Question $1 \quad 12$ Marks

Marks

$\int_{-2}^{2} \frac{d x}{x^{2}+4}$
(b) Solve $\frac{5}{x-3} \geq 2$.
(c) Show that $\int \frac{d x}{\sqrt{9-4 x^{2}}}=\frac{1}{2} \sin ^{-1} \frac{2 x}{3}+C$, where C is constant.
(d) Find the general solution for $\cos 2 \theta=\frac{\sqrt{3}}{2}$
(e) (i) Show that the derivative of $\frac{1+\sin x}{\cos x}$ is $\frac{1}{1-\sin x}$.
(ii) Hence, deduce that $\int_{0}^{\pi / 4} \frac{d x}{1-\sin x}=\sqrt{2}$

Question 212 Marks Start a new booklet

(a) Let $f(x)=x^{3}+5 x^{2}+17 x-10$. The equation $f(x)=0$ has only one real root.
(i) Show that the root lies between 0 and 2 .
(ii) Use one application of the 'halving the interval' method to find a smaller interval containing the root.
(iii) Which end of the smaller interval found in part (ii) is closer to the root? Briefly justify your answer.
(b) Evaluate $\int_{-1}^{2} \frac{x d x}{\sqrt{3-x}}$ using the substitution $x=3-u$.
(c) ABCD is a cyclic quadrilateral in which AC bisects $\angle D A B$. CE is the tangent to the circle at C . Prove $C E \square D B$.

Question 312 Marks \quad Start a new booklet

(a) (i) Express $\sin \theta+\sqrt{3} \cos \theta$ in the form $R \sin (\theta+\phi)$.
(ii) Hence, or otherwise, solve the equation $\sin \theta+\sqrt{3} \cos \theta=1$ for values of θ between 0 and 2π.
(b) Cadel notices that the angle of elevation of the top of a mountain due north is 14°. Upon riding 7 kilometres due west, he finds that the angle of elevation of the top of the mountain is 10°. How high is the mountain? Give your answer correct to the nearest metre.

$$
\angle D B C=14^{\circ}, \angle D A C=10^{\circ}
$$

(c) (i) Show that $\cos \theta=2 \cos ^{2} \frac{\theta}{2}-1$
(ii) Hence, show that $\frac{1}{1+\sec x}=1-\frac{1}{2} \sec ^{2} \frac{x}{2}$.
(iii) Use part (ii) to deduce that $\int_{0}^{\pi / 2} \frac{d x}{1+\sec x}=\frac{\pi}{2}-1$.

Question 4 page 3.

Question $4 \quad 12$ Marks \quad Start a new booklet

(a) The sides of a cube are increasing at a rate of $2 \mathrm{cms}^{-1}$. Find at what rate the surface area is increasing when the sides are each 10 cm .
(b) Prove by induction $9^{n+2}-4^{n}$ is divisible by 5 , for $n \geq 1$
(c) 100 grams of cane sugar in water is converted into dextrose at a rate which is proportional to the amount unconverted at any time. That is, if m grams are converted in t minutes, then $\frac{d m}{d t}=k(100-m)$, where k is constant.
(i) Show that $m=100+A e^{-k t}$, where A is a constant, satisfies this equation.
(ii) Find the value of A.
(iii) If 40 grams are converted in the first 10 minutes, find how many grams are converted in the first 30 minutes.
(iv) What is the limiting value of m as t increases indefinitely?

Question 512 Marks Start a new booklet

(a) Solve the equation $6 x^{3}-17 x^{2}-5 x+6=0$, given that two of its roots have a product of -2 .
(b) Find the values of a and b so that $x^{4}+4 x^{3}-x^{2}+a x+b$ is divisible by $(x-2)(x+1)$.
(c) $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ are points on the parabola $x^{2}=4 a y$.

(i) Show that the equation of the chord $P Q$ is $\frac{(p+q) x}{2}-y=a p q$
(ii) The line $P Q$ passes through the point $(0,-a)$. Show that $p q=1$.
(iv) Hence, or otherwise, if S is the focus of the parabola, show that $\frac{1}{S P}+\frac{1}{S Q}=\frac{1}{a}$.

