ \}But: Domain:

$$
-1 \leq \sin ^{-1} x \leq 1
$$

$$
\therefore y=x \quad \text { domain: }-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}
$$

increasing graph: $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
\therefore decreasing graph: $\pi / 2 \leqslant x \leqslant \frac{3}{2}$
AND periodic function.

(6) a) (i)

$$
\left.\sqrt[3]{a b c} \leq \frac{a+b+c}{3}\right\} a+b+c=1
$$

$$
\begin{align*}
\therefore & \leqslant \frac{1}{3} \\
\therefore a b c & \leqslant \frac{1}{27} \\
\therefore \frac{1}{a b c} & \geqslant 27 \quad \text { (QED) } \tag{1}
\end{align*}
$$

(ii) $\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geqslant \sqrt[3]{\frac{1}{a} \times \frac{1}{b} \times \frac{1}{c}}$

$$
\therefore \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqslant 3 \sqrt[3]{\frac{1}{a b c}}
$$

$$
\geqslant 3 \sqrt[3]{27}
$$

le. $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqslant 9$ (QED)
a) (iii)

$$
\begin{aligned}
& (1-a)(1-b)(1-c) \\
= & 1-(a+b+c)+(b c+c a+a b)-a b c \\
= & (b c+c a+a b)-a b c \\
= & a b c\left\{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-1\right\} \\
\geqslant & a b c\{9-1\}
\end{aligned}
$$

$\therefore \quad(1-a)(1-b)(1-c) \geqslant 8 a b c \quad(2 E D)$
b) (i)

Area of

$$
\text { peat agon of }=5 \times \frac{1}{2} x^{2} \sin 72^{\circ}
$$

and $\frac{x}{\sin 54^{\circ}}=\frac{p}{\sin 72^{\circ}}$

$$
\begin{align*}
& \therefore \text { Area }=\frac{5}{2} \times\left(\frac{P \sin 54^{\circ}}{\sin 72^{\circ}}\right)^{2} \times \sin 72^{\circ} \\
& \therefore \text { Area }=\frac{5}{2} P^{2} \frac{\sin ^{2} 54^{\circ}}{\sin 72^{\circ}}(Q \in D) \tag{ii}
\end{align*}
$$

Sketch:

$$
\begin{align*}
& A(x)=\frac{5}{2}(2 x)^{2} \frac{\sin ^{2} 54^{\circ}}{\sin 72^{\circ}} \\
& \therefore A(y)=10 y \frac{\sin ^{2} 54^{\circ}}{\sin 72^{\circ}} \\
& \therefore V=\lim _{\delta y \rightarrow 0} \frac{b}{2} 10 y \frac{\sin ^{2} 54^{\circ}}{\sin 72^{\circ}} \delta y \\
&=10 \frac{\sin ^{2} 54^{\circ}}{\sin 72^{\circ}} \int_{0}^{3} y d y \\
&=5 \frac{\sin ^{2} 54^{\circ}}{\sin ^{\circ} 72^{\circ}}\left[y^{2}\right]_{0}^{3} \\
&=45 \frac{\sin ^{2} 54^{\circ}}{\sin 72^{\circ}}(=30.968 \ldots) \\
& \therefore V=31.0 u^{3} \quad(1 d p) \tag{3}
\end{align*}
$$

$$
\text { c) (i) } \begin{align*}
& \delta V=\pi\left\{(x+\delta x-1)^{2}-(x-1)^{2}\right\} 2 y \\
&=2 \pi y\{2(x-1)+\delta x\} \delta x \\
&=4 \pi(x-1) y \delta x \quad\left(\delta x^{2}\right. \text { negligible) } \\
&=4 \pi(x-1) \sqrt{1-(x-2)^{2}} \delta x \\
&\left.\therefore \begin{array}{rl}
V & =\lim _{\delta x \rightarrow} 4 \pi \sum_{0}^{b}(x-1) \sqrt{1-(x-2)^{2}} \delta x \\
& =4 \pi \int_{1}^{3}(x-1) \sqrt{1-(x-2)^{2}} d x
\end{array}\right) . \text { (QED)}
\end{align*}
$$

