## Section I

## 10 Marks

## Attempt Question 1-10.

Allow approximately 15 minutes for this section.
Use the multiple-choice answer sheet for Question 1 - 10

## Question 1

The diagram illustrates the graph of $y=f(x)$.


The graph of $y=f(|x|)$ is most likely to like:
(A)

(B)

(C)

(D)


## Question 2

The curve represented by the equation $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is an ellipse with:
(A) eccentricity given by $e=\frac{3}{5}$ and foci at $( \pm 3,0)$.
(B) eccentricity given by $e=\frac{5}{3}$ and foci at $( \pm 5,0)$.
(C) eccentricity given by $e=\frac{3}{5}$ and foci at $( \pm 5,0)$.
(D) eccentricity given by $e=\frac{4}{5}$ and foci at $( \pm 3,0)$.

## Question 3

Given that $w^{3}=-1$ and that $w$ is complex, the value of $\left(1+w-w^{2}\right)^{3}$ is:
(A) -8
(B) 8
(C) 1
(D) -1

## Question 4

The value of $\left[\frac{-1+\sqrt{-3}}{2}\right]^{29}+\left[\frac{-1-\sqrt{-3}}{2}\right]^{29}$ is:
(A) -1
(B) 1
(C) $-\sqrt{3}$
(D) $\quad-2$

## Question 5

What is the solution to the inequation: $\frac{x(5-x)}{x-4} \geq-3$ ?
(A) $2 \leq x<4$ or $x \geq 6$.
(B) $1 \leq x<4$ or $x \geq 5$.
(C) $4<x \leq 6$ or $x \leq 2$.
(D) $\quad 4>x \leq 5$ or $x \leq 1$.

## Question 6

Consider the points $P\left(c t, \frac{c}{t}\right)$ and $Q\left(\frac{c t}{2}, \frac{2 c}{t}\right)$ on the rectangular hyperbola $x y=c^{2}$. The locus of the midpoint, $M$, of $P Q$ is:
(A) $\quad x y=\frac{9}{8} c^{2}$
(B) $\quad t=\frac{4 x}{3 c}$
(C) $\quad x y=8 c^{2}$
(D) $x y=\frac{c^{2}}{2}$

## Question 7

Consider the Argand diagram below.


Which inequality could define the shaded area?
(A) $|z-1| \leq \sqrt{2}$ and $0 \leq \operatorname{Arg}(z-i) \leq \frac{\pi}{4}$.
(B) $|z-1| \leq \sqrt{2}$ and $0 \leq \operatorname{Arg}(z+i) \leq \frac{\pi}{4}$.
(C) $|z-1| \leq 1$ and $0 \leq \operatorname{Arg}(z-i) \leq \frac{\pi}{4}$.
(D) $|z-1| \leq 1$ and $0 \leq \operatorname{Arg}(z+i) \leq \frac{\pi}{4}$.

## Question 8

The gradient of the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $P(a \sec \theta, b \tan \theta)$ is given by:
(A) $\frac{a \tan \theta}{b \sec \theta}$
(B) $-\frac{b \sec \theta}{a \tan \theta}$
(C) $-\frac{a \tan \theta}{b \sec \theta}$
(D) $\frac{b \sec \theta}{a \tan \theta}$

## Question 9

Which of the following is an expression for $\int \frac{1}{\sqrt{x^{2}-6 x+10}} d x$ ?
(A) $\ln \left(x-3-\sqrt{x^{2}-6 x+10}\right)+c$
(B) $\ln \left(x+3-\sqrt{x^{2}-6 x+10}\right)+c$
(C) $\ln \left(x-3+\sqrt{x^{2}-6 x+10}\right)+c$
(D) $\ln \left(x+3+\sqrt{x^{2}-6 x+10}\right)+c$

## Question 10

How many rectangles are in the chess board illustrated?
(A) 1024
(B) 2304
(C) 2025
(D) 1296


## END OF SECTION I

## Section II

## Total Marks 90

Attempt Question 11-16.
Allow approximately $\mathbf{2}$ hours \& $\mathbf{4 5}$ minutes for this section.
Answer all questions, starting each new question on a new booklet with your student number and the question number on the front cover.

All necessary working must be shown in each and every question.
Question 11. (15 marks) Use a SEPARATE writing booklet.
(a) Given $z=2+i$ and $w=-1+2 i$, find:
(i) $|w| \quad 1$
(ii) $\bar{z}$
(b) Illustrate the loci in the complex plane given by these equations:
(i) $|z|=|z-6-3 i|$
(ii) $\arg (z+2)=\arg (z-2-5 i)$
(iii) $\operatorname{Re}\left(z^{2}\right)=4$
(c) Suppose $z_{1}, z_{2}$ and $z_{3}$ are three complex numbers, each of modulus 1 , such that $z_{1}+z_{2}+z_{3}=0$. Suppose also that $z$ is a complex number of modulus 3. Show that:
(i) $\left|z-z_{1}\right|^{2}=10-\left(z \overline{z_{1}}+\bar{z} z_{1}\right)$
(ii) $\left|z-z_{1}\right|^{2}+\left|z-z_{2}\right|^{2}+\left|z-z_{3}\right|^{2}=30$