Question 612 Marks Start a new booklet

(a) By considering the expansion of $(1+x)^{2 n}$ in ascending powers of x show that ${ }^{2 n} C_{0}+{ }^{2 n} C_{1}+{ }^{2 n} C_{2}+\ldots+{ }^{2 n} C_{2 n}=4^{n}$
(b) (i) Write the expansion of $(2+3 x)^{20}$ in the form $\sum_{r=0}^{20} c_{r} x^{r}$, where c_{r} is the coefficient of x^{r} in the expansion.
(ii) Show that $\frac{c_{r+1}}{c_{r}}=\frac{60-3 r}{2 r+2}$
(iii) Hence, or otherwise, find the greatest coefficient in the expansion of $(2+3 x)^{20}$. Leave your answer in index form.
(c) Of a set of otherwise similar cards, ten are white, six are red and four are yellow. Three cards are taken at random. What is the probability that:
(i) They are all different colours;
(ii) They are the same colour?
(d) (i) In how many ways can 2 boys and 1 girl be arranged in a row if the 3 selection is made from 4 boys and 3 girls?
(ii) In how many of these arrangements does a girl occupy the middle position?

Question 7 page 5.

Question $7 \quad 12$ Marks \quad Start a new booklet

(a) A particle is projected with speed $40 \mathrm{~ms}^{-1}$ from the top of a cliff 84 metres high at an angle of elevation $\alpha=\tan ^{-1} \frac{4}{3}$. Assume that the equations of motion are $\ddot{x}=0$ and $\ddot{y}=-10 \mathrm{~ms}^{-2}$.

(i) Derive the equations $x=24 t$ and $y=84+32 t-5 t^{2}$.
(ii) Hence or otherwise find the range on the horizontal plane through the foot of the cliff.
(iii) Find the speed of the body when it reaches this plane. Answer correct to two significant figures.
(b) A particle moves in simple harmonic motion about $x=0$ and its displacement x metres, at time t seconds, is given by $x=a \sin n(t+\alpha)$. The particle moves with a period of 16 seconds. It passes through the centre of motion when $t=2$ seconds. Its velocity is $4 \mathrm{~ms}^{-1}$ when $t=4$ seconds.
(i) Show $\ddot{x}=-\frac{\pi^{2}}{64} x$.
(ii) Find the maximum displacement.
(iii) Find the speed of the particle when $t=10$ seconds.

END OF EXAM

Question 1
(a)

$$
\begin{aligned}
& \int x \sin \left(x^{2}\right) d x \\
= & -\frac{\cos \left(x^{2}\right)}{2}+C \\
\int_{0}^{\frac{1}{2}} \cos ^{-1} x d x & =\int_{0}^{\frac{1}{2}} \cos ^{-1} x \frac{d[x]}{d x} \cdot d x \\
& =\left[x \operatorname{Cos}^{-1} x\right]_{0}^{\frac{1}{2}}-\int_{0}^{\frac{1}{2}} \frac{-x}{\sqrt{1-x^{2}}} d x \\
& =\frac{1}{2} \times \frac{\pi}{3}-\left[\sqrt{1-x^{2}}\right]_{0}^{\frac{1}{2}} \\
& =\frac{\pi}{6}-\frac{\sqrt{3}}{2}+1
\end{aligned}
$$

(b)
(c) (i) let $x \equiv a(x+3)+b(x-2)$

$$
\begin{aligned}
& \text { let } x=2 \quad \therefore \quad a=\frac{2}{5} \\
& x=-3 \quad \therefore \quad b=\frac{3}{5} \\
& \therefore \frac{x}{(x-2)(x+3)}=\frac{\frac{2}{5}}{x-2}+\frac{3}{x+3}
\end{aligned}
$$

(ic)

$$
\begin{aligned}
\therefore \int \frac{x}{(x-2)(x+3)} d x & =\frac{2}{5} \int \frac{1}{x-2} d x+\frac{3}{5} \int \frac{1}{x+3} d x \\
& =\frac{2}{5} \ln |x-2|+\frac{3}{5} \ln |x+3|+c
\end{aligned}
$$

(d) $\int \frac{x+4}{x^{2}-4 x+13} d x=\frac{1}{2} \int \frac{2 x-6}{x^{2}-6 x+13} d x+\int \frac{6}{(x-2)^{2}+9} d x$

$$
=\frac{1}{2} \ln \left|x^{2}-6 x+13\right|+2 \tan ^{-1} \frac{x-2}{3}+C
$$

(e)

$$
\begin{aligned}
& \therefore x=2 t \tan ^{-1} t \\
& \frac{d x}{d t}=\frac{2}{1+t^{2}} \\
& \frac{\sqrt{1+t^{2}}}{1 / 2} d t \\
& \cos x=2 \cos ^{2} \frac{x}{2} \\
&=\frac{1-t^{2}}{1+t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\operatorname{Cox} x} & =\int_{0}^{1} \frac{\frac{2}{1+t^{2}}}{1+\frac{1-t^{2}}{1+t^{2}}} d t \\
& =\int_{0}^{1} \frac{1+t^{2}+1-t^{2}}{1} d t \\
& =\int_{0}^{1} d t \\
& =\sum t J_{0}^{1} \\
& =1
\end{aligned}
$$

