Marks

Total marks – 120 Attempt All Questions All questions are of equal value <u>Answer each question in a SEPARATE writing booklet. Extra booklets are available.</u>

Question 1(15 Marks)

a) Find $\int \frac{1}{\sqrt{x^2 + 9}} dx.$ 1

b) Use integration by parts to evaluate
$$\int_{1}^{e} \frac{\ln x}{\sqrt{x}} dx$$
 3

c) Using the substitution
$$u = 1 - x$$
 evaluate
$$\int_{0}^{\frac{1}{2}} \frac{x}{(1 - x)^2} dx$$
 3

d) Find
$$\int \frac{dx}{x^2 + 4x + 7}$$
.

e) (i) Show, using a suitable substitution that $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx.$ 2

(ii) Hence evaluate
$$\int_{0}^{\frac{\pi}{4}} \frac{\cos x}{\cos x + \sin x} dx.$$
 4

Newington College

Question 2(15 Marks) Use a SEPARATE writing booklet.

a) Let
$$z = \frac{7-i}{3-4i}$$
.

(i) Find
$$|z|$$
. 2

(ii) Evaluate
$$\tan\left\{\tan^{-1}\left(\frac{4}{3}\right) - \tan^{-1}\left(\frac{1}{7}\right)\right\}$$
. 2

(iii) Hence find the principal argument of
$$\frac{7-i}{3-4i}$$
 in terms of π . 2

b) The point *P* represents the complex number *z* on the Argand diagram. Describe the locus of *P* when $\arg(z-2) = \arg(z+2) + \frac{\pi}{2}$.

c) (i) Assuming the result $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$, and using a suitable **3** substitution, solve the equation $8x^3 - 6x + 1 = 0$.

(ii) Hence find the value of

$$\alpha \left(\cos \frac{2\pi}{9} + \cos \frac{4\pi}{9} + \cos \frac{8\pi}{9} \right).$$

$$\beta)\sec\frac{2\pi}{9} + \sec\frac{4\pi}{9} + \sec\frac{8\pi}{9}.$$

Marks

Question 3 (15 Marks)Use a SEPARATE writing booklet.Marks

a) Sketch the functions $g(x) = \sqrt{9 - x^2}$ and h(x) = x on the same axes. 3 Use these graphs to sketch y = f(x) where f(x) = g(x).h(x). Hence sketch each of the following on separate number planes.

(i)
$$y = f(-x)$$
 1

(ii)
$$y = \frac{1}{f(x)}$$
 2

(iii)
$$y = |f(x)|$$
 1

(iv)
$$y^2 = f(x)$$
 2

b) (i) Show that z = i is a root of the equation $(2-i)z^2 - (1+i)z + 1 = 0$. 1

(ii) Find the other root of the equation in the form z = a + ib, where *a* and *b* 2 are real numbers.

c) Let p, q, r be the roots of the equation $x^3 - 4x + 7 = 0$. Write down the cubic equation 3 in x whose roots are p^2, q^2 and r^2 .

3

4

3

Question 4(15 Marks) Use a SEPARATE writing booklet.Marks

- a) A particle of mass 1 kg is projected vertically upwards under gravity with a speed
 - of 2c in a medium which the resistance to motion is $\frac{g}{c^2}$ times the square of the speed,

where c is positive constant.

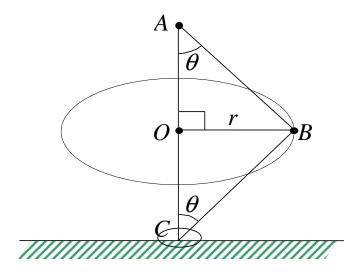
(i) Show that the maximum height (*H*) reached is

$$H = \frac{c^2}{2g} \ln 5.$$

(ii) Show that the speed with which the particle returns to its starting

point is given by
$$v = \frac{2c}{\sqrt{5}}$$
.

b) Two light rigid rods *AB* and *BC*, each of length 0.5 m, are smoothly jointed at *B* and the rod is smoothly jointed at *A* to a fixed smooth vertical rod.



The joint at *B* has a particle of mass 2 kg attached. A small ring of mass 1 kg is smoothly joined to *BC* at *C* and can slide on the vertical rod below *A*. The ring rests on a smooth horizontal ledge at a distance $\frac{\sqrt{3}}{2}$ m below *A*. The system rotates about the vertical rod with constant angular velocity 6 radians per second. Find:

- (i) the forces in the rod AB and BC; 5
- (ii) the forces exerted by the ledge on the ring. (let $g = 10m/s^2$)

Question 5 (15 Marks) Use a SEPARATE writing booklet.

a) i) Show that the tangent to the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 at the point $P(a\cos\theta, b\sin\theta)$ has **3**
the equation $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$.

ii) This ellipse meets the y-axis at *C* and *D*. Tangents drawn at *C* and *D* on the ellipse 4 meet the tangent in (i) at the points E, F respectively. Prove that $CE.DF = a^2$.

b) i) Show that if
$$y = mx + k$$
 is a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $m^2 a^2 - b^2 = k^2$. 3

ii) Hence find the equation of the tangents from the point (1, 3) to the hyperbola $\frac{x^2}{4} - \frac{y^2}{15} = 1$ and the coordinates of their points of contact.

