Total marks - 120
Attempt All Questions
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra booklets are available.

Question 1 (15 Marks)
a) Find $\int \frac{1}{\sqrt{x^{2}+9}} d x$.
b) Use integration by parts to evaluate $\int_{1}^{e} \frac{\ln x}{\sqrt{x}} d x$
$\int_{0}^{\frac{1}{2}} \frac{x}{(1-x)^{2}} d x$
c) Using the substitution $u=1-x$ evaluate

3
d) Find $\int \frac{d x}{x^{2}+4 x+7}$.
e) (i) Show, using a suitable substitution that

$$
\begin{equation*}
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \tag{2}
\end{equation*}
$$

(ii) Hence evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\cos x}{\cos x+\sin x} d x$.

Question 2 (15 Marks) Use a SEPARATE writing booklet.
a) Let $z=\frac{7-i}{3-4 i}$.
(i) Find $|z|$.
(ii) Evaluate $\tan \left\{\tan ^{-1}\left(\frac{4}{3}\right)-\tan ^{-1}\left(\frac{1}{7}\right)\right\}$.
(iii) Hence find the principal argument of $\frac{7-i}{3-4 i}$ in terms of π.
b) The point P represents the complex number z on the Argand diagram. Describe the locus of P when $\arg (z-2)=\arg (z+2)+\frac{\pi}{2}$.
c) (i) Assuming the result $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$, and using a suitable substitution, solve the equation $8 x^{3}-6 x+1=0$.
(ii) Hence find the value of

$$
\begin{aligned}
& \alpha) \cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{8 \pi}{9} . \\
& \beta) \sec \frac{2 \pi}{9}+\sec \frac{4 \pi}{9}+\sec \frac{8 \pi}{9} .
\end{aligned}
$$

Question 3 (15 Marks) Use a SEPARATE writing booklet.
a) Sketch the functions $g(x)=\sqrt{9-x^{2}}$ and $h(x)=x$ on the same axes.

Use these graphs to sketch $y=f(x)$ where $f(x)=g(x) \cdot h(x)$. Hence sketch each of the following on separate number planes.
(i) $y=f(-x)$
(ii) $y=\frac{1}{f(x)}$
(iii) $\quad y=|f(x)|$
(iv) $y^{2}=f(x)$
b) (i) Show that $z=i$ is a root of the equation $(2-i) z^{2}-(1+i) z+1=0$.
(ii) Find the other root of the equation in the form $z=a+i b$, where a and b are real numbers.
c) Let p, q, r be the roots of the equation $x^{3}-4 x+7=0$. Write down the cubic equation in x whose roots are p^{2}, q^{2} and r^{2}.

Question 4 (15 Marks) Use a SEPARATE writing booklet.

a) A particle of mass 1 kg is projected vertically upwards under gravity with a speed of 2 c in a medium which the resistance to motion is $\frac{g}{c^{2}}$ times the square of the speed, where c is positive constant.
(i) Show that the maximum height (H) reached is

$$
H=\frac{c^{2}}{2 g} \ln 5 .
$$

(ii) Show that the speed with which the particle returns to its starting point is given by $v=\frac{2 c}{\sqrt{5}}$.
b) Two light rigid rods $A B$ and $B C$, each of length 0.5 m , are smoothly jointed at B and the rod is smoothly jointed at A to a fixed smooth vertical rod.

The joint at B has a particle of mass 2 kg attached. A small ring of mass 1 kg is smoothly joined to $B C$ at C and can slide on the vertical rod below A. The ring rests on a smooth horizontal ledge at a distance $\frac{\sqrt{3}}{2} \mathrm{~m}$ below A. The system rotates about the vertical rod with constant angular velocity 6 radians per second. Find:
(i) the forces in the rod AB and BC ; 5
(ii) the forces exerted by the ledge on the ring. (let $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
a) i) Show that the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $P(a \cos \theta, b \sin \theta)$ has 3 the equation $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$.
ii) This ellipse meets the y-axis at C and D. Tangents drawn at C and D on the ellipse meet the tangent in (i) at the points E, F respectively. Prove that $C E . D F=a^{2}$.
b) i) Show that if $y=m x+k$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $m^{2} a^{2}-b^{2}=k^{2}$.
ii) Hence find the equation of the tangents from the point $(1,3)$ to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{15}=1$ and the coordinates of their points of contact.

End of Question 5.