Quection 2
(a) $w=1+i, z=1-i \sqrt{3}$
(i) $w \bar{z}=(1+i)(1+i \sqrt{3})$

$$
=(1-\sqrt{3})+(1+\sqrt{3}) i
$$

(ic)

$$
\begin{aligned}
\frac{1}{1+i} \cdot \frac{1-i}{1-i} & =\frac{1-i}{2} \\
& =\frac{1}{2}-\frac{1}{2} i
\end{aligned}
$$

(iii) $\frac{i[\operatorname{Re}(z)-z]}{g_{m}(z)}=\frac{i[1-1+i \sqrt{3}]}{-\sqrt{3}}$
(b)

(c)

$$
\begin{aligned}
& x^{2}-4 x+(1-4 i)=0 \\
& x=\frac{4 \pm \sqrt{16-4(1-4 i})}{2} \\
&=\frac{4 \pm \sqrt{12+16 i}}{2} \\
&=2 \pm \sqrt{3+4 i} \\
& x=2+(2+i) \\
&=4+i \quad \text { fran } \forall
\end{aligned}
$$

$$
\begin{aligned}
& x-4 x+(1-4 i)=0 \\
& x=\frac{4 \pm \sqrt{16-4(1-4 i)}}{2}
\end{aligned} \quad \text { Now 6t } \sqrt{3+4 i}=x+i y
$$

$$
\therefore x^{2}-y^{2}=3
$$

$$
\therefore x^{2}-\frac{4}{x^{2}}=3
$$

$$
\therefore \quad x=2+(2+i)
$$

$$
\left(x^{2}\right)^{2}-3\left(x^{2}\right)-4=0
$$

$$
\left(x^{2}-4\right)\left(x^{2}+1\right)=0
$$

$$
\therefore x= \pm 2 \quad \therefore \text { whan } x=2, y=1
$$

$$
\text { when } x=-2, y=-1
$$

(d) (i)

$$
\begin{aligned}
z & =1+2 i+t(3-4 i) \\
& =1+2 i+3 t-4 t i \\
& =(1+3 t)+(2-4 t) i \\
\therefore x & =1+3 t \ldots(i) \\
y & =2-4 t \ldots(i i)
\end{aligned}
$$

(ii)

$1 z 1$ minaine of

$$
\begin{aligned}
d & =\frac{|4(0)+3(0)-10|}{\sqrt{4^{2}+3^{2}}} \\
& =\frac{(-101}{5} \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad 3 y=6-8 x+6 \\
& \therefore 4 x+3 y=10
\end{aligned}
$$

Question 3
a) (i)

(ii)
)

(iii)

(iv)

Question 3 (Continued)
$3(b)(i)$

$$
\begin{array}{rlrl}
P(x) & =x^{5}-3 x^{4}+4 x^{3}-4 x^{2}+3 x-1 & & \\
P^{\prime}(x) & =5 x^{4}-12 x^{3}+12 x^{2}-8 x+3 & P^{\prime}(1) & =5-12+12-8+3 \\
& =0 \\
P^{\prime \prime}(x) & =20 x^{3}-36 x^{2}+24 x-8 & P^{\prime \prime}(1) & =20-36+2 x-8=0
\end{array}
$$

Now $P(1)=1-3+4-4+3-1$

$$
\begin{aligned}
&=0 \quad \therefore \text { as } P(1)=P^{\prime}(1)=P^{\prime \prime}(1 \\
& \therefore \text { triple root at } x=1 \\
&) \quad \begin{aligned}
P(i) & =i^{5}-3 i^{4}+4 i^{3}+4 i^{2}+3 i-1 \\
& =i-3+4 i+4+3 i-1 \\
& =0
\end{aligned} \\
& \text { as } i^{2}=-1
\end{aligned}
$$

(ii)
(iii) if $x=i$ is a rat $\therefore P(-i)=0$
\therefore Roots are $1, i,-i$
(c) $\quad x^{3}-2 x^{2}-5 x-1=0$