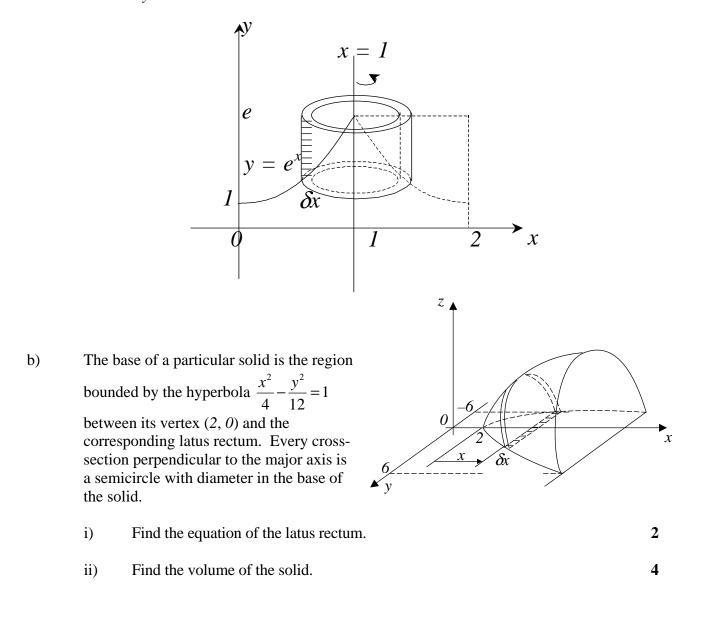
End of Question 5.

Please Turn Over.

Marks

Question 6(15 Marks) Use a SEPARATE writing booklet.

a) By taking strips parallel to the axis of rotation, use the method of cylindrical shells to 6 find the volume of the solid obtained by rotating the region bounded by $y = e^x$, $y = e^x$ and the *y*-axis about the line x = 1.

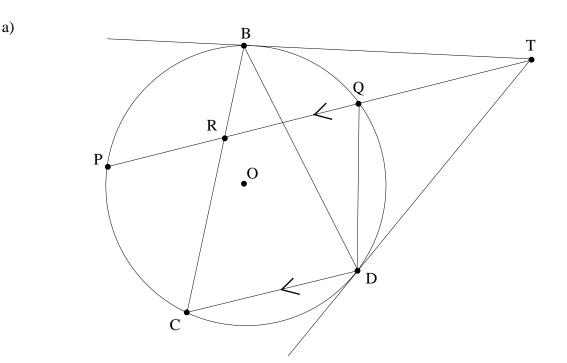


c) The points
$$P\left(cp, \frac{c}{p}\right)$$
 and $Q\left(cq, \frac{c}{q}\right)$ lie on the rectangular hyperbola $xy = c^2$. **3**
The chord *PQ* subtends a right angle at another point $R\left(cr, \frac{c}{r}\right)$ on the hyperbola.

Show that the normal at *R* is parallel to *PQ*.

Question 7(15 Marks) Use a SEPARATE writing booklet.

Marks



PQ, CD are parallel chords of a circle, centre O. The tangent at D meets PQ extended at T. B is the point of contact of the other tangent from T. BC meets PQ at R.

- (i) Copy the diagram.
 (ii) Prove that ∠ BDT = ∠ BRT and hence state why B, T, D and R 3 are concyclic points.
- (iii) Prove $\angle BRT = \angle DRT$. 3
- (iv) Show that \triangle RCD is isosceles. 2
- (v) Prove that $\Delta PRC \equiv \Delta QRD$. 3

b) The equation
$$x^3 + 3px^2 + 3qx + r = 0$$
, where $p^2 \neq q$, has a double root. Show that $4(p^2 - q)(q^2 - pr) = (pq - r)^2$.

Question 8(15 Marks) Use a SEPARATE writing booklet.

- a) A coin is tossed six times. What is the probability that there will be more tails3 on the first three of the six throws than on the last three throws?
- b) If *m* points are taken on a straight line and *n* points on a parallel line, how manytriangles can be drawn each having its vertices at 3 of the given points?

c) (i) Show that
$$(1-x^2)^{\frac{n-3}{2}} - (1-x^2)^{\frac{n-1}{2}} = x^2 (1-x^2)^{\frac{n-3}{2}}$$
. 1

(ii) Let
$$I_n = \int_0^1 (1 - x^2)^{\frac{n-1}{2}} dx$$
 where $n = 0, 1, 2,, 3$

Show that $nI_n = (n-1)I_{n-2}$ for n = 2, 3, 4....