(ii) let $x-2=\sin \theta \quad \therefore d x=\cos \theta d \theta$
at $x=1 \sin \theta=-1 \quad \therefore \theta=-\pi / 2$

$$
x=3 \sin \theta=1 \quad \therefore \theta=\pi / 2
$$

$\therefore V=4 \pi \int_{-\pi / 2}^{\pi / 2}(1+\sin \theta) \sqrt{1-\sin ^{2} \theta} \cos \theta d \theta$ $=4 \pi \int_{-\frac{\pi}{2}}^{\pi / 2}(1+\sin \theta) \cos ^{2} \theta d \theta$
$=4 \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}(1+\cos 2 \theta)+\sin \theta \cos ^{2} \theta d \theta$ $=4 \pi\left[\frac{1}{2}\left(\theta+\frac{1}{2} \sin 2 \theta\right)-\frac{1}{3} \cos ^{3} \theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$ $=4 \pi\left(\frac{\pi}{4}+0-0+\frac{\pi}{4}+0-0\right)$
$=2 \pi^{2} u^{3}$
(7) a)

$$
\begin{aligned}
& \text { (i) } \quad \begin{aligned}
\frac{x^{2}}{a^{2}} & =\frac{y^{2}}{b^{2}}=1 \\
\therefore \quad \frac{2 x}{a^{2}} & -\frac{2 y}{b^{2}} y^{\prime}=0 \\
\therefore y^{\prime} & =\frac{b^{2} x}{a^{2} y} \\
& =\frac{b^{2} \times a \sec \theta}{a^{2} \times b \tan \theta} \\
& =\frac{b \sec \theta}{a \tan \theta}
\end{aligned}
\end{aligned}
$$

\therefore Equin of tangent:

$$
\begin{aligned}
& y-b \tan \theta=\frac{b \sec \theta}{a \tan \theta}(x-a \sec \theta) \\
& \therefore a \tan \theta y-a b \tan ^{2} \theta=b \sec \theta x-a b \sec ^{2} \theta \\
& \therefore b \sec \theta x-a \tan \theta y=a b(\sec ^{2} \theta \underbrace{}_{1}-\tan ^{2} \theta)
\end{aligned}
$$

$$
\begin{equation*}
\therefore \frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}-1=0 \text { (QED) } \tag{2}
\end{equation*}
$$

(ii) Perpendicular dist. from $(a e, 0)$ to circle tangent $=$ radius

$$
\begin{aligned}
& \therefore \frac{|e \sec \theta+0-1|}{\sqrt{\frac{\sec ^{2} \theta}{a^{2}}+\frac{\tan ^{2} \theta}{b^{2}}}}=a \sqrt{e^{2}+1} \\
& \text { LHS }
\end{aligned}=\frac{|\operatorname{csec} \theta-1|}{\sqrt{\frac{\sec ^{2} \theta}{a^{2}}+\frac{\sec ^{2} \theta-1}{b^{2}}}} .
$$

but $b^{2} / a^{2}+1=e^{2} \therefore a^{2}+b^{2}=a^{2} e^{2}$

$$
\begin{aligned}
& =\frac{|\sec \theta-1|}{\sqrt{\frac{\sec ^{2} \theta\left(\alpha^{2} e^{2}\right)}{\beta^{2} b^{2}}-\frac{1}{b^{2}}}} \\
& =\frac{|e \sec \theta-1|}{\sqrt{\frac{e^{2} \sec ^{2} \theta-1}{b^{2}}}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { LH }^{2}=\text { RUS }^{2} \\
\therefore \quad & a^{2}\left(e^{2}+1\right)=\frac{b^{2}(e \sec \theta-1)^{2}}{e^{2} \sec ^{2} \theta-1} \\
\therefore & \frac{a^{2}}{b^{2}}\left(e^{2}+1\right)=\frac{e \sec \theta-1}{e \sec \theta+1}
\end{aligned}
$$

but $\frac{a^{2}}{b^{2}}=\frac{1}{e^{2}-1}$

$$
\therefore \frac{e^{2}+1}{e^{2}-1}=\frac{e \sec \theta-1}{\operatorname{esec} \theta+1}
$$

$$
\begin{align*}
\therefore \quad e^{3} \sec \theta+e \sec \theta+e^{2}+K & =e^{3} \sec \theta-\sec \theta-e^{2}+1 \\
\therefore 2 e \sec \theta & =-2 e^{2} \tag{3}\\
\therefore \sec \theta & =-e \quad(Q \in D)
\end{align*}
$$

(iii) Coordinates of P and Q are

$$
(a \sec \theta, b \tan \theta)
$$

\therefore if $\sec \theta=-e$ then $\sec ^{2} \theta=e^{2}$

$$
\begin{aligned}
& \therefore \tan ^{2} \theta+1=e^{2} \\
& \therefore \tan \theta= \pm \sqrt{e^{2}-1} \\
& \therefore P, Q \text { are }\left(-a e, \pm b \sqrt{e^{2}-1}\right)
\end{aligned}
$$

iii. on laths rectum
(iv) Tangents: $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$
\therefore Common tangents:

$$
\begin{aligned}
& -\frac{x e}{a}-\frac{y\left(\pm \sqrt{e^{2}-1}\right)}{b}=1 \\
& \therefore-x e-y\left(\frac{ \pm \sqrt{e^{2}-1}}{b}\right)=a
\end{aligned}
$$

but $1=\frac{a^{2}}{b^{2}}\left(e^{2}-1\right)$

$$
\begin{aligned}
\therefore & x e \pm y+a=0 \\
& \text { or } y= \pm(x e+a)
\end{aligned}
$$

a) (iv) continued:
solve simultaneously with circle equation:
ie with: $y= \pm \sqrt{a^{2}\left(e^{2}+1\right)-(x-a e)^{2}}$

$$
\begin{gathered}
\therefore(x e+a)^{2}=a^{2}\left(e^{2}+1\right)-(x-a e)^{2} \\
\therefore x^{2} e^{2}+2 a x e+a^{2}=a^{2} e^{2}+a^{2}-x^{2}-2 a x e-a^{2} e^{2} \\
\therefore x^{2}\left(e^{2}-1\right)=0 \\
\therefore x=0
\end{gathered}
$$

for $x=0 \quad y= \pm a$
\therefore contact pts: $(0, \pm a)$
Prove:

$$
\text { b) (i) } \begin{align*}
\text { Prove: } & \frac{\sin (A+B)-\sin (A-B)}{2 \sin B}=\cos A \\
L H S & =\frac{\sin A \cos B+\cos A \sin B-\sin A \cos B+\cos A \sin B}{2 \sin B} \\
& =\frac{2 \cos A \sin B}{2 \sin B} \\
& =\cos A \\
& =\text { RHS (QED) }
\end{align*}
$$

(ii) Letting $A=(2 x-1) x, B=x$, then:

$$
\begin{aligned}
& \cos (2 n-1) x=\frac{\sin 2 n x-\sin 2(n-1) x}{2 \sin x} \\
& \left.=\frac{\frac{\sin 2 n x}{2 \sin x}-\frac{\sin 2(n-1) x}{2 \sin x}}{\therefore \cos x+\cos 3 x+\cos 5 x+\cdots+\cos (2 n-3) x}+\frac{\cos (2 n-1) x}{2 \sin x}-\frac{\sin 0}{2 \sin x}\right)+\left(\frac{\sin 4 x}{2 \sin x}-\frac{\sin 2 x}{2 \sin x}\right) \\
& =\left(\frac{\sin 2 x}{2 \sin 6 x}-\frac{\sin 4 x}{2 \sin x}\right)+\cdots+\left(\frac{\sin 2(n-1) x}{2 \sin x}-\frac{\sin 2(n-2) x}{2 \sin x}\right. \\
& +\left(\frac{\sin 2 n x}{2 \sin x}-\frac{\sin 2(n-1) x}{2 \sin x}\right) \\
& =\frac{\sin 2 n x}{2 \sin x} \quad \text { (QED) }
\end{aligned}
$$

(iii) $\int_{0}^{\frac{\pi}{2}} \frac{\sin 8 x}{\sin x} d x$

$$
\begin{align*}
& =2 \int_{0}^{\frac{\pi}{2}} \frac{\sin 2 \times 4 x}{2 \sin x} d x(\text { ie } x=4) \\
& =2 \int_{0}^{\frac{\pi}{2}}(\cos x+\cos 3 x+\cos 5 x+\cos 7 x) d x \\
& (\text { from }(i i)) \\
& =2\left[\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\frac{1}{7} \sin 7 x\right]_{0}^{\frac{\pi}{2}} \\
& =2\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\right) \\
& =152 \tag{2}
\end{align*}
$$

(8) a) (i) In $\triangle A D B$: letting $B D=x$:

$$
\frac{x}{\sin \theta}=\frac{A B}{\sin A D B}
$$

In $\triangle A D C: D C=1-x:$

$$
\frac{1-x}{\sin 2 \theta}=\frac{A C}{\sin A D C}
$$

but $\sin A D C=\sin \left(180^{\circ}-\angle A D B\right)=\sin A D B$ and $A B=A C$

$$
\begin{align*}
& \therefore \frac{A C}{\sin A D C}=\frac{A B}{\sin A D B} \\
& \therefore \frac{x}{\sin \theta}=\frac{1-x}{\sin 2 \theta} \\
& \therefore \frac{2 \sin \theta \cos \theta}{\sin \theta}=\frac{1-x}{x} \tag{4}\\
& \therefore \cos \theta \\
& \therefore 0^{\circ}<3 \theta<180^{\circ} \\
& \therefore 0^{\circ}<\theta<60^{\circ} \\
& \therefore 1>\cos \theta>\frac{1-x}{2} \\
& \therefore 1>\frac{1-x}{2 x}>\frac{1}{2} \\
& \therefore(x>0) \\
& 2 x>1-x>1
\end{align*}
$$