Please Turn Over.
a) By taking strips parallel to the axis of rotation, use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y=e^{x}, y=e$ and the y-axis about the line $x=1$.

b) The base of a particular solid is the region bounded by the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$ between its vertex $(2,0)$ and the corresponding latus rectum. Every crosssection perpendicular to the major axis is a semicircle with diameter in the base of the solid.

i) Find the equation of the latus rectum.
ii) Find the volume of the solid.
c) The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ lie on the rectangular hyperbola $x y=c^{2}$.

The chord $P Q$ subtends a right angle at another point $R\left(c r, \frac{c}{r}\right)$ on the hyperbola.
Show that the normal at R is parallel to $P Q$.
a)

PQ, CD are parallel chords of a circle, centre O . The tangent at D meets PQ extended at T .
B is the point of contact of the other tangent from T. BC meets PQ at R.
(i) Copy the diagram .
(ii) Prove that $\angle \mathrm{BDT}=\angle \mathrm{BRT}$ and hence state why $\mathrm{B}, \mathrm{T}, \mathrm{D}$ and R are concyclic points.
(iii) Prove $\angle \mathrm{BRT}=\angle \mathrm{DRT}$.
(iv) Show that $\triangle \mathrm{RCD}$ is isosceles.
(v) Prove that $\Delta \mathrm{PRC} \equiv \Delta \mathrm{QRD}$.
b) The equation $x^{3}+3 p x^{2}+3 q x+r=0$, where $p^{2} \neq q$, has a double root. Show that $4\left(p^{2}-q\right)\left(q^{2}-p r\right)=(p q-r)^{2}$.
a) A coin is tossed six times. What is the probability that there will be more tails on the first three of the six throws than on the last three throws?
b) If m points are taken on a straight line and n points on a parallel line, how many triangles can be drawn each having its vertices at 3 of the given points?
c) (i) Show that $\left(1-x^{2}\right)^{\frac{n-3}{2}}-\left(1-x^{2}\right)^{\frac{n-1}{2}}=x^{2}\left(1-x^{2}\right)^{\frac{n-3}{2}}$.
(ii) Let $I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{\frac{n-1}{2}} d x$ where $n=0,1,2, \ldots$,

Show that $n I_{n}=(n-1) I_{n-2}$ for $n=2,3,4 \ldots \ldots$
(iii) Let $J_{n}=n I_{n} \cdot I_{n-1}$ for $n=1,2,3, \ldots$.

By using mathematical induction, prove that

$$
J_{n}=\frac{\pi}{2} \text { for } n=1,2,3, \ldots
$$

(iv) Briefly explain why $0<I_{n}<I_{n-1}$ for $n=1,2,3, \ldots$.

END OF PAPER

But2 Trind 2004.
7) $\int \frac{1}{\sqrt{x^{2}+9}} d x=\ln x+\sqrt{x^{2}+9}+C$
e)

$$
\text { i) } \int_{0}^{a} f(x) d x \quad \text { et } x=a-u
$$

$$
\text { b). } \int_{1}^{e} \frac{\ln x}{\sqrt{x}} d x=\int_{1}^{e} \ln x \frac{d}{d x}(2 \sqrt{x}) d x
$$

$$
=[2 \ln x \times \sqrt{x}]_{1}^{e}-\int_{1}^{e} 2 \sqrt{x} \times \frac{1}{x} d x
$$

$$
=2 \sqrt{e}-[4 \sqrt{x}]_{1}^{e}
$$

c)

$$
=4-2 \sqrt{e} .
$$

$$
\begin{aligned}
& \int_{0}^{\frac{1}{2}} \frac{x}{(1-x)^{2}} d x \quad d x+\mu=1-x \quad \therefore x=1-u \\
= & \int_{1}^{\frac{1}{2}} \frac{(1-u) x-d u}{\mu^{2}} \quad x=-a=1 \\
= & \int_{\frac{1}{2}}^{1}\left(\frac{1}{\mu^{2}}-\frac{1}{\mu}\right) d u=\frac{1}{2} \\
= & {\left[-\frac{1}{\mu}-\ln \mu\right]_{\frac{1}{2}}^{1} } \\
= & -1-0-\left(-2-\ln \frac{1}{2}\right) \\
= & 1-\ln 2 .
\end{aligned}
$$

1)

$$
\begin{aligned}
\int \frac{d x}{x^{2}+4 x+7} & =\int \frac{d x}{(x+2)^{2}+3} \\
& =\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x+2}{\sqrt{3}}\right)+C .
\end{aligned}
$$