(iii) Let
$$J_n = nI_n I_{n-1}$$
 for $n = 1, 2, 3,$ 3

By using mathematical induction, prove that

$$J_n = \frac{\pi}{2}$$
 for $n = 1, 2, 3, \dots$

(iv) Briefly explain why
$$0 < I_n < I_{n-1}$$
 for $n = 1, 2, 3, ...$ 2

END OF PAPER

Marks

a) $\int \frac{1}{\sqrt{x^2+q}} dx = \ln x + \sqrt{x^2+q} + C$ (e) b). $\int_{-\infty}^{e} \frac{h_{xx}}{\sqrt{x}} dx = \int_{-\infty}^{e} \ln x \frac{d}{dx} (2\sqrt{x}) dx$ $= \left[2 \ln x \times \sqrt{x}\right]^{e} - \int_{1}^{e} 2 \sqrt{x} \times \frac{1}{2!} dx \sqrt{x}$ $= 2\sqrt{e} - \left[4\sqrt{x}\right]_{1}^{e} \sqrt{e}$ c) $\int_{1}^{\frac{1}{2}} \frac{\partial}{(1-x)^2} dx$ let 1 =1-22 .: 2 = 1-42 dx =- du sc=0 4 ≤1 メニシャニシ $= \int_{\frac{1}{\sqrt{2}}}^{\frac{1}{2}} \frac{(1-\alpha)x - d\alpha}{\alpha^2}$ $= \int_{\frac{1}{2}}^{1} \left(\frac{1}{\mu^{2}} - \frac{1}{\mu}\right) d\mu \quad \sqrt{2}$ $= \int \frac{-1}{u} - \ln u \int_{1}^{1}$ $= -1 - 0 - (-2 - ln \frac{1}{2})$ = 1 - ln 2. 1) $\int \frac{dx}{x^2+43(2+7)} = \int \frac{dx}{(3(2+2)^2+3)} \sqrt{(3(2+2)^2+3)}$ $= \frac{1}{\sqrt{3}} \tan \left(\frac{x+2}{\sqrt{2}} \right) + C \cdot \sqrt{\frac{x+2}{\sqrt{2}}}$

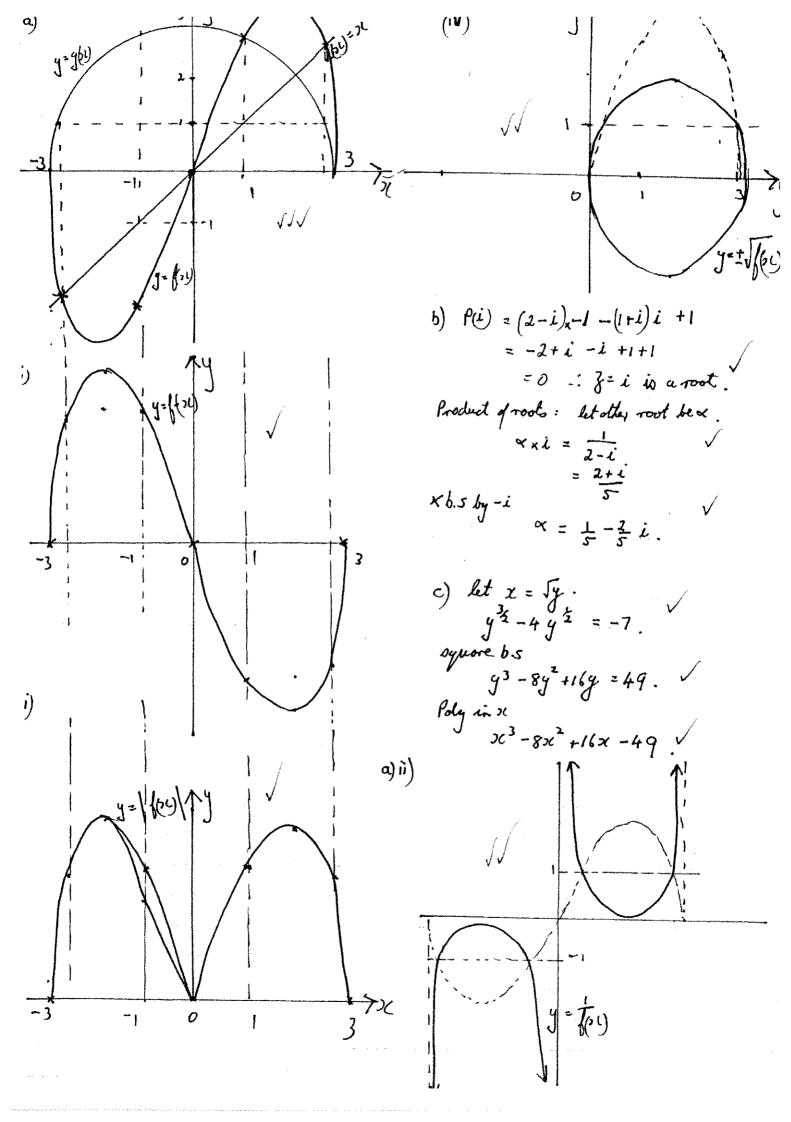
 $z = \frac{7-i}{3-4i} \times \frac{3+4i}{3+4i}$! a). = <u>25 + 251</u> = 1 + 1 25 (i) |y| = 12 or 1501 - 52. 11. ii) let $\alpha = ton^{-1}(\frac{\mu}{3}) \beta = ton^{-1}(\frac{1}{7})$ ton (x-B) = tonx - ton B 1 + tonx ton B 1+ 424 = l. iii) Dirice z= 1+i principal org = # or $\arg\left(\frac{7-i}{3-4i}\right) = \arg\left(7-i\right) - \arg\left(3-4i\right)$ = $\tan\left(7-i\right) - \tan\left(3-4i\right)$ = $\tan\left(7-i\right) - \tan\left(3-4i\right)$ $= ton \left(\frac{1}{3}\right) - ton \left(\frac{1}{7}\right)$ = ton" (1) by(ii) = 4. agg(2-2) org(z+2) clearly from deargram arg(2-2) = arg(2+2)+ 1/2 since enterior angle of a equal own of remote interior ongles. ". Locus of Z is the semicircle shown with equation y= 14-x2 for y>0. Note end points one excluded since ary a is not defined.

