

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS EXTENSION 2

2016 Assessment Task 4 (Trial Examination) Thursday, 4 August 2016

General instructions

- Working time 3 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

SECTION I

• Mark your answers on the answer grid provided

SECTION II

- Commence each new question on a new booklet. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

BOSTES NUMBER: # BOOKLETS USED:

Marker's use only

QUESTION	1-10	11	12	13	14	15	16	Total
MARKS	10	15	15	15	15	15	15	100

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is the value of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^9$?
 - (A) –1
 - (B) 0
 - (C) 1
 - (D) 2
- 2 A particle in a straight line so that its velocity at any particular time is given by v = k (a x), where x is its displacement from a given point O.

The particle is initially at O.

Which of the following gives an expression for x?

- (A) $x = a(1 e^{kt})$ (B) $x = a(1 + e^{kt})$ (C) $x = a(1 - e^{-kt})$ (D) $x = a(1 + e^{-kt})$
- **3** Let z = 2 3i. What is the value of z^{-1} ?
 - (A) $-\frac{1}{5}(2+3i)$ (B) $\frac{1}{13}(2+3i)$ (C) $\frac{1}{5}(2-3i)$ (D) $\frac{1}{13}(2-3i)$

4 The eccentricity of the ellipse $3x^2 + 5y^2 - 15 = 0$ (A) $\sqrt{\frac{5}{2}}$ (B) $\sqrt{\frac{2}{5}}$

(C)
$$\sqrt{\frac{8}{5}}$$
 (D) $\sqrt{\frac{5}{8}}$

5 The diagram below shows the graph of the function y = f(x).

Which of the following is the graph of $y = \sqrt{f(x)}$?

- 6 What is the value of $\int_0^2 \sqrt{\frac{x}{4-x}} dx$ using the substitution $x = 4\sin^2 \theta$?
 - (A) 0.75π
 - (B) $\pi 2$
 - (C) $\pi + 6$
 - (D) $3\pi 8$
- 7 What are the values of real numbers p and q such that 1-i is a root of the equation $z^3 + pz + q = 0$?
 - (A) p = -2 and q = -4
 - (B) p = -2 and q = 4
 - (C) p = 2 and q = -4
 - (D) p=2 and q=4
- 8 The points $P(cp, \frac{c}{p})$ and $Q(cq, \frac{c}{q})$ lie on the same branch of the hyperbola

$$xy = c^2 \ (p \neq q)$$

The tangents at P and Q meet at the point T. What is the equation of the normal to the hyperbola at P?

- (A) $p^2 x py + c cp^4 = 0$
- (B) $p^3x py + c cp^4 = 0$
- (C) $x + p^2 y 2c = 0$
- (D) $x + p^2 y 2cp = 0$
- **9** A car of mass *m* is travelling at a constant velocity V_o m/s. The brakes are applied, resulting in a constant deceleration until the car comes to a stop in *l* m. What is the force exerted by the brakes?

(A)
$$\frac{mV_o^2}{2l}$$

(B)
$$\frac{mV_o^2}{l}$$

(C)
$$-\frac{mV_o^2}{2l}$$

(D)
$$-\frac{mV_o^2}{l}$$

10 The diagram below shows the ellipse

The ellipse is rotated around the line y = 1 to form a solid. Which integral represents the volume of the torus?

(A)
$$4\pi \int_{-1}^{1} (1-y)\sqrt{1-y^2} \, dy$$

(B) $8\pi \int_{-1}^{1} (1-y)\sqrt{1-y^2} \, dy$
(C) $4\pi \int_{-1}^{1} y\sqrt{1-y^2} \, dy$
(D) $8\pi \int_{-1}^{1} y\sqrt{1-y^2} \, dy$

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)				
(a)	(i)	Show that $(1-2i)^2 = -3-4i$.	1	
	(ii)	Hence solve the equation $z^2 - 5z + (7+i) = 0$.	2	
(b)	Let $z = 2 + 2i$			
	(i)	What is the exact value of $ z $ and arg z ?	2	
	(ii)	Find z^3 in $x + iy$ form by .using De Moivre's theorem	2	
(c) Let two		to complex numbers be $z_1 = 2(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12})$ and $z_2 = 2i$.		
	(i)	On an Argand diagram sketch the vectors <i>OA</i> and <i>OB</i> to represent z_1 and z_2 respectively.	1	
	(ii)	Draw the vectors $z_1 + z_2$ and $z_1 - z_2$ on the same Argand diagram.	1	
	(iii)	What are the exact values of $\arg(z_1 + z_2)$ and $\arg(z_1 - z_2)$?	2	
(d)	(i)	Find the three cubic roots of -1 by solving the equation $z^3 + 1 = 0$.	2	
	(ii)	Let α be a cubic root of -1 , where α is not real. Show that $\alpha^2 = \alpha - 1$.	1	
	(iii)	Hence simplify $(1-\alpha)^6$.	1	