Let new equation have roots in the form

$$
\begin{aligned}
x & =\frac{1}{\alpha^{2}} \\
\therefore \quad \alpha^{2} & =\frac{1}{x} \\
\alpha & = \pm \frac{1}{\sqrt{x}}
\end{aligned}
$$

as $<$ is a roct of $x^{3}-2 x^{2}-5 x-1=0$

$$
\begin{aligned}
& \therefore\left(\pm \frac{1}{\sqrt{x}}\right)^{3}-2\left(\pm \frac{1}{\sqrt{x}}\right)^{2}=5\left(\frac{1}{\sqrt{x}}\right)-1=0 \\
& \pm \frac{1}{\sqrt{x}}\left(\frac{1}{x}-5\right)=\frac{2}{x}+1 \\
& \therefore \frac{1}{x}\left(\frac{1}{x}-5\right)^{2}=\left(\frac{2}{x}+1\right)^{2} \\
& \therefore \frac{1}{x}\left(\frac{1}{x^{2}}-\frac{10}{x}+25\right)=\frac{4}{x^{2}}+\frac{4}{x}+1 \\
& \frac{1}{x^{3}}-\frac{10}{x^{2}}+\frac{25}{x^{2}}=\frac{4}{x^{2}}+\frac{4}{x}+1 \\
& \therefore \quad 1=10 x+25 x^{2}=4 x+4 x^{2}+x^{3} \\
& \therefore x^{3}-21 x^{2}+14 x-1=0 \text { 400 } \frac{1}{x^{2}} \frac{1}{x^{2}} \frac{1}{y^{2}}
\end{aligned}
$$

Note student may
get the sone realty using:

Quection 4
(4) (i) Gide $5-k=k-3$

$$
k=4
$$

(ii) Itypentade $5-k<0$ or $k-3<0$, but not bath

$$
\therefore k>5 \text { or } k<3
$$

(b)

(i)

$$
\begin{gathered}
x y=c^{2} \\
x \frac{d y}{d x}+y=0 \\
\frac{d y}{d x}=-\frac{y}{x} \\
\text { atf }\left(c t, \frac{c}{t}\right) \frac{d y}{d x}=-\frac{c}{c t} \\
\therefore y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t) \\
t^{2} y-c t=-x+c t \\
\therefore x+t^{2} y-2 c t=0
\end{gathered}
$$

(ii) at pthe tangetis $x+p^{2} y-2 c p=0 \quad-6$

$$
x \operatorname{tg}^{2} y-2 q=0-2
$$

\therefore (1) (2) guis $\quad\left(p^{2}-q^{2}\right) y=2 c(p-q)$

$$
y=\frac{2 c}{p+y}
$$

Sub into (1)

$$
\begin{aligned}
\therefore x+p^{2}\left(\frac{2 c}{p+q}\right) & =2 c p \\
x & =2 c p-\frac{2 c p^{2}}{p+q} \\
& =\frac{2 c p^{2}+2 c p-2 c p^{2}}{p+q} \\
& =\frac{2 c p q}{p+q} \\
& R\left[\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right]
\end{aligned}
$$

Question 4 (Cotrined)
$Q \in(B)$
(iii) If $x y+y^{2}=2 c: \pi\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)$ 2ntapisit.

$$
\begin{aligned}
\text { LHS } & =\frac{2 c p q}{p+q} \cdot \frac{2 c}{p+q}+\left(\frac{2 c}{p+q}\right)^{2} \\
& =\frac{4 c^{2} p q}{(p+q)^{2}}+\frac{4 c^{2}}{(p+q)^{2}} \\
& =\frac{4 c^{2}(p q+1)}{p^{2}+q^{2}+2 p q} \\
& =\frac{\text { ALTERNATE] }}{\text { SOCUTILN }} \\
& \frac{4 c^{2}(p q+1)}{2+2 p q} \\
& =\frac{4 c^{2}(p q+1)}{2(p q+1)} \\
& =2 c^{2} \\
& =R H S
\end{aligned}
$$

4(c) $P(a \cos \theta, b \sin \theta), Q(a-\cos \phi, b \sin \rho)$ an $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(i) $\quad M_{P Q}=\frac{b(\sin \varphi-\sin \theta)}{a(\cos \varphi-\cos \theta)}$
\therefore Equtin of chord: $y-b \sin \theta=\frac{b(\sin \varphi-\sin \theta)}{a(\cos \varphi-\cos \theta)}(x-a \operatorname{Cos} \theta)$

$$
\therefore a y(\cos \phi-\cos \theta)-a b \sin \theta(\cos \varphi-\cos \theta)=b(\sin \varphi-\sin \theta) x-a b \cos \theta(\sin \phi-\sin \theta)
$$

(ii) Focel chood passes thongt (ae, o)

$$
\begin{aligned}
\therefore \operatorname{abe}(\sin \varphi-\sin \theta) & =a b \cos \theta(\sin \phi-\sin \theta)-a \phi \sin \theta(\cos \phi-6 \theta) \\
e(\sin \phi-\sin \theta) & =\cos \theta \sin \phi-\cos \theta \sin \theta-\sin \theta \cos \phi+\sin \theta \cos \theta \\
& =\sin (\phi-\theta) \\
\therefore e & =\frac{\sin (\phi-\theta)}{\sin \phi-\sin \theta}
\end{aligned}
$$