 $c)_{(i)}$ let $x = \cos \theta$ 1. 8x3-6x+1=0 $= 2(410^{3}O - 3000) = -1$ 38 = 2nji ± 211. A = 211 , 417 , 817 only 3 solta $\therefore X = \cos \frac{2\pi}{9}, \cos \frac{4\pi}{9}, \cos \frac{8\pi}{9}.$ $ii) x \cos \frac{2\pi}{q} + \cos \frac{4\pi}{q} + \cos \frac{8\pi}{q} = \sum \alpha = 0 \sqrt{2}$ 13) dec 21 + dec 417 + dec 815 = 1+1+1 9 + dec 815 = 1+1+1 = ZaB / = -5/8 -14 =6.

.

· ········

e a com



Question 4 (15 Marks)

a)

A particle of mass 1 kg is projected vertically upwards under gravity with a speed

of 2c in a medium which the resistance to motion is $\frac{g}{c^2}$ times the square of the

speed, where c is positive constant.

$$H = \frac{c^2}{2g} \ln 5$$

SOLUTION:

Upward motion. Choose a point of projection as origin and \uparrow as positive.

Initial conditions: t = 0, x = 0, v = 2c. Equation of motion: $\ddot{x} = -g - \frac{g}{c^2}v^2$.

Expression relating x and v:

$$v \frac{dv}{dx} = -g - \frac{g}{c^2} v^2,$$

$$-g dx = \frac{v dv}{1 + \frac{v^2}{c^2}},$$

$$-gx + A = \frac{c^2}{2} \ln (1 + \frac{v^2}{c^2}), A \text{ constant};$$

$$x = 0, \quad v = 2c$$

$$A = \frac{c^2}{2} \ln 5$$

$$x = \frac{c^2}{2g} \ln \frac{5c^2}{c^2 + v^2} \dots (1)$$

When the particle reaches its highest point, its velocity is zero. So v = 0

from (2) $t = \frac{c \cdot \tan^{-1} 2}{g}$ is the time of ascent.

Let *h* be the distance between the point of projection and the highest point. Then v = 0 from (1)

$$h = \frac{c^2}{2g} \ln 5 \; .$$

-1-

Question 4 a) (ii)

Show that the speed with which the particle returns to its starting point is given by $v = \frac{2c}{\sqrt{5}}$.

SOLUTION:

Downward motion.

Origin at highest point and \downarrow as positive direction. Initial conditions: t = 0, x = 0, v = 0.

Equation of motion: $\ddot{x} = g - \frac{g}{c^2}v^2$.

Terminal velocity: as $\ddot{x} \to 0$, $v \to (c)^-$ v < c. Expression relating x and v:

$$v \frac{dv}{dx} = g - \frac{g}{c^2} v^2$$

$$g dx = \frac{v \, dv}{1 - \frac{v^2}{c^2}}$$

$$gx + A = \frac{-c^2}{2} \ln (1 - \frac{v^2}{c^2})$$

$$gx + A = \frac{-c^2}{2} \ln (1 - \frac{v^2}{c^2})$$

$$gx + A = \frac{-c^2}{2} \ln (1 - \frac{v^2}{c^2})$$

$$x = 0, v = 0$$

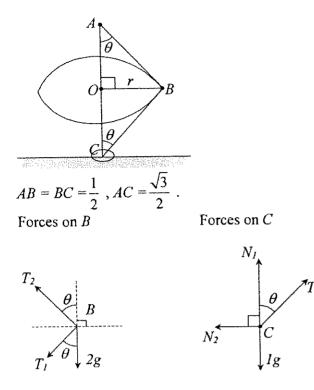
$$A = 0$$

$$x = \frac{c^2}{2g} \ln \frac{c^2}{c^2 - v^2} \dots (2)$$

When the particle returns to its starting point, x = h. Hence from (2) $h = \frac{c^2}{2g} \ln \frac{c^2}{c^2 - v^2}$. $h = \frac{c^2}{2g} \ln 5$ But $5 = \frac{c^2}{c^2 - v^2}$ $v = \frac{2c}{\sqrt{5}}$