1.a). $z=\frac{7-i}{3-4 i} \times \frac{3+4 i}{3+4 i}$

$$
=\frac{25+25 i}{25}=1+i
$$

(i) $|z|=\sqrt{2}=\frac{|\sqrt{50}|}{|5|}+\sqrt{2} . \quad \sqrt{ }$.
ii)

$$
\begin{aligned}
& \text { Let } \alpha=\operatorname{ton}^{-1}\left(\frac{\mu}{3}\right) \beta \times \operatorname{Ian}-\left(\frac{1}{7}\right) \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\
&=\frac{\frac{4}{3}-\frac{1}{7}}{1+\frac{4}{3}, \frac{1}{7}} \\
&=1 .
\end{aligned}
$$

iii) Since $z=1+i$ prineifel org $=\frac{\pi}{4}$

$$
\begin{aligned}
\text { or } \arg \left(\frac{7-i}{3-4 i}\right) & =\arg (7-i)-\arg (3-4 i) \\
& =\tan \left(-\frac{1}{7}\right)-\operatorname{lan}^{-1}-\frac{4}{3} \\
& =\operatorname{ian}^{-1}\left(\frac{4}{3}\right)-\operatorname{tin}^{-1}\left(\frac{1}{7}\right) \\
& =\tan ^{-1}(1) \operatorname{tg}(i i) \\
& =4
\end{aligned}
$$

$$
=\frac{\pi}{4}
$$

1)

 intereor argles.
\therefore Tocus of z is the semicirice shown with
equatron $y=\sqrt{4-x^{2}}$ for $y>0$.
Note end foints ore esccluded ainice ary 0 si not defined.
c) (i)

$$
\begin{aligned}
& \operatorname{st} x=\cos \theta \\
& \therefore 8 x^{3}-6 x+1=0 \\
& \Rightarrow 2\left(4 \cos ^{3} \theta-3 \cos \theta\right)=-1 \\
& \quad \cos 3 \theta=-\frac{1}{2}
\end{aligned}
$$

$$
3 \theta=2 n \pi \pm \frac{2 \pi}{3} .
$$

$$
\theta=\frac{2 \pi}{9}, \frac{4 \pi}{9}, \frac{8 \pi}{9} \text { onty } 3001 \pi n
$$ arrescufec.

$$
\therefore x=\cos \frac{2 \pi}{9}, \cos \frac{4 \pi}{9}, \cos \frac{8 \pi}{9} .
$$

ii $x) \cos \frac{2 \pi}{9}+\cos \frac{4 \pi}{9}+\cos \frac{8 \pi}{9}=\sum \alpha=0$ V
13) $\sec \frac{2 \pi}{9}+\operatorname{arcc} \frac{4 \pi}{9}+\sec \frac{8 \pi}{9}=\frac{1}{2}+\frac{1}{2}+\frac{1}{\gamma_{1}}$

$$
\begin{aligned}
& =\frac{\sum \alpha \beta}{\alpha \beta \gamma} \\
& =\frac{-6 / 8}{-1 / 8} \\
& =6 .
\end{aligned}
$$

a)
(IV)

i)

b)

$$
p(i)
$$

$$
\text { b) } \begin{aligned}
& P(i)=(2-i)_{x}-1-(1+i) i+1 \\
&=-2+i-i+1+1 \\
&=0-8=i \text { is a root. } \\
& \text { Product of roots }=\text { let other root be } \alpha . \\
& \alpha \times i=\frac{1}{2-i} \\
&=\frac{2+i}{5} \\
& \times b .5 \text { by }-i
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2+i}{5} \\
\alpha b .5 \text { by }-i & =\frac{1}{5}-\frac{2}{5} i
\end{aligned}
$$

c) let $x=\sqrt{y}$.

$$
y^{3 / 2}-4 y^{\frac{1}{2}}=-7
$$

square b, s
a) ii)

Poly in x

Question 4 (15 Marks)

a)

A particle of mass 1 kg is projected vertically upwards under gravity with a speed of 2 c in a medium which the resistance to motion is $\frac{g}{c^{2}}$ times the square of the speed, where c is positive constant.
(i) Show that the maximum height (H) reached is

$$
H=\frac{c^{2}}{2 g} \ln 5 .
$$

SOLUTION:

Upward motion. Choose a point of projection as origin and \uparrow as positive.
Initial conditions: $t=0, x=0, v=2 c$.
Equation of motion: $\ddot{x}=-g-\frac{g}{c^{2}} v^{2}$.
Expression relating x and v :
$v \frac{d v}{d x}=-g-\frac{g}{c^{2}} v^{2}$,
$-g d x=\frac{v d v}{1+\frac{v^{2}}{c^{2}}}$,
$-g x+A=\frac{c^{2}}{2} \ln \left(1+\frac{v^{2}}{c^{2}}\right), A$ constant $;$
$x=0, \nu=2 c$
$A=\frac{c^{2}}{2} \ln 5$
$x=\frac{c^{2}}{2 g} \ln \frac{5 c^{2}}{c^{2}+v^{2}} \ldots$ (1)
When the particle reaches its highest point, its velocity is zero.
So $v=0$
from (2) $t=\frac{c \cdot \tan ^{-1} 2}{g}$ is the time of ascent.
Let h be the distance between the point of projection and the highest point.
Then $v=0$ from (1)
$h=\frac{c^{2}}{2 g} \ln 5$.