Marks

Question 12 (15 marks)

- (a) If α , β , γ are the roots of the polynomial equation $3x^3 5x^2 4x + 3 = 0$, **1** Find the equation with roots $\alpha - 1$, $\beta - 1$, $\gamma - 1$.
- (b) The polynomial $P(x) = x^4 + ax^2 + bx + 28$ has a double root at x = 2. 2 What are the values of *a* and *b*?
- (c) The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0.

PQ is a diameter of the ellipse. The tangent to the ellipse at P meets the vertical through Q at R.

- (i) Prove the equation of the tangent is $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$. 2
- (ii) Show the ratio of the area of $\triangle PQR$ to the area of the ellipse is **3** $2: \pi |\tan \theta|$.

You may use the fact that the area of the an ellipse is $A = \pi ab$.

- (d) The tangent at $P(a \sec \theta, b \tan \theta)$ on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ meets the directrix at Q. The focus of the parabola is S.
 - (i) Find the equation of the tangent at *P*.
 (ii) Find the coordinates of *Q*.
 1
 - (iii) Show that *PQ* subtends a right angle at *S*. 4

Question 13 (15 marks)

- (a) When a submarine of mass m is travelling horizontally underwater at maximum power, its engine delivers a force F on this submarine. The water exerts a resistive force proportional to the square of the submarine's speed v.
 - (i) Explain why $\frac{dv}{dt} = \frac{1}{m}(F kv^2)$, where k is a positive constant.
 - (ii) The submarine increases its speed from v_1 to v_2 . Show that the distance travelled during this period is

$$\frac{m}{2k}\log_e\frac{F-kv_1^2}{F-kv_2^2}$$

(b) A particle of mass *m* is dropped from rest in a medium where the resistance to motion has magnitude $\frac{1}{10}mv^2$ Newtons. After *t* seconds, the particle has fallen *x* metres, and has the velocity $v \text{ ms}^{-1}$ and the acceleration $a \text{ ms}^{-2}$.

The particle hits the ground $\log_e(1 + \sqrt{2})$ seconds after it is dropped. Take $g = 10 \text{ ms}^{-2}$. Express v as a function of t.

(c) A particle of mass 1 kg is moving horizontally in a straight line. It is initially at the origin and is moving with velocity $U ms^{-1} (U > 0)$.

The particle is moving against a resistance $v^2 + v^3$, where v is the velocity.

After T seconds the particle is X metres from the origin and is moving

with velocity $\frac{1}{2}Ums^{-1}$.

(i) Show that
$$X = \log_e \left(\frac{2+U}{1+U}\right)$$
.

(ii) Show that
$$U(T+X)=1$$
. 4

3

1

3

Question 14 (15 marks)

Marks

(a) The graph of y = f(x) is shown below. The lines y = 1 and the x- axis are the asymptotes.

Draw a neat one-third page sketch of the following, showing relevant features:

(i)	y = f(-x)	2
(ii)	y = f(x)	2
(iii)	$y = \frac{1}{f(x)}$	2
(iv)	$y = (f(x))^2$	2

Question 14 continues overleaf...

4

3

Question 14 (continued...)

- (b) A solid is formed by rotating about the *y*-axis the region bounded by the curve $y = \sin x$ and the *x*-axis between $0 \le x \le \pi$. Find the volume of this solid using the method of cylindrical shells.
- (c) A solid shape is formed as shown below. Its base is in the *xy* plane and is in the shape of a parabola $y = x^2$. The vertical cross section is in the shape of a right angled isosceles triangle.

By using the method of slicing, calculate the volume of the solid between the values y = 0 and y = 4.

Examination continues overleaf...