Question 4 b) (i)

SOLUTION:



Question 4 b) (ii)

the forces exerted by the ledge on the ring. (let $g = 10m/s^2$)

The resultant force on C is zero. For its vertical component we have $N_1 + T_1 \cos\theta = Ig$ $N_1 = g - (18 - \frac{20}{\sqrt{3}})\frac{\sqrt{3}}{2}$ $N_1 = g + 10 - 9\sqrt{3}$ $N_1 = 20 - 9\sqrt{3}$ N

-4-

Question 5 (15 Marks)

Show that the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ has the equation $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$.

SOLUTION:

This ellipse meets the y-axis at C and D. Tangents drawn at C and D on the ellipse meet the tangent in (i) at the points E, F respectively. Prove that $CE.DF = a^2$.

SOLUTION:

(i)

Coordinates of C and D are (0,b) and (0,-b) respectively.

:. the equations of the tangents through C and D are y = b and y = -b, respectively. Solve each of these equations simultaneously with the equation of the tangent at P,

 $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$ and we have the coordinates of *E* and *F* as follows:

$$E\left(\frac{a(1-\sin\theta)}{\cos\theta}\right) \text{ and } F\left(\frac{a(1+\sin\theta)}{\cos\theta}\right)$$
$$\therefore CE \cdot DF = \left(\frac{a(1-\sin\theta)}{\cos\theta}\right) \cdot \left(\frac{a(1+\sin\theta)}{\cos\theta}\right)$$
$$= \frac{a^2(1-\sin^2\theta)}{\cos^2\theta}$$
$$= \frac{a^2\cos^2\theta}{\cos^2\theta}$$
$$= a^2$$

i)

b)

Show that if y = mx + k is a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $m^2 a^2 - b^2 = k^2$.

SOLUTION: The hyperbola has parametric equations $x = a \sec \theta$ and $y = b \tan \theta$. Hence

 $\frac{dy}{dt} = \frac{b \sec \theta}{dt}$ $dx = a \tan \theta$ If y = mx + k is a tangent to the hyperbola at $P(a \sec \phi, b \tan \phi)$, then $m = \frac{dy}{dt}$ at P ... (1) $ma \tan \phi - b \sec \phi = 0$ P lies on y = mx + kma sec $\phi - b \tan \phi = -k \dots (2)$ $(2)^{2} - (1)^{2}$ $m^2 a^2 (\sec^2 \phi - \tan^2 \phi) + b^2 (\tan^2 \phi - \sec^2 \phi) = k^2 \cdot$ $m^2 a^2 - b^2 = k^2$ (2) × sec ϕ – (1) × tan ϕ $ma(\sec^2\phi - \tan^2\phi) = -k\sec\phi$ $a \sec \phi = -\frac{ma^2}{k},$ (2) × tan ϕ – (1) × sec ϕ $b(\sec^2\phi - \tan^2\phi) = -k\tan\phi$ $b \tan \phi = -\frac{b^2}{k}$

Therefore the point of contact of the tangent y = mx + k is $P(-\frac{ma^2}{k}, -\frac{b^2}{k})$.

ii) Hence find the equation of the tangents from the point (1, 3) to the hyperbola $\frac{x^2}{4} - \frac{y^2}{15} = 1$ and the coordinates of their points of contact.

SOLUTION:

Now tangents from the point (1, 3) to the hyperbola $\frac{x^2}{4} - \frac{y^2}{15} = 1$ have equations of the form y - 3 = m(x - 1), that is, y = mx + (3 - m).

Hence $m^2 a^2 - b^2 = k^2$ $4m^2 - 15 = (3 - m)^2$ $3m^2 + 6m - 24 = 0$ (m - 2)(m + 4) = 0. $\therefore m = 2,$ k = 3 - m = 1, and $P(-\frac{ma^2}{k}, -\frac{b^2}{k}) \equiv P(-8, -15)$ or m = -4, k = 3 - m = 7 and $P(-\frac{ma^2}{k}, -\frac{b^2}{k}) \equiv P(\frac{16}{7}, -\frac{15}{7})$.

Hence the tangents from the point (1, 3) to the hyperbola $\frac{x^2}{4} - \frac{y^2}{15} = 1$ are y = 2x + 1, with point of contact P(-8, -15) and y = -4x + 7, with point of contact $P(\frac{16}{7}, -\frac{15}{7})$.