Question 4 a) (ii)
Show that the speed with which the particle returns to its starting point is given by $v=\frac{2 c}{\sqrt{5}}$.

SOLUTION:

Downward motion.
Origin at highest point and \downarrow as positive direction.
Initial conditions: $t=0, x=0, v=0$.
Equation of motion: $\ddot{x}=g-\frac{g}{c^{2}} v^{2}$.
Terminal velocity: as $\ddot{x} \rightarrow 0, v \rightarrow(c)^{-} \quad v<c$.
Expression relating x and v :
$v \frac{d v}{d x}=g-\frac{g}{c^{2}} v^{2}$
$g d x=\frac{v d v}{1-\frac{v^{2}}{c^{2}}}$
$g x+A=\frac{-c^{2}}{2} \ln \left(1-\frac{v^{2}}{c^{2}}\right)$
, A constant;
$x=0, v=0$
$A=0$
$x=\frac{c^{2}}{2 g} \ln \frac{c^{2}}{c^{2}-v^{2}}$
When the particle returns to its starting point, $x=h$.
Hence from (2) $h=\frac{c^{2}}{2 g} \ln \frac{c^{2}}{c^{2}-v^{2}}$.

$$
h=\frac{c^{2}}{2 g} \ln 5
$$

But $5=\frac{c^{2}}{c^{2}-v^{2}}$

$$
v=\frac{2 c}{\sqrt{5}}
$$

Question 4 b) (i)

SOLUTION:

$A B=B C=\frac{1}{2}, A C=\frac{\sqrt{3}}{2}$.
Forces on B

Forces on C

N_{2} is the force exerted by the rod $A C$ on the ring C, and N_{J} is the force exerted by the ledge.

The resultant force on B is $2 \omega^{2} r$ towards O.
The vertical component is zero
$T_{2} \cos \theta-T_{l} \cos \theta=2 g \ldots$ (1)
The horizontal component is $2 \omega^{2} r$

$$
\begin{equation*}
T_{2} \sin \theta+T_{1} \sin \theta=2 \omega^{2} r \tag{2}
\end{equation*}
$$

But $\omega=6, r=\sqrt{\mathrm{AB}^{2}-\mathrm{AO}^{2}}$
$r=\frac{1}{4} \begin{array}{r}\cos \theta=\frac{\mathrm{AO}}{\mathrm{AB}} \\ \cos \theta=\frac{\sqrt{3}}{2}, \quad \sin \theta=\frac{1}{2}\end{array}$

Hence from (1) and (2) we obtain:
$T_{2}-T_{1}=\frac{4 \mathrm{~g}}{\sqrt{3}}$
$T_{2}+T_{i}=36$
$(3)+(4) T_{2}=\frac{2 g}{\sqrt{3}}+18, \quad T_{2}=\frac{20}{\sqrt{3}}+18 \mathrm{~N}$;
(4) $-(3)$
$T_{1}=18-\frac{2 g}{\sqrt{3}}$
$T_{1}=18-\frac{20}{\sqrt{3}} \mathrm{~N}$

Question 4 b) (ii)
the forces exerted by the ledge on the ring. (let $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

The resultant force on C is zero.
For its vertical component we have
$N_{I}+T_{1} \cos \theta=I g$
$N_{1}=g-\left(18-\frac{20}{\sqrt{3}}\right) \frac{\sqrt{3}}{2}$
$N_{1}=g+10-9 \sqrt{3}$
$N_{1}=20-9 \sqrt{3} \mathrm{~N}$

Question 5 (15 Marks)

a)i)

Show that the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $P(a \cos \theta, b \sin \theta)$ has the equation $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$.

SOLUTION:

This ellipse meets the y-axis at C and D. Tangents drawn at C and D on the ellipse meet the tangent in (i) at the points E, F respectively. Prove that $C E . D F=a^{2}$.