Question 15 (15 marks)

(a) Find
$$\int \frac{e^x}{\sqrt{e^{2x}-1}} dx$$
. 2

(b) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate

$$\int \frac{dx}{5 + 3\sin x + 4\cos x}$$
4

(c) (i) Find real numbers A, B, C and D such that:

$$\frac{4}{1-x^2} = \frac{A}{1-x} + \frac{B}{1+x} + \frac{Cx+D}{1+x^2}$$

(ii) Hence evaluate in simplest form
$$\int \frac{4}{1-x^4} dx$$
 2

(d) (i) Let
$$I_n = \int_0^1 (1 - x^r)^n dx$$
, where $r > 0$, for $n = 0, 1, 2, 3,...$
Show that $I_n = \frac{nr}{nr+1} I_{n-1}$.

(ii) Hence or otherwise, find the value of
$$I_n = \int_0^1 (1 - x^{\frac{3}{2}})^3 dx$$
.

Marks

2

Marks

Question 16 (15 marks)

(a) (i) Show that $\sin x + \sin 3x = 2 \sin 2x \cos 2x$ 1 (ii) Hence or otherwise solve $\sin x + \sin 2x + \sin 3x = 0$ for $0 \le x \le 2\pi$. 2

- (b) Find the equation of the tangent to the curve $x^2y + 2x 2xy = 0$ at (1, 2). 2
- (c) In the diagram below, TP is a tangent to the circle at P, and TQ is a secant cutting the circle at R

SQ is a chord of the circle such that PX and SY are perpendicular to SQ and PQ respectively.

(i)	Prove that $\angle TRP = \angle TPQ$.	3
(ii)	Explain why SPYX is a cyclic quadrilateral.	1
(iii)	Prove that $\angle PYX = \angle PRQ$.	3

(d) $\triangle ABC$ has sides of length *a*, *b* and *c*. If $a^2 + b^2 + c^2 = ab + bc + ca$ show that **3** $\triangle ABC$ is an equilateral triangle.

End of paper

d)

Bil
a i
$$(1-2i)^2$$

= 1-4i+4i^2
= 1-4i-4
= -3-4i
ii) $z^2 - 5z + (7+i) = 0$
 $z_z = 5 \pm \sqrt{25 - 4(7+i)}$

$$2 = \frac{5 \pm \sqrt{25 - 28 - 4i}}{2}$$

$$= \frac{5 \pm \sqrt{-3 - 4i}}{2}$$

$$= \frac{5 \pm \sqrt{(1 - 2i)^{2}}}{2}$$

$$= \frac{5 \pm (1 - 2i)^{2}}{2}$$

$$= \frac{5 \pm (1 - 2i)}{2}$$

Z = 2 + 2i6) i) $|2| = \sqrt{4+4}$ = $2\sqrt{2}$ ang Z= II V $(ii) Z = 2\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$ $z^3 = 16E \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$ -16巨 (-古 + 山) = -16 + 16 i

)
$$a^{2}+1=0$$

(a) $(a^{2}+1)=0$
(a) $(a^{2}+1)=0$
 $a^{2}+a^{1}=0$
 $a^{2}+a^{1}=0$
 $a^{2}-a^{1}=0$
 $a^{2}-a^{2}=0$
 $a^$

$$Q:: (-a \cos \theta, -b \sin \theta)$$
For R: $x: (-a \cos \theta)$
Sub x. coordinate of R in
equation of PQ
$$(380 (-a \cos \theta) + \frac{\sin \theta}{b} y = 1$$

$$- \frac{\cos^2 \theta}{b} + \frac{\sin \theta}{b} y = 1$$

$$y = \frac{b(1 + \cos^2 \theta)}{\sin \theta}$$

Length RQ
=
$$b(1+co^2 0) + b cin0$$

= $b+bcs^2 0 + b cin^2 0$
= $b+bcs^2 0 + b cin^2 0$
Sin 0
= $\frac{2b}{Sin0}$
Respendicular distance of RQ from P
= $2a cos 0$

Area
$$\frac{3}{5} \Delta P \oplus R$$

= $\frac{1}{2} \times \frac{2b}{\sin \theta} \times 2a \cosh \theta$
= $2ab \cot \theta$
= $\frac{2ab}{2ab} = \frac{2ab}{1 \tan \theta}$ as area >0
 $\tan \theta = \frac{1}{1 \tan \theta}$
Patio $\frac{3}{5}$ ar ΔPOR to ellipse
= $\frac{2ab}{[\tan \theta]} = T ab$
 $\frac{1}{[\tan \theta]}$
= 2 : $T [ban \theta]$