Q 4 (b) (iii) Altanate Sohution
Gwien $p^{2}+q^{2}=2$

$$
\begin{aligned}
& \therefore(p+q)^{2}-2 p q=2 \\
& \therefore p q=\frac{(p+q)^{2}-2}{2} \\
& \text { Now } *\left[\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right] \\
& \therefore y=\frac{2 c}{p+q} \\
& \therefore p+q=\frac{2 c}{y} \\
& \text { from* pq}=\frac{\left(\frac{2 c}{y}\right)^{2}-2}{2} \\
&=\frac{4 c^{2}-2 y^{2}}{2 y^{2}} \\
&=\frac{2 c^{2}-y^{2}}{y^{2}}
\end{aligned}
$$

.)

$$
\begin{aligned}
& \operatorname{now} x=\frac{2 c p q}{p+q} \\
& \because x=\frac{2 c x \frac{2 c^{2}-y^{2}}{y^{2}}}{\frac{2 c}{y}} \\
& \therefore x=\frac{2 c^{2}-y^{2}}{y} \\
& x y=2 c^{2}-y^{2} \\
& \because x y+y^{2}=2 c^{2}
\end{aligned}
$$

Quection 5
(a)

$$
\begin{aligned}
& N(\text { sample })=\frac{{ }^{12} G_{5} \cdot{ }^{7} C_{5}}{2} \\
& =8316 \\
& N(\text { Een } t)=\frac{3 C_{3} \times{ }^{9} C_{2} \times{ }^{7} C_{2}}{8316} \times \quad{ }^{3} C_{3} \text {-tigites togther } \\
& =\frac{72}{752} \\
& =\frac{1}{11} \\
& { }^{1} \mathrm{C}_{2} \text {-secondten. }
\end{aligned}
$$

(b) $\quad y=4 x-x^{2}$

$$
\text { (i) } \begin{aligned}
& \therefore x^{2}-4 x+y=0 \\
& x=\frac{4 \pm \sqrt{16-4 y}}{2} \\
&=2 \pm \sqrt{4-y} \\
& \therefore x_{2}=2+\sqrt{4-y} \\
& x_{1}=2-\sqrt{4-y}
\end{aligned}
$$

(i) Max valueof $y=4 \subset$ (sy mipatin)
(ii) Uniz slices perperdieler to y-asis
\therefore DISC

Valure of dix $\doteqdot \pi\left(x_{2}^{2}-x_{1}^{2}\right) \delta y$

$$
\begin{aligned}
V \text { olume } & =\lim _{\delta y \rightarrow 0} \sum_{y=0}^{y=4} \pi\left(x_{2}^{2}-x_{1}^{2}\right) \delta y \\
& =\pi \int_{0}^{4}\left(x_{2}-x_{1}\right)\left(x_{2}+x_{1}\right) d y \\
& =8 \pi \int_{0}^{4} \sqrt{4-y} d y \\
& =8 \pi \int^{3}\left[-\frac{2}{3}(4-y)^{3 / 2}\right]_{0}^{4} \\
& =\frac{8 \pi}{3} \cdot-\frac{2}{3}(0-8) \\
& =\frac{128 \pi}{3} \text { unit }^{3}
\end{aligned}
$$

Quection 5 (contivived)
(c)

\therefore Volue of skell $\delta V=2 \pi(8-x) x^{\frac{1}{3}} \cdot \delta x$

$$
\begin{aligned}
\therefore \text { Valume } & =\lim _{6 x \rightarrow 0} \sum_{x=0}^{\infty} 2 \pi(8 x) \cdot x^{\frac{1}{3}} \delta x \\
& =2 \pi \int_{0}^{8}\left(8 x^{\frac{1}{3}}-x^{\frac{4}{3}}\right) d x \\
& =2 \pi \cdot\left[6 x^{6 / 3}-\frac{3}{7} x^{7 / 3}\right]_{0}^{8} \\
& =2 \pi\left(6 \times 16-\frac{3}{7} \times 128\right) \\
& =2 \pi\left(96-\frac{384}{7}\right) \\
& =\frac{576 \pi}{7} \text { units }^{3}
\end{aligned}
$$

Question 6
(a) Givin $z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta$ ad $\left(z-\frac{1}{z}\right)^{5}=z^{5}-5 z^{3}+10 z-\frac{10}{z}+\frac{5}{z^{3}}-\frac{1}{z^{5}}$
(i) $z^{\prime}-\frac{1}{z^{\prime}}=2 i \sin \theta$