SOLUTION:

(i)

Coordinates of C and D are $(0, b)$ and $(0,-b)$ respectively.
$\therefore \quad$ the equations of the tangents through C and D are $y=b$ and $y=-b$, respectively.
Solve each of these equations simultaneously with the equation of the tangent at P,
$\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$ and we have the coordinates of E and F as follows:

$$
\begin{aligned}
& E\left(\frac{a(1-\sin \theta)}{\cos \theta}\right) \text { and } F\left(\frac{a(1+\sin \theta)}{\cos \theta}\right) \\
& \begin{aligned}
\therefore C E \cdot D F & =\left(\frac{a(1-\sin \theta)}{\cos \theta}\right) \cdot\left(\frac{a(1+\sin \theta)}{\cos \theta}\right) \\
& =\frac{a^{2}\left(1-\sin ^{2} \theta\right)}{\cos ^{2} \theta} \\
& =\frac{a^{2} \cos ^{2} \theta}{\cos ^{2} \theta} \\
& =a^{2}
\end{aligned}
\end{aligned}
$$

b) i)

Show that if $y=m x+k$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $m^{2} a^{2}-b^{2}=k^{2}$.
SOLUTION: The hyperbola has parametric equations $x=a \sec \theta$ and $y=b \tan \theta$. Hence $\frac{d y}{d x}=\frac{b \sec \theta}{a \tan \theta}$.
If $y=m x+k$ is a tangent to the hyperbola at $P(a \sec \phi, b \tan \phi)$, then
$m=\frac{d y}{d x}$ at P
$m a \tan \phi-b \sec \phi=0$
P lies on $y=m x+k$
$m a \sec \phi-b \tan \phi=-k$.
$(2)^{2}-(1)^{2}$
$m^{2} a^{2}\left(\sec ^{2} \phi-\tan ^{2} \phi\right)+b^{2}\left(\tan ^{2} \phi-\sec ^{2} \phi\right)=k^{2}$.
$m^{2} a^{2}-b^{2}=k^{2}$
(2) $\times \sec \phi-(1) \times \tan \phi$
$m a\left(\sec ^{2} \phi-\tan ^{2} \phi\right)=-k \sec \phi$
$a \sec \phi=-\frac{m a^{2}}{k}$,
(2) $\times \tan \phi-(1) \times \sec \phi$
$b\left(\sec ^{2} \phi-\tan ^{2} \phi\right)=-k \tan \phi$
$b \tan \phi=-\frac{b^{2}}{k}$
Therefore the point of contact of the tangent $y=m x+k$ is $P\left(-\frac{m a^{2}}{k},-\frac{b^{2}}{k}\right)$.
ii)

Hence find the equation of the tangents from the point $(1,3)$ to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{15}=1$ and the coordinates of their points of contact.

SOLUTION:

Now tangents from the point $(1,3)$ to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{15}=1$ have equations of the form $y-3=m(x-1)$, that is, $y=m x+(3-m)$.

Hence $m^{2} a^{2}-b^{2}=k^{2}$
$4 m^{2}-15=(3-m)^{2}$
$3 m^{2}+6 m-24=0$
$(m-2)(m+4)=0$.
$\therefore m=2$,
$k=3-m=1$
and $P\left(-\frac{m a^{2}}{k},-\frac{b^{2}}{k}\right) \equiv P(-8,-15)$
or $m=-4, k=3-m=7$ and
$P\left(-\frac{m a^{2}}{k},-\frac{b^{2}}{k}\right) \equiv P\left(\frac{16}{7},-\frac{15}{7}\right)$.
Hence the tangents from the point $(1,3)$ to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{15}=1$ are $y=2 x+1$, with point of contact $P(-8,-15)$ and $y=-4 x+7$, with point of contact $P\left(\frac{16}{7},-\frac{15}{7}\right)$.

End of Question 5.

Question 6 (15 Marks)

a)

By taking strips parallel to the axis of rotation, use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y=e^{x}, y=e \quad$ and the y-axis about the line $x=1$.

SOLUTION:

The typical cylindrical shell has radii $r_{l}(x)=I-x, r_{2}(x)=I-x+\delta x$, and height $h(x)=e-e^{x}$.
This shell has volume

$$
\begin{aligned}
& \quad \delta V=\pi\left[(1-x+\delta x)^{2}-(1-x)^{2}\right] h(x) \\
& \left.=2 \pi(1-x)\left(e-e^{x}\right) \delta x \text { (ignoring }(\delta x)^{2}\right) \\
& \therefore \quad V=\lim _{\delta x \rightarrow 0} \sum_{x=0}^{1} 2 \pi(1-x)\left(e-e^{x}\right) \delta x \\
& \therefore V=\int_{0}^{1} 2 \pi(1-x)\left(e-e^{x}\right) d x \\
& =2 \pi\left[e \int_{0}^{1}(1-x) d x-\int_{0}^{1}(1-x) e^{x} d x\right] \\
& =2 \pi\left[\left.e\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}-\int_{0}^{1}(1-x) d e^{x}\right] \\
& =2 \pi\left[\frac{e}{2}-\left(\left.(1-x) e^{x}\right|_{0} ^{1}-\int_{0}^{1}(-1) \cdot e^{x} d x\right)\right] \\
& =2 \pi\left[\frac{e}{2}+1-\left.e^{x}\right|_{0} ^{1}\right] \\
& = \\
& \therefore(4-e) \\
& \therefore
\end{aligned}
$$