(a)
$$\frac{x}{a^2} - \frac{y}{b^2} = 1$$

 $\frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$
 $\frac{dy}{a^2} = \frac{2x}{a^2} \times \frac{b^2}{2y}$
 $= \frac{b^2 x}{a^2 y}$
 $at P,$
 $\frac{dy}{dx} = \frac{b^2 \cdot a \sec \theta}{\theta^2 \cdot b \tan \theta}$
 $= \frac{b \sec \theta}{a \tan \theta}$
Eq. $\frac{b}{\theta}$ the tangent at P
 $y - b \tan \theta = \frac{b \sec \theta}{a \tan \theta} (x - a \sec \theta)$
 $a \tan \theta y - ab \tan \theta = b \sec \theta x - ab \sec^2 t$
 $b \sec \theta x - a \tan \theta y = ab$
 $b \sec \theta x - a \tan \theta y = ab$
 $b \sec \theta x - a \tan \theta y = ab$
 $b \sec \theta x - a \tan \theta y = ab$
 $\frac{\sec \theta}{a} - \frac{\tan \theta}{b} y = 1$
i) Eq. $\frac{a}{\theta}$ directrix, $x = \frac{a}{\theta}$
 $a t \theta, eq. $\frac{a}{\theta}$ Pl becomes
 $\frac{\sec \theta}{a} - \frac{\tan \theta}{b} y = 1$
 $\frac{-\tan \theta}{b} y = 1 - \frac{\sec \theta}{b}$
 $y = (\frac{\sec \theta}{\theta} - 1) \frac{b}{\tan \theta}$
 $= \frac{b \sec \theta}{e \tan \theta} - \frac{b}{\tan \theta}$$

iii) P: (age 0, b tand)
Q: (
$$\frac{a}{2}$$
, $\frac{b \sec 0}{e \tan 0} - \frac{b}{\tan 0}$)
S: (ae, o)
Gradient of PS
Mps = $\frac{b \tan 0}{a \sec 0 - ae}$
= $\frac{b \tan 0}{a (\sec 0 - e)}$
Gradient of QS
Mos = $\frac{b \sec 0}{e \tan 0} - \frac{b}{\tan 0}$
 $\frac{a}{e} - ae$
= $\frac{b \sec 0 - be}{e \tan 0}$
= $\frac{b \sec 0 - be}{e \tan 0}$
= $\frac{b (\sec 0 - e)}{a (1 - e^2)} \times \frac{e}{a (1 - e^2)}$
= $\frac{b (\sec 0 - e)}{a (1 - e^2) \tan 0}$
Mps $\times m_{QS}$
= $\frac{b (\sec 0 - e)}{a (1 - e^2) \tan 0}$
Mps $\times \frac{b (\sec 0 - e)}{a (1 - e^2) \tan 0}$

$$= \frac{b^2}{-a^2(e^2-1)}$$

= -\frac{b^2}{b^2}
= -1

$$\frac{\partial Welling - 13}{\partial t}$$
a) $ma = F - K U^{2}$
(Net force = Forward force - Resistance)
 $a = \frac{1}{m} (F - K U^{2})$
 $\frac{dU}{dE} = \frac{1}{m} (F - K U^{2})$
 $U = \frac{dW}{dE} = \frac{1}{m} (F - K U^{2})$
 $\frac{U}{dE} = \frac{1}{m} (F - K U^{2})$
 $\frac{dV}{dX} = \frac{F - K U^{2}}{m U}$
 $\frac{dV}{dV} = \frac{F - K U^{2}}{F - K U^{2}}$
 $\chi = m \int \frac{U}{F - K U^{2}} dU$
 $\chi = m \int \frac{U}{F - K U^{2}} dU$
 $\chi = -\frac{m}{2K} \left[4n (F - K U^{2}) - 4n (F - K U^{2}) \right]_{U}^{L}$
 $= -\frac{m}{2K} \left[4n (F - K U^{2}) - 4n (F - K U^{2}) \right]_{U}^{L}$
 $= -\frac{m}{2K} \left[4n (F - K U^{2}) - 4n (F - K U^{2}) \right]_{U}^{L}$