Now $\left(z-\frac{1}{z}\right)^{5}=z^{5}-\frac{1}{z^{5}}-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right)$

$$
\begin{aligned}
\therefore \quad(2 i \operatorname{Sin} \theta)^{5} & =2 i \operatorname{Sin} 5 \theta-10 i \operatorname{Sin} 3 \theta+20 i \operatorname{Sin} \theta \\
32 i \operatorname{Sin}^{5} \theta & =2 i(\operatorname{Sin} \sin -5 \operatorname{Sin} 3 \theta+10 \operatorname{Sin} \theta) \\
\operatorname{Sin}^{5} \theta & =\frac{1}{16}(\operatorname{Sin} 5 \theta-5 \operatorname{Sin} 3 \theta+10 \operatorname{Sin} \theta)
\end{aligned}
$$

(ii) Now fron(i)

$$
16 \operatorname{Sin}^{5} \theta=\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta
$$

\therefore if $16 \sin ^{5} \theta=\sin 5 \theta$

$$
\begin{aligned}
& \therefore-5 \sin 3 \theta+10 \sin \theta=0 \\
& \therefore 2 \sin \theta=\sin 3 \theta \\
&=\sin (2 \theta+\theta) \\
&=\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta \\
&=2 \sin \theta \cos ^{2} \theta+\left(1-2 \sin ^{2} \theta\right) \sin \theta \\
&=2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta-2 \sin ^{3} \theta \\
&=3 \sin \theta-4 \sin ^{3} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \because 4 \sin ^{3} \theta-\sin \theta=0 \\
& \therefore \sin \theta(4 \sin \theta-1)=0 \\
& \therefore \sin \theta(2 \sin \theta-1)(2 \sin \theta+1)=0
\end{aligned}
$$

$\therefore \sin \theta=0$ or $\sin \theta=\frac{1}{2}$ or $\sin \theta=-\frac{1}{2}$

$$
\begin{array}{r}
\therefore \theta=n \pi \quad \text { an } n+(-1) \frac{\pi}{6} \text { or } n \pi+(-1)\left(-\frac{\pi}{6}\right) \\
2 k \pi+\frac{\pi}{6} \quad(2 k+1)-\frac{\pi}{6}
\end{array}
$$

Quection 6 (contimued)
(b)
(i)

$$
\begin{aligned}
& p^{l g+k v} \\
& \ddot{x}=-g-k v \\
& \therefore \frac{d v}{d}=-g-k v \quad l \\
& \therefore \frac{d t}{d v}=\frac{1}{g+k v} \\
& t=-\frac{1}{k} \int_{u}^{v} \frac{k}{g+k v} d v \\
&=-\frac{1}{k}[\ln (g+k v)]_{u} \\
&=-\frac{1}{k} \ln \left(\frac{g+k v}{g+k u}\right) \\
& \therefore \quad-k t=\ln \left(\frac{g+k v}{g+k w}\right) \\
& \therefore g+k v=e^{-k+}(g+k u) \\
& \therefore \quad v=\frac{g+k u}{k} e^{-k t}-\frac{g}{k} \\
& \therefore \quad\left.=\int_{0}^{[} \frac{g+k u}{k} e^{-k t}-\frac{g}{k}\right] d t \\
&=-\frac{(g+k u)}{k^{2}} e^{-k t}-\frac{g}{k} t+\frac{g+k u}{k^{2}} \\
&=\frac{g+k u}{k^{2}}\left(1-e^{-k t}\right)-\frac{g t}{k}
\end{aligned}
$$

(ii) Nownt $t=T$

$$
\begin{aligned}
& \frac{g+k u}{k^{2}}\left(1-e^{-k T}\right)-\frac{g T}{k}=h+\frac{g}{k^{2}}\left(1-e^{-k T}\right)-\frac{g T}{h} \\
& \therefore\left(1-e^{-k T}\right)\left[\frac{g+k u}{k^{2}}-\frac{g}{k^{2}}\right]=h \\
& 1-e^{-k T}=\frac{h k}{u} \\
& T^{-k T}=\frac{u-h k}{u} \\
& \therefore-k T=\ln \left(\frac{u-k h}{u}\right) \\
& T=\frac{1}{k} \ln \left(\frac{u}{u-k h}\right)
\end{aligned}
$$

Question 7
(a) (i) $\int_{0}^{a} f(x) d x$ let $u=a-x$

$$
\begin{aligned}
& =\int_{a}^{0}-f(a-u) d u \quad \frac{d x}{d u}=-1 \quad x=0, u=a \\
& =\int_{0}^{a} f(a-u) d u \\
& =\int_{0}^{a} f(a-x) d x
\end{aligned}
$$