Question 6

b)

The base of a particular solid is the region bounded by the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$ between its vertex $(2,0)$ and the corresponding latus rectum. Every cross-section perpendicular to the major axis is a semicircle with diameter in the base of the solid.
i) Find the equation of the latus rectum.
ii) Find the volume of the solid.

SOLUTION:

The latus rectum of the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$ is the line $x=4$.
The slice is a semicircle with radius r, area of cross-section A and thickness δx.

$$
\begin{aligned}
& A(x)=\frac{\pi r^{2}(x)}{2} \\
& r(x)=\sqrt{12} \cdot \sqrt{\frac{x^{2}}{4}-1} \\
& \therefore \quad A(x)=6 \pi\left(\frac{x^{2}}{4}-1\right)
\end{aligned}
$$

The slice has volume $\delta V=A(x) \delta x=6 \pi\left(\frac{x^{2}}{4}-I\right) \delta x$.
Then the volume of the solid is
$V=\lim _{\delta x \rightarrow 0} \sum_{x=2}^{4} 6 \pi\left(\frac{x^{2}}{4}-1\right) \delta x=6 \pi \int_{2}^{4}\left(\frac{x^{2}}{4}-1\right) d x$
$=\left.6 \pi\left(\frac{x^{3}}{4 \cdot 3}-x\right)\right|_{2} ^{4}$
$=16 \pi$
\therefore The volume of the solid is 16π cubic units. "

Question 6

c)

The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ lie on the rectangular hyperbola $x y=c^{2}$.
The chord $P Q$ subtends a right angle at another point $R\left(c r, \frac{c}{r}\right)$ on the hyperbola.
Show that the normal at R is parallel to $P Q$.

SOLUTION:

$x y=c^{2}$
$x \frac{d y}{d x}+y=0$
$\frac{d y}{d x}=\frac{-y}{x}$ at $R\left(c r, \frac{c}{r}\right)$

$$
=\frac{-1}{r^{2}}
$$

Hence, gradient of the normal at $R=r^{2}$
Let gradient of $\mathrm{RP}=m_{R P}$

$$
\begin{aligned}
m_{R P} & =\frac{\frac{c}{r}-\frac{c}{p}}{c r-c p} \\
& =\frac{-1}{r p}
\end{aligned}
$$

Similarly $m_{R Q}=\frac{-1}{r q}$ and $m_{P Q}=\frac{-1}{p q}$
Now, $m_{R P} \times m_{R Q}=-1 \quad\left(\because \angle P R Q=90^{\prime \prime}\right)$

$$
\begin{aligned}
\therefore \frac{1}{r^{2} p q} & =-1 \\
r^{2} & =\frac{-1}{p q}
\end{aligned}
$$

Hence, gradient of the normal at $R=m_{P Q}$
\therefore Normal at R is parallel to $P Q$.

Question 7 (15 Marks) SOLUTION

a) i)

ii)

Prove that $\angle \mathrm{BDT}=\angle \mathrm{BRT}$ and hence state why $\mathrm{B}, \mathrm{T}, \mathrm{D}$ and R are concyclic points.

SOLUTION:

$$
\begin{array}{ll}
\angle B D T=\angle B C D & \text { (} \angle \text { between tangent } \mathrm{TD} \& \text { chord } \mathrm{BD}=\angle \text { in Alternate segment) } \\
\angle B C D=\angle B R T & \text { (corr. } \angle \text { 's, PT } \| \mathrm{CD} \text {) }
\end{array}
$$

$\therefore \angle \mathrm{BDT}=\angle \mathrm{BRT}$
Now, as $\angle \mathrm{BDT}$ and $\angle \mathrm{BRT}$ are equal angles subtended by chord BT
\therefore BTDR are concyclic points.
iii)

Prove $\angle \mathrm{BRT}=\angle \mathrm{DRT}$.

SOLUTION I-short version!