ł

b. i. J. Imp TR mas mg-R ma= mg-1mu2 a= g- 1 122 $a = 10 - \frac{1}{10} v^2$ $\alpha = \frac{100 - U^2}{10}$ $\frac{dv}{dF} = \frac{100 - v^2}{10}$ $t = \int \frac{10}{100 - \sqrt{2}} dv$ $E = 10 \int \frac{1}{100 - v^2} dv$ $\frac{1}{100-10^{2}} = \frac{1}{(10-10)(10+10)}$ = $\frac{A}{10-V}$ + $\frac{B}{10+V}$ >A (10+V) +B(10-V)= 1 when v= 10 20A=1 A = 1 if v=-10 20B= 1 $B = \frac{1}{20}$ $t = 10 \int \frac{1}{20(10-10)} + \frac{1}{20(10+10)} du$ $= \frac{1}{2} \int \left(\frac{1}{10 + v} + \frac{1}{10 + v} \right) dv$ $= \frac{1}{2} \left[- \ln (10 - v) + \ln (10 + v) \right] + c$ = 1 [ln 10+12]+C when the, the a che $: t = \frac{1}{2} \sum_{i=1}^{2} \frac{10+v}{10-v} \int v$

$$\begin{aligned} \dot{v} = \frac{1}{|v-v|} \\ (10-v) e^{at} = 10+v \\ 10 e^{t} - ve^{-t} = 10+v \\ 10 (e^{-1}) = v + ve^{t} \\ v (1+e^{t}) = 10(e^{-1}) \\ v = \frac{10(e^{-1})}{e^{2t}+1} \end{aligned}$$

$$\begin{aligned} c) \qquad ma = -m(v^{2}+v^{3}) \\ a = -(v^{2}+v^{3}) \\ v \cdot dv = -(v^{2}+v^{3}) \\ dx = -(v^{2}+v^{3}) \\ dx = -(v+v^{2}) \\ dx = -\int v(1+v) \\ dx = -\int v(1+v) \\ e^{-1}v + b^{2}v \\ &= -\int v(1+v) \\ For \frac{1}{b}v + bv = \phi \\ vshen v= 0 \\ shen v= 0 \\ shen v= 0 \\ &= \int \frac{1}{b}v - \frac{1}{b}v \\ &= \int \frac{1}{b$$

、 、、

. When
$$\Delta = X$$
, $\psi = \frac{1}{2} U$
I. Form (i)
 $X = ln \left[\frac{1+\frac{1}{2}U}{\frac{1}{2}}, \frac{U}{(1+U)} \right]$
 $= ln \left[\frac{2+U}{2}, \frac{Z}{2}, \frac{U}{(1+U)} \right]$
 $i = ln \left[\frac{2+U}{2}, \frac{Z}{2}, \frac{U}{(1+U)} \right]$
 $i = ln \left[\frac{2+U}{2}, \frac{Z}{2}, \frac{U}{(1+U)} \right]$
 $i = ln \left[\frac{2+U}{2}, \frac{Z}{2}, \frac{U}{2} \right]$
 $i = ln \left[\frac{1}{2}, \frac{1}{2}, \frac{U}{2} \right]$
 $i = ln \left[\frac{1}{2}, \frac{U}{2}, \frac{U}{2} \right]$
 $i = ln \left[\frac{U}{2}, \frac{U}{2}, \frac{U}{2} \right]$
 $i = ln \left[\frac{U}{2}, \frac{U}{2}, \frac{U}{2} \right]$
 $i = ln \left[\frac$

$$t = \ln U + \frac{1}{U} - m(1+U) + C$$

$$t = \frac{1}{U} + \ln \frac{U}{1+U} + C$$

$$b = \frac{1}{U} + \ln \frac{U}{1+U} + C$$

$$\frac{1}{U} = \frac{1}{U} + \ln \frac{U}{1+U} - \frac{1}{U} - \ln \frac{U}{1+U}$$