(ii) $\int_{0}^{\pi} x \cos ^{2} x d x=\int_{0}^{\pi}(\pi-x) \cos ^{2}(\pi-x) d x$

$$
\begin{aligned}
& \int_{0}^{\pi} x \cos ^{2} x d x=\int_{8}^{\pi}\left(\pi \cos ^{2} x-x \cos ^{2} x\right) d x \\
& \therefore 2 \int_{0}^{\pi} x \cos ^{2} x d x=\pi \int_{0}^{\pi} \cos ^{2} x d x \\
& \therefore 2 \int_{0}^{\pi} x \cos ^{2} x d x=\frac{\pi}{2} \int_{0}^{\pi}(1+\cos 2 x) d x \\
& \int_{0}^{\pi} x \cos ^{2} x=\frac{1}{2}(\cos 2 x+1) \\
&=\frac{\pi}{4}\left[x+\frac{1}{2} \sin 2 x\right]_{0}^{\pi} \\
&=\frac{\pi}{4}(\pi-0) \\
&=\frac{\pi^{2}}{4}
\end{aligned}
$$

Question 1 (contrived)

$$
\begin{aligned}
& \text { (b) }(i)(\cos n \theta+i \sin n \theta)=(\cos \theta+i \sin \theta)^{n} \\
& \left.=\cos ^{n} \theta+\binom{n}{1} \cos ^{n-1}(i \sin \theta)+\binom{n}{2} \cos ^{n-2}(i \sin \theta)^{2}+\binom{n}{3} \cos ^{n-3}(i \sin \theta)\right)^{3}+ \\
& \binom{n}{4} \cos ^{n-4}(\sin \theta)^{4}+\ldots . \\
& =\cos ^{n} \theta-\binom{n}{2} \cos ^{n-2} \sin ^{2} \theta+\left(\frac{n}{4}\right) \cos ^{n-4} \sin ^{4} \theta \ldots . .+ \\
& i\left[\binom{n}{1} \cos ^{n-1} \sin \theta-\binom{n}{3} \cos ^{n-3} \sin ^{3} \theta+\cdots\right] \\
& \text { as } i^{2}=-1, c^{3}=-i, i^{i}=1, \ldots .
\end{aligned}
$$

\therefore Equating the real and imaginary parts of bath sides
(1) $\cos n \theta=\cos ^{n} \theta-\binom{n}{2} \cos ^{n-2} \sin ^{2} \theta+\binom{n}{4} \cos ^{n-4} \sin ^{4} \theta \ldots .$.
(2) $\operatorname{Sin} \Lambda \theta=\binom{n}{1} \operatorname{Cos}^{n-1} \sin \theta-\binom{n}{3} \operatorname{Con}^{n-3} \operatorname{Sin}^{3} \theta t \ldots .$.
(ii) From (1) \times (2)

$$
\begin{align*}
\operatorname{Cos} n \theta & =\cos ^{n} \theta\left[1-\binom{n}{2} \cos ^{-2} \sin ^{2} \theta+\binom{n}{6} \cos ^{-6} \theta \sin ^{4} \theta \ldots\right] \\
& =\cos ^{n} \theta\left[1-\binom{n}{2} \tan ^{2} \theta+\binom{n}{4} \tan ^{4} \theta-\ldots .\right] \tag{3}\\
\operatorname{Cin} n \theta & \left.=\operatorname{Cos}^{n} \theta\left[\begin{array}{l}
n \\
1
\end{array}\right) \tan \theta-\binom{n}{3}+\tan ^{3} \theta+\ldots . .\right]
\end{align*}
$$

$\therefore(4) \div(3)$

$$
\therefore \tan n \theta=\frac{\binom{n}{1}+\tan ^{2} \theta-\binom{n}{3} \tan ^{3} \theta \operatorname{ta} \cdot . . .}{1-\binom{n}{2}+\tan \theta+\binom{n}{4} \tan ^{4} \theta-\cdots}
$$

(c) (i) Number of points of interaction $={ }^{6} C_{2} \quad$ There are 6 hines with $=15$ sprint of interectionomend
(ii) $P(f$ our of thanet do not all hie on me of the given hines)
$=1-P$ (four of there pto chosen at random all he on one of the given lives)

$$
=1-\frac{6 x^{5} C_{4}}{15 C_{4}}=\frac{89}{91}
$$

Quection 8
(a)

$$
\begin{aligned}
& \operatorname{Cos}(x+y)=\operatorname{Cos} x \cos y-\sin x \sin y \\
& \operatorname{Cos}(x-y)=\operatorname{Cos} x \cos y+\sin x \sin y \\
& \therefore \operatorname{Cos}(x+y)-\operatorname{Cos}(x-y)=-2 \sin x \sin y
\end{aligned}
$$

let $S=x+y$

$$
\begin{aligned}
& T=x-y \\
& \therefore \quad x=\frac{S+T}{2}, y=\frac{S-T}{2} \quad \therefore \cos S-\cos T=-2 \sin \left(\frac{S+T}{2}\right) \cdot \sin \left(\frac{S-T}{2}\right.
\end{aligned}
$$