In the cyclic quad BTDR

$$
\mathrm{BT}=\mathrm{DT} \quad(\text { tangents of equal length from external point } \mathrm{T})
$$

$\therefore \angle \mathrm{BRT}=\angle \mathrm{DRT}$.(equal chords subtend equal angles to the circumference)

SOLUTION 2

$$
\begin{array}{rll}
& & \angle B T D=180-2 \times \angle B D T \\
& & \\
& \angle B R D=2 \times \angle B D T & \\
& \angle \text { sum of triangle BTD) } \\
\text { hence } & & \angle B R D=2 \times \angle B R T
\end{array} \quad \angle \text { (from (ii) above) }
$$

NOTE: There are many wats of solving this part.

7a)iv) SOLUTION
Show that $\triangle \mathrm{RCD}$ is isosceles.
As $\angle B C D=\angle B R T \quad$ (corr. \angle 's, PT $\| \mathrm{CD}$)
$\angle \mathrm{BRT}=\angle \mathrm{DRT}$
$\angle \mathrm{DRT}=\angle \mathrm{RDC}$ (alt. \angle 's, $\mathrm{PT} \| \mathrm{CD}$)
$\therefore \quad \angle \mathrm{RDC}=\angle \mathrm{BCD}$
$\therefore \quad \triangle \mathrm{RCD}$ is isosceles (base \angle 's are equal)
v)

Prove that $\triangle P R C \equiv \triangle Q R D$.
In $\triangle P R C$ and $\triangle Q R D$
$\mathrm{RC}=\mathrm{RD}$ (from iv)
$\angle \mathrm{DRQ}=\angle \mathrm{RCD}$ (proven above)
$\angle \mathrm{RCD}=\angle \mathrm{CRP}$ (alt. \angle 's, $\mathrm{PT} \| \mathrm{CD}$)
$\therefore \quad \angle \mathrm{CRP}=\angle \mathrm{DRQ}$
now $\angle \mathrm{RQD}=180-(\angle \mathrm{RCD}+\angle \mathrm{PCR}) \quad$ (opposite \angle 's of cyclic quad PQDC)
and $\angle \mathrm{RPC}=180-(\angle \mathrm{PRC}+\angle \mathrm{PCR})$
$=180-(\angle \mathrm{RCD}+\angle \mathrm{PCR})$
$\therefore \quad \angle \mathrm{RPC}=\angle \mathrm{RQD}$
$\therefore \quad \triangle \mathrm{PRC} \equiv \triangle \mathrm{QRD} .(\mathrm{AAS})$

Q7b) SOLUTION
If $a x^{3}+b x^{2}+d=0$ has a double root, show that $27 a^{2} d+4 b^{3}=0$.
$P(x)=a x^{3}+b x^{2}+d$,
$P^{\prime}(x)=3 a x^{2}+2 b x$,
$P^{\prime \prime}(x)=6 a x+2 b$.
$P^{\prime}(0)=0, P^{\prime}\left(-\frac{2 b}{3 a}\right)=0$. Hence, both 0 and $\frac{-2 b}{3 a}$ can be a double root of $P(x)=0$.
Let 0 be a double root.
Hence $P(0)=0, d=0 \Rightarrow$ if $27 a^{2} d+4 b^{3}=0$, then $b=0 \Rightarrow P(x)=a x^{3}$ and 0 is a triple root. Thus if 0 is a double root, then $27 a^{2} d+4 b^{3} \neq 0$.
Let $\frac{-2 b}{3 a}$ be a double root of $P(x)=0$.
Hence
$P\left(\frac{-2 b}{3 a}\right)=0$
$a\left(\frac{-2 b}{3 a}\right)^{3}+b\left(\frac{-2 b}{3 a}\right)^{2}+d=0$
$27 a^{2} d+4 b^{3}=0$

Question 8 (15 Marks)

a)

A coin is tossed six times. What is the probability that there will be more tails on the first three of the six throws than on the last three throws?

SOLUTION

3 outcomes: Equal tails, more tails or less tails.
$\mathrm{P}($ equal tails $)=\mathrm{P}(1 \mathrm{H})+\mathrm{P}(2 \mathrm{H})+\mathrm{P}(3 \mathrm{H})+\mathrm{P}(0 \mathrm{H})$

$$
\begin{aligned}
& =9\left(\frac{1}{2}\right)^{6}+9\left(\frac{1}{2}\right)^{6}+\left(\frac{1}{2}\right)^{6}+\left(\frac{1}{2}\right)^{6} \\
& =\frac{20}{64}
\end{aligned}
$$

P (More tails in $1^{\text {st }} 3$ throws)
$=\frac{1}{2}\left(1-\frac{20}{64}\right)$
$=\frac{11}{32}$
b)

If m points are taken on a straight line and n points on a parallel line, how many triangles can be drawn each having its vertices at 3 of the given points?