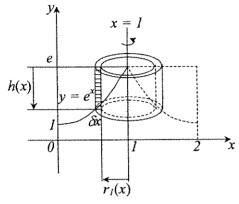
End of Question 5.

Question 6 (15 Marks)

a)

By taking strips parallel to the axis of rotation, use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by $y = e^x$, $y = e^x$ and the y-axis about the line x = 1.

SOLUTION:



The typical cylindrical shell has radii $r_1(x) = 1 - x$, $r_2(x) = 1 - x + \delta x$, and height $h(x) = e - e^x$. This shell has volume

$$\delta V = \pi [(1 - x + \delta x)^2 - (1 - x)^2] h(x)$$

= $2\pi (1 - x)(e - e^x) \, \delta x$ (ignoring $(\delta x)^2$).
$$\therefore V = \lim_{\delta x \to 0} \sum_{x=0}^{1} 2\pi (1 - x)(e - e^x) \, \delta x$$

$$\therefore V = \int_{0}^{1} 2\pi (1 - x)(e - e^x) \, dx$$

= $2\pi [e \int_{0}^{1} (1 - x) \, dx - \int_{0}^{1} (1 - x) \, e^x \, dx]$
= $2\pi [e (x - \frac{x^2}{2}) \Big|_{0}^{1} - \int_{0}^{1} (1 - x) \, de^x]$
= $2\pi [\frac{e}{2} - ((1 - x)e^x \Big|_{0}^{1} - \int_{0}^{1} (-1) \cdot e^x \, dx)]$
= $2\pi [\frac{e}{2} + 1 - e^x \Big|_{0}^{1}]$
= $\pi (4 - e)$

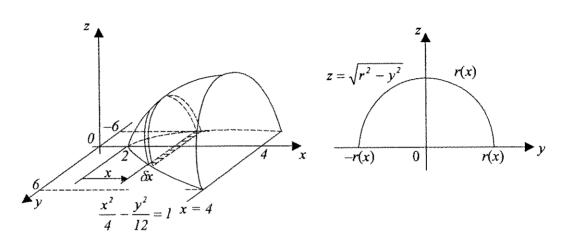
 \therefore The volume of the solid is $\pi(4-e)$ cubic units. »

Question 6 b)

The base of a particular solid is the region bounded by the hyperbola \$\frac{x^2}{4} - \frac{y^2}{12} = 1\$ between its vertex (2, 0) and the corresponding latus rectum. Every cross-section perpendicular to the major axis is a semicircle with diameter in the base of the solid.
i) Find the equation of the latus rectum.

ii) Find the volume of the solid.

SOLUTION:



The latus rectum of the hyperbola $\frac{x^2}{4} - \frac{y^2}{12} = 1$ is the line x = 4.

The slice is a semicircle with radius r, area of cross-section A and thickness δx .

$$A(x) = \frac{\pi r^2(x)}{2},$$

$$r(x) = \sqrt{12} \cdot \sqrt{\frac{x^2}{4} - 1}$$

$$\therefore \quad A(x) = 6\pi (\frac{x^2}{4} - 1).$$

 $\delta V = A(x)\delta x = 6\pi (\frac{x^2}{4} - I)\delta x$ The slice has volume Then the volume of the solid is

$$V = \lim_{\delta x \to 0} \sum_{x=2}^{4} 6\pi (\frac{x^2}{4} - 1) \,\delta x = 6\pi \int_{2}^{4} (\frac{x^2}{4} - 1) \,dx$$
$$= 6\pi \left(\frac{x^3}{4 \cdot 3} - x\right) \Big|_{2}^{4}$$
$$= 16\pi$$

 \therefore The volume of the solid is $I6\pi$ cubic units. »

-9-

Question 6

c)

The points
$$P\left(cp, \frac{c}{p}\right)$$
 and $Q\left(cq, \frac{c}{q}\right)$ lie on the rectangular hyperbola $xy = c^2$.
The chord PQ subtends a right angle at another point $R\left(cr, \frac{c}{r}\right)$ on the hyperbola.
Show that the normal at R is parallel to PQ.

SOLUTION:

$$xy = c^{2}$$

$$x\frac{dy}{dx} + y = 0$$

$$\frac{dy}{dx} = \frac{-y}{x} \text{ at } R\left(cr, \frac{c}{r}\right)$$

$$= \frac{-1}{r^{2}}$$

Hence, gradient of the normal at $R = r^2$

Let gradient of RP = m_{RP}

$$m_{RP} = \frac{\frac{c}{r} - \frac{c}{p}}{\frac{cr}{cr} - cp}$$
$$= \frac{-1}{rr}$$

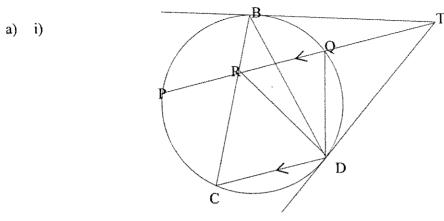
rpSimilarly $m_{RQ} = \frac{-1}{rq}$ and $m_{PQ} = \frac{-1}{pq}$

Now, $m_{RP} \times m_{RQ} = -1$ (:: $\angle PRQ = 90^{\circ}$) : $\frac{1}{r^2 pq} = -1$

$$r^2 = \frac{-1}{pq}$$

Hence, gradient of the normal at $R = m_{PQ}$ \therefore Normal at R is parallel to PQ.