Question 12. ( 15 marks) Use a SEPARATE writing booklet.
Marks
(a) Solve the equation $x^{4}+2 x^{3}+x^{2}-1=0$, given that one root is

$$
-\frac{1}{2}+i \frac{\sqrt{3}}{2}
$$

(b) Show that if $f(x)=x^{n}-1$ (for $n>1$ ) then $f(x)$ has no multiple roots.
(c) Given that $f(x)=x^{2}(x-1)$, draw a neat sketch showing any intercepts and asymptotes.
(i) $y=f(x)$
(ii) $\quad y^{2}=f(x)$
(iii) $\quad y=[f(x)]^{2}$
(iv) $y=\frac{1}{f(x)}$

Question 13. (15 marks) Use a SEPARATE writing booklet.
Marks
(a)

$\triangle A B C$ is inscribed a circle. The bisector of $\angle B A C$ meets $B C$ at $X$ and the circle at $D$.

Prove (i) $\triangle A B X$ is similar to $\triangle A D C$
(ii) $A B \cdot A C=A D \cdot A X$
(iii) $\quad A B \cdot A C=[A X]^{2}+B X \cdot X C$
(b)
(i) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{3} x d x$
(ii) Use the method of partial fractions to find $\int \frac{9 x+1}{x^{2}-2 x-3} d x$.
(iii) If $I_{n}=\int x^{n} e^{a x} d x$,
( $\alpha$ ) show that $I_{n}=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} I_{n-1}$
( $\beta$ ) Hence, or otherwise, evaluate $\int_{1}^{3} x^{2} e^{3 x} d x$, giving your answer correct to 2 decimal places.

Question 14. (15 marks) Use a SEPARATE writing booklet.
(a) The region bounded by the graphs of $y=x^{2}$ and $y=x+2$ is revolved

Marks
3 about the line $x=3$. Using the method of cylindrical shells, express the volume of the resulting solid as a definite integral. (Note: Do not evaluate this integral).
(b) (i) Show that the cubic $f(x)=x^{3}-3 x+1$ has exactly one root, $x=\alpha$, between 0 and 1 .
(ii) Beginning with the approximation $x=0$, use two applications of Newton's method to gain a better approximation to $x=\alpha$. Give your answer correct to three decimal places.
(c) Find the equation with rational coefficients whose roots are the reciprocals of the squares of the roots of $x^{3}-x^{2}-14 x+24=0$
(d) Let $f(x)=\frac{1}{2}(1-\sqrt{1-x})$ for $0 \leq x \leq 1$ and define:
$f_{1}(x)=f(x)$ and
$f_{n+1}(x)=f\left(f_{n}(x)\right)$, for $n=1,2,3 \ldots$
Show by mathematical induction that, for any $\theta$ in the interval $0 \leq \theta \leq \frac{\pi}{2}$, $f_{n}\left(\sin ^{2} \theta\right)=\sin ^{2}\left(\frac{\theta}{2^{n}}\right)$, for all positive integers $n$.

Question 15. (15 marks) Use a SEPARATE writing booklet.
Marks
(a) (i) Prove that the equation of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $P\left(x_{1}, y_{1}\right)$, is given by $\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$.
(ii) Hence, or otherwise, find the point of contact of the tangent
(b) The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.

Find the equation of the hyperbola if its eccentricity is 2.
(c) (i) Prove that $\int_{0}^{a} F(x) d x=\int_{0}^{a} F(a-x) d x$.
(ii) Hence, or otherwise, evaluate $\int_{0}^{\frac{\pi}{4}} \log _{e}(1+\tan \theta) d \theta$

Question 16. (15 marks) Use a SEPARATE writing booklet.
Marks
(a)

$A B C D$ is a cyclic quadrilateral. The diagonals $A C$ and $B D$ intersect at right angles at $X . \mathrm{M}$ is the midpoint of $B C . M X$ produced meets $A D$ at $N$.
(i) Copy the diagram showing the above information.
(ii) Show that $\angle M B X=\angle M X B$
(iii) Show that $M N$ is perpendicular to $A D$.

## Question 16 continues on page 7

## Question 16 (continued)

Marks
(b)


The diagram shows a hemispherical bowl of radius $r$. The bowl has been tilted so that its axis is no longer vertical, but at an angle $\theta$ to the vertical. At this angle, it can hold a volume $V$ of water.

The vertical line from the centre $O$ meets the surface of the water at $W$ and meets the bottom of the bowl at $B$. Let $P$ be any point between $W$ and $B$ and let $h$ be the distance $O P$.
(i) Explain why $V=\int_{r \sin \theta}^{r} \pi\left(r^{2}-h^{2}\right) d h$.
(ii) Hence show $V=\frac{r^{3} \pi}{3}\left(2-3 \sin \theta+\sin ^{3} \theta\right)$
(iii) The bowl has been tilted so that it is exactly half full. Using the result from Q 14 (b), find the angle $\theta$ correct to one tenth of a degree.

## END OF PAPER