SOLUTION
Number of triangles

$$
\begin{aligned}
& =m^{n} C_{2}+n^{m} C_{2} \\
& =\frac{1}{2} m n(m+n-2)
\end{aligned}
$$

Question 8c)

(i)

Show that $\left(1-x^{2}\right)^{\frac{n-3}{2}}-\left(1-x^{2}\right)^{\frac{n-1}{2}}=x^{2}\left(1-x^{2}\right)^{\frac{n-3}{2}}$.

SOLUTION

$$
\begin{aligned}
& \left(1-x^{2}\right)^{\frac{n-3}{2}}-\left(1-x^{2}\right)^{\frac{n-1}{2}}=x^{2}\left(1-x^{2}\right)^{\frac{n-3}{2}} \\
= & \left(1-x^{2}\right)^{\frac{n-3}{2}}\left[1-\left(1-x^{2}\right)^{\frac{2}{2}}\right] \\
= & x^{2}\left(1-x^{2}\right)^{\frac{n-3}{2}}
\end{aligned}
$$

(ii)

SOLUTION

Using Integration by parts;

$$
\begin{aligned}
& I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{\frac{n-1}{2}} \frac{d(x)}{d x} d x \\
&=\left[x\left(1-x^{2}\right)^{\frac{n-1}{2}}\right]_{0}^{1}-\frac{n-1}{2} \int_{0}^{1}-2 x^{2}\left(1-x^{2}\right)^{\frac{n-3}{2}} d x \\
& \therefore I_{n}=(n-1) \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{\frac{n-3}{2}} d x
\end{aligned}
$$

now from (c)i

$$
\begin{aligned}
& I_{n}=(n-1) \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{\frac{n-3}{2}} d x \\
& I_{n}=(n-1) \int_{0}^{1}\left(1-x^{2}\right)^{\frac{n-3}{2}} d x-(n-1) \int_{0}^{1}\left(1-x^{2}\right)^{\frac{n-1}{2}} d x \\
& I_{n}=(n-1) I_{n-2}-(n-1) I_{n} \\
& \therefore(n-1) I_{n}+I_{n}=(n-1) I_{n-2} \\
& \therefore n I_{n}=(n-1) I_{n-2}
\end{aligned}
$$

Question 8 (iii)

Let $J_{n}=n I_{n} \cdot I_{n-1}$ for $n=1,2,3, \ldots$.
By using mathematical induction, prove that $J_{n}=\frac{\pi}{2}$ for $n=2,3, \ldots$.

SOLUTION

Test for $n=2$

$$
\begin{aligned}
J_{2} & =2 I_{2} \cdot I_{2-1} \\
& =I_{0} I_{1} \\
I_{2} & =\int_{0}^{1}\left(1-x^{2}\right)^{\frac{-1}{2}} d x \cdot \int_{0}^{1}\left(1-x^{2}\right)^{0} d x \\
& =\int_{0}^{1}\left(1-x^{2}\right)^{\frac{-1}{2}} d x . \\
& =\left[\sin ^{-1} x\right]_{0}^{1} \\
& =\frac{\pi}{2}
\end{aligned}
$$

Assume true for $n=k$ ie $J_{k}=k I_{k} \cdot I_{k-1}=\frac{\pi}{2}$
Test for $n=k+1$
Now from $J_{n}=n I_{n} \cdot I_{n-1}$
$J_{k+1}=(k+1) I_{k+1} I_{k}$
And as $n I_{n}=(n-1) I_{n-2}$
therefore $(k+1) I_{k+1}=k I_{k-1}$

$$
\begin{aligned}
J_{k+1} & =k I_{k-1} \cdot I_{k} \\
& =\frac{\pi}{2}
\end{aligned}
$$

Hence by Mathematical Induction
$J_{n}=\frac{\pi}{2}$ for $n=1,2,3, \ldots$.
(iv)

Briefly explain why $0<I_{n}<I_{n-1}$ for $n=1,2,3, \ldots$.
SOLUTION

$$
\begin{aligned}
& I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{\frac{n-1}{2}} d t>0 \text { dearly } \\
& T_{n-1}^{1}=\int_{0}^{1}\left(1-x^{2}\right)^{\frac{n-3}{2} d x} \\
& =T_{n}=\int_{0}^{1}\left[\left(1-x^{2}\right)^{\frac{n-2}{2}}\left[\sqrt{1-x^{2}}-1\right] d x\right.
\end{aligned}
$$

$$
0 \leq \sqrt{1-x^{2}} \leq 1
$$