Question 7 (15 Marks) SOLUTION



ii)

Prove that $\angle BDT = \angle BRT$ and hence state why B, T, D and R are concyclic points.

SOLUTION:

 $\angle BDT = \angle BCD$ (\angle between tangent TD & chord BD = \angle in Alternate segment) $\angle BCD = \angle BRT$ (corr. \angle 's, PT||CD)

 $\therefore \angle BDT = \angle BRT$

Now, as $\angle BDT$ and $\angle BRT$ are equal angles subtended by chord BT

:.BTDR are concyclic points.

iii)

	Prove	Ζ	BRT		Ζ	DRT.	
--	-------	---	-----	--	---	------	--

SOLUTION I-short version!

In the cyclic quad BTDR

BT = DT (tangents of equal length from external point T)

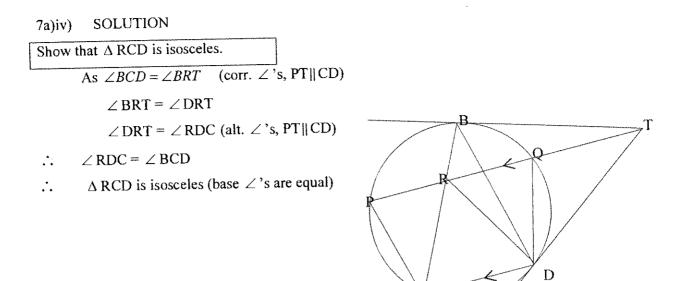
 $\therefore \angle BRT = \angle DRT.$ (equal chords subtend equal angles to the circumference)

SOLUTION 2

 $\angle BTD = 180 - 2 \times \angle BDT \qquad (\angle \text{ sum of triangle BTD})$ $\therefore \quad \angle BRD = 2 \times \angle BDT \qquad (\text{opp } \angle \text{'s of a cyclic quad are supplementary})$ $\therefore \quad \angle BRD = 2 \times \angle BRT \qquad (\text{from (ii) above})$ $\angle BRT = \angle DRT.$

hence

NOTE: There are many wats of solving this part.



С

v)

Prove that $\triangle PRC \equiv \triangle QRD$. In $\triangle PRC$ and $\triangle QRD$ RC=RD (from iv) $\angle DRQ = \angle RCD$ (proven above) $\angle RCD = \angle CRP$ (alt. \angle 's, PT||CD) $\therefore \ \angle CRP = \angle DRQ$ now $\angle RQD = 180 - (\angle RCD + \angle PCR)$ (opposite \angle 's of cyclic quad PQDC) and $\angle RPC = 180 - (\angle PRC + \angle PCR)$ $= 180 - (\angle RCD + \angle PCR)$

$$\therefore \quad \angle RPC = \angle RQD$$

$$\therefore \quad \Delta \operatorname{PRC} \equiv \Delta \operatorname{QRD}(\operatorname{AAS})$$

-12-

Q7b) SOLUTION

If $ax^3 + bx^2 + d = 0$ has a double root, show that $27a^2d + 4b^3 = 0$.

 $P(x) = ax^{3} + bx^{2} + d,$ $P'(x) = 3ax^{2} + 2bx,$ P''(x) = 6ax + 2b. $P'(0) = 0, P'(-\frac{2b}{3a}) = 0.$ Hence, both 0 and $\frac{-2b}{3a}$ can be a double root of P(x) = 0.Let 0 be a double root. Hence P(0) = 0, $d = 0 \Rightarrow$ if $27a^{2}d + 4b^{3} = 0$, then $b = 0 \Rightarrow P(x) = ax^{3}$ and 0 is a triple root. Thus if 0 is a double root, then $27a^{2}d + 4b^{3} \neq 0.$ Let $\frac{-2b}{3a}$ be a double root of P(x) = 0.Hence $P(\frac{-2b}{3a}) = 0$ $a(\frac{-2b}{3a})^{3} + b(\frac{-2b}{3a})^{2} + d = 0$ $27a^{2}d + 4b^{3} = 0$

-13-

Question 8 (15 Marks)

a)

A coin is tossed six times. What is the probability that there will be more tails on the first three of the six throws than on the last three throws?

SOLUTION

3 outcomes: Equal tails, more tails or less tails.