(ii)
(8)b)(i)

$$
\begin{gathered}
\alpha+\beta+\gamma=0 \\
\alpha \beta+\alpha \gamma+\beta \gamma=3 p \\
\alpha \beta \gamma=-q
\end{gathered}
$$

$$
\frac{\alpha \beta}{\gamma}+\frac{\alpha \gamma}{\beta}+\frac{\beta \gamma}{\alpha}=\frac{\alpha^{2} \beta^{2}+\alpha^{2} \gamma^{2}+\beta^{2} \gamma^{2}}{\alpha \beta \gamma}
$$

$$
=\frac{\left(\alpha \beta+\alpha \gamma^{+} \beta \gamma\right)^{2}-2 \alpha \beta \gamma(\alpha+\beta+\gamma)}{\alpha \beta \gamma}
$$

$$
=-\frac{9 p^{2}}{q}
$$

AMP:

$$
\begin{aligned}
& \frac{\alpha \beta}{\gamma} \cdot \frac{\alpha \gamma}{\beta}+\frac{\alpha \beta}{\gamma} \cdot \frac{\beta \gamma}{\alpha}+\frac{\alpha \gamma}{\beta} \cdot \frac{\beta \gamma}{\alpha}=\alpha^{2}+\beta^{2}+\gamma^{2} \\
&=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha \gamma) \\
&=-6 p
\end{aligned}
$$

AMD

$$
\begin{aligned}
\frac{\alpha \beta}{\gamma} \times \frac{\alpha \gamma}{\beta} \times \beta \gamma & =\alpha \beta \gamma \\
& =-q
\end{aligned}
$$

\therefore equation is:

$$
\begin{equation*}
x^{3}+\frac{9 p^{2}}{q} x^{2}-6 p x+q=0 \tag{3}
\end{equation*}
$$

(ii) If $\alpha \beta=\gamma$ then the root: $\frac{\alpha \beta}{\gamma}$ is 1

$$
\begin{align*}
& \therefore 1+\frac{9 p^{2}}{q}-6 p+q=0 \\
& \therefore q+9 p^{2}-6 p q+q^{2}=0 \\
& \therefore(3 p-q)^{2}+q=0 \text { (QED) } \tag{2}
\end{align*}
$$

c) (i)

$$
\begin{aligned}
\cos x & =\cos (-x) \\
& =\sin (\pi / 2-(-x)) \\
& =\sin \left(\frac{\pi}{2}+x\right) \quad \text { (QED) }
\end{aligned}
$$

$\{(6)$

$$
\begin{aligned}
\sin \left(x+\frac{\pi}{2}\right) & =\sin x \cos \frac{\pi}{2}+\cos x \sin \frac{\pi}{2} \\
& =\cos x\}
\end{aligned}
$$

For $n=1$: Prove -

$$
\left.\begin{array}{rl}
d / \alpha x & (5 \sin (x+\alpha))=5 \sin \left(x+\alpha+\frac{\pi}{2}\right) \\
\text { LHS } & =5 \cos (x+\alpha) \\
\text { RH } & =5 \sin \left((x+\alpha)+\frac{\pi}{2}\right) \\
& =5 \cos (x+\alpha)
\end{array}\right\} \text { from (i) }
$$

\therefore true for $n=1$
Assume twee for $n=k$
ie. $\frac{d^{k} y}{d x^{k}}=5 \sin \left\{(x+\alpha)+\frac{k \pi}{2}\right\}$
Now prove true for $n=k+1$ ie prove:

$$
\begin{align*}
& \frac{d^{k+1} y}{d x^{k+1}}=5 \sin \left\{(x+\alpha)+(k+1) \frac{\pi}{2}\right\} \\
& \text { LHS }=d / d x\left(\frac{d k y}{d x}\right) \\
& =d / d x\left(5 \sin \left\{(x+\alpha)+\frac{k \pi}{2}\right\}\right) \text { from } \\
& \text { assumption } \\
& =5 \cos \left\{(x+\alpha)+\frac{k \pi}{2}\right\} \\
& =5 \sin \left\{(x+\alpha)+\frac{k+\pi}{2}+\frac{\pi}{2}\right\} \text { from (i) } \tag{2}\\
& =5 \sin \left\{(x+\alpha)+(k+1) \frac{\pi}{2}\right\} \\
& =\operatorname{RHS}
\end{align*}
$$

\therefore True for $n=1$ and true for $n=k+1 \quad \frac{1}{2}$ when true for $n=k$
\therefore True for all $n \geqslant 1$ (QED)