(b) $I_{n}=\int_{0}^{\frac{\pi}{4}} \frac{1-\cos 2 n x}{\sin 2 x} d x$
(i)

$$
\begin{aligned}
I_{1} & =\int_{0}^{0} \frac{1-\cos 2 x}{\sin 2 x} d x \\
& \left.=\int_{0}^{\frac{\pi}{4}} \frac{2 \sin ^{2} x}{2 \sin x \cos x} d \cos 2 x=1-2 \sin ^{2} x\right) \\
& =\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x} d x \\
& =-[\ln |\cos x|]_{0}^{\frac{\pi}{4}} \\
& =-\ln \frac{1}{\sqrt{2}} \\
& =\frac{1}{2} \ln 2
\end{aligned}
$$

(ii)

$$
\begin{aligned}
I_{2 r+1}-\frac{T}{2 r-1} & \left.=\int_{0}^{\frac{\pi}{4}} \frac{1-\operatorname{Co}(4 x r+2 x)}{\operatorname{Sin} 2 x}-\frac{1-\cos (4 x r-2 x)}{\operatorname{Sin} 2 x} d\right\} \\
& =\int_{0}^{\frac{\pi}{4} \frac{\cos (4 x r-2 x)-\operatorname{Co}(4 x r+2 x)}{\operatorname{Sin} 2 x} d x} \\
& =\int_{0}^{\frac{\pi}{4}} \frac{-2 \sin 4 x r \cdot \sin (-2 \dot{x})}{\sin 2 x} d x \text { Erom (a) } \\
& =2 \int_{0}^{\frac{\pi}{4}} \sin \sin (4 x-d x \\
& =-\frac{1}{4 r^{2}}[\operatorname{Cas} 4 x]_{0}^{\frac{\pi}{4}} \\
& =-\frac{1}{2 r}[\operatorname{Cos} r \pi-1] \\
& =-\frac{1}{2 r}\left[(-1)^{r}-1\right]=\frac{1-(-r)^{r}}{2 r}
\end{aligned}
$$

Quation 8 (contimued)
(b) (iii) as $I_{2 r+1}-I_{2 \Gamma-1}=\frac{1-(-1)^{r}}{2 \pi} *$

$$
\begin{aligned}
& \therefore I_{q}=I_{2 \times 4+1}=0 \quad \text { from } \\
& I_{q}-I_{7} \\
& \therefore I_{q} \\
&=I_{7} \\
& \therefore I_{7}=I_{2 \times 3+1}=\frac{1+1}{6} \\
& I_{7}-I_{5}=\frac{1}{3}+I_{5}
\end{aligned}
$$

Now $I_{5}=I_{2 \times 2+1}$

$$
\begin{aligned}
I_{5}-I_{3} & =0 \\
I_{3}=I_{2 \times 1+1} & =I_{3} \\
I_{3}-I_{1} & =\frac{2}{2} \\
& =1 \\
I_{3} & =1+I_{1} \\
& =1+\frac{1}{2} \ln 2 \text { from (i) } \\
\therefore I_{9} & =\frac{1}{3}+1+\frac{1}{2} \ln 2
\end{aligned}
$$

Question 8 (continued)
(c)

(i) Prove that AEFS is a cyclic quadrilateral

Proof: AS TF $=T \Delta$ (given)
$\angle F D T=\angle D E T \quad$ [bose angles of isosceles \triangle are equal] $\angle F D T=\angle C A D \quad$ The an le Heturem a target to a aide
Wow $\angle E F D=180-\angle D F T$ [Supplementary angles]

$$
=180-\angle C A D
$$

\therefore AEFD is a cyclic quad [apposite arles ore supplenctit.
(ii) Prove that $P B E A$

Now $\angle A E P=\angle A D F$ [Exterior angle to a cychic quad is equal to the opposite interiestangle] $A \in F D$ is concychic.

$$
\begin{aligned}
& \angle P B A=\angle A D F[\\
& \therefore \angle A E P=\angle P B A
\end{aligned}
$$

$A B C D$ is conagahie
$P B E A$ is a cyclic quadrilateral.
[If tee prints lie on the same ide of an internals and the angles subtended at these points by the interval are equal, then the two paint and the endpoints of the internal are conegchic]