P(equal tails)=P(1H) + P(2H) + P(3H) + P(0H)

$$=9\left(\frac{1}{2}\right)^{6}+9\left(\frac{1}{2}\right)^{6}+\left(\frac{1}{2}\right)^{6}+\left(\frac{1}{2}\right)^{6}$$
$$=\frac{20}{64}$$

P(More tails in 1st 3 throws)

$$=\frac{1}{2}\left(1-\frac{20}{64}\right)$$
$$=\frac{11}{32}$$

b)

If m points are taken on a straight line and n points on a parallel line, how many triangles can be drawn each having its vertices at 3 of the given points?

SOLUTION

Number of triangles

$$= m^{n}C_{2} + n^{m}C_{2}$$
$$= \frac{1}{2}mn(m+n-2)$$

Question 8c)

د. وی والی کاری این این این این اور اور این وروسه ورو وها و ووجو و و وروس و و بار و و و و و و و و و و و و و و و و

(i)
Show that
$$(1-x^2)^{\frac{n-3}{2}} - (1-x^2)^{\frac{n-1}{2}} = x^2 (1-x^2)^{\frac{n-3}{2}}$$
.
SOLUTION
 $(1-x^2)^{\frac{n-3}{2}} - (1-x^2)^{\frac{n-1}{2}} = x^2 (1-x^2)^{\frac{n-3}{2}}$
 $= (1-x^2)^{\frac{n-3}{2}} \left[1-(1-x^2)^{\frac{2}{2}} \right]$
 $= x^2 (1-x^2)^{\frac{n-3}{2}}$

(ii) SOLUTION

Using Integration by parts;

$$I_{n} = \int_{0}^{1} (1-x^{2})^{\frac{n-1}{2}} \frac{d(x)}{dx} dx$$

$$= \left[x \left(1-x^{2} \right)^{\frac{n-1}{2}} \right]_{0}^{1} - \frac{n-1}{2} \int_{0}^{1} -2x^{2} \left(1-x^{2} \right)^{\frac{n-3}{2}} dx$$

$$\therefore I_{n} = (n-1) \int_{0}^{1} x^{2} \left(1-x^{2} \right)^{\frac{n-3}{2}} dx$$
now from (c)i
$$I_{n} = (n-1) \int_{0}^{1} x^{2} \left(1-x^{2} \right)^{\frac{n-3}{2}} dx$$

$$I_{n} = (n-1) \int_{0}^{1} (1-x^{2})^{\frac{n-3}{2}} dx - (n-1) \int_{0}^{1} (1-x^{2})^{\frac{n-1}{2}} dx$$

$$I_{n} = (n-1) I_{n-2} - (n-1) I_{n}$$

$$\therefore (n-1) I_{n} + I_{n} = (n-1) I_{n-2}$$

-15-

Question 8 (iii)

Let
$$J_n = nI_n J_{n-1}$$
 for $n = 1, 2, 3, ...$
By using mathematical induction, prove that
 $J_n = \frac{\pi}{2}$ for $n = 2, 3, ...$

SOLUTION

Test for *n*=2

$$J_{2} = 2I_{2} J_{2-1}$$

= $I_{0} I_{1}$
$$I_{2} = \int_{0}^{1} (1 - x^{2})^{\frac{-1}{2}} dx. \int_{0}^{1} (1 - x^{2})^{0} dx$$

= $\int_{0}^{1} (1 - x^{2})^{\frac{-1}{2}} dx.$
= $[\sin^{-1} x]_{0}^{1}$
= $\frac{\pi}{2}$

Assume true for n=k ie $J_k = kI_k J_{k-1} = \frac{\pi}{2}$

Test for n = k + l

Now from
$$J_n = nI_n J_{n-1}$$

$$J_{k+1} = (k+1)I_{k+1}.I_k$$

And as $nI_n = (n-1)I_{n-2}$

therefore $(k+1)I_{k+1} = kI_{k-1}$

$$J_{k+1} = kI_{k-1}.I_k$$
$$= \frac{\pi}{2}$$

Hence by Mathematical Induction

$$J_n = \frac{\pi}{2}$$
 for $n = 1, 2, 3, \dots$

-16-

2004 Trial HSC Extension 2 Mathematics (iv) Briefly explain why $0 < I_n < I_{n-1}$ for $n = 1, 2, 3, \dots$ SOLUTION $I_{n} = \int_{-\infty}^{\infty} (1-x^{2})^{\frac{n-1}{2}} dt > 0 dearly!$ $T = \int_{-1}^{1} (1-x^2)^{\frac{n-3}{2}} dx$ $I_{n} - I_{n-1} = \int_{0}^{1} \int (1-x^{2})^{n-1} - (1-x^{2})^{n-2} \int dx$ $= \int_{-\infty}^{1} (1-z^2)^{n-2} \sqrt{1-z^2} - 1 dz$ for ocxel ocul-x2el $-1 \le \sqrt{1-x^2} - 1 \le 0$ Hence In - In-1 < 0 O (In < In-1 END OF PAPER