$$= \frac{1}{U} - \frac{1}{U} + \ln \frac{U}{(1+U)} - \frac{1}{U}$$

$$b = \frac{1}{U} - \frac{1}{U} + \ln \frac{U}{(1+U)} - \frac{1}{U}$$

$$T = \frac{1}{U} - \frac{1}{U} + \ln \frac{U}{(1+U)} \cdot \frac{1}{Z}$$

$$= \frac{2}{U} - \frac{1}{U} + \ln \frac{U(1+U)}{Z(2+U)} \cdot \frac{1}{Z}$$

$$T = \frac{1}{U} + \ln \frac{1+U}{2+U}$$

$$T = \frac{1}{U} - \ln \frac{2+U}{1+U}$$

$$T = \frac{1}{U} - \ln \frac{2+U}{1+U}$$

$$T = \frac{1}{U} - \frac{1}{U} + \ln \frac{1+U}{1+U}$$

$$T = \frac{1}{U} - \ln \frac{2+U}{1+U}$$

b)
For the sheet
radius =
$$r = x$$

height = $h = y = \sin x$
thickness = δx
 $\delta v = 2\pi x \cdot h \cdot \delta x$
 $V = \lim_{x \to 0} \delta v$
 $\delta x \Rightarrow 0$
 $= 2\pi \int x \sin x \, dx$
for $\int x \sin x \, dx$
 $\int dx = 1$
 $u' = 1$
 $v' = \sin x$
 $u' = 1$
 $v' = \sin x$
 $v' = \sin x$
 $v' = \sin x$
 $v' = 2\pi \cdot \pi$
 $v' = \sin x$
 $v' = 1$
 $v' = \sin x$
 $v' = 1$
 $v' = \sin x$
 $v' = 2\pi \cdot \pi$
 $v' = 2\pi \cdot \pi$
 $v' = 2\pi \cdot \pi$
 $v' = 2\pi \cdot \pi$

() For triangular \$7035 - Section
base =
$$2x = height$$

.: area of the cross-section
 $A = \frac{1}{2} \times b \times h = \frac{1}{2} \times 2x \times 2x$
 $= 2x^2$
 $Sv = Area of Cross-section xthickness$

$$SV = 2x^{2} \cdot Sy$$

$$V = \sqrt{\frac{4}{3}} \frac{1}{2x^{2}} \frac{1}{2x^$$

Unestion 15
i)
$$\int \frac{e^{x}}{\sqrt{1-e^{2x}}} dx$$

Let $e^{x} = u$
 $e^{x} = \frac{du}{dx}$
· $\int \frac{\frac{\omega}{\sqrt{1-u^{2}}}} du$
= $\frac{\sin^{1}(u+c)}{(e^{x})+c}$

b)
$$t = \tan \frac{x}{2}$$

 $\frac{dt}{dx} = \frac{1}{2} \sec^2 \frac{x}{2}$
 $\frac{dt}{dx} = \frac{1+t^2}{2}$
 $\frac{dt}{dx} = \frac{1+t^2}{2}$
 $\frac{dt}{dx} = \frac{2}{1+t^2}$

$$= \int \frac{dx}{5+3\sin x + 4\cos x} = \int \frac{1}{5+3(\frac{2t}{1+t^2}) + 4(\frac{1-t^2}{1+t^2})} \cdot (\frac{2}{1+t^2}) dt$$

$$= \int \frac{4tt^2}{5(1+t^2) + 6t + 4(1-t^2)} \cdot \frac{2}{1+t^2} dt$$

$$= \int \frac{2}{5+5t^2 + 6t + 4-4t^2} \cdot dt$$

$$= \int \frac{2}{t^2 + 6t + 9} dt$$

$$= \int \frac{2}{(t+3)^2} dt$$

$$= 2 \int (\frac{1}{2} + 3)^{-} dt$$

$$= \frac{-2}{\frac{1}{2} + 3} + C$$

$$= \frac{-2}{\frac{1}{2} + 2} + C$$

ii)
$$T_{N=2} \int (1-x^{2})^{3} dx$$

 $r_{2} \xrightarrow{3}{2}, r_{2} \xrightarrow{3}{3}$
 $J_{N=2} \xrightarrow{7}{3} = \frac{3(\frac{3}{2})}{1+\frac{9}{2}}, T_{2}$
 $= \frac{9}{11} \frac{1}{1+2}, T_{2}$
 $= \frac{9}{11} \left[\frac{2}{1+2}, \frac{3}{2}, \frac{7}{3}\right]$
 $= \frac{9}{11} \left[\frac{3}{11}, \frac{7}{1+2}, \frac{7}{2}\right]$
 $= \frac{9}{11} \left[\frac{3}{11}, \frac{7}{1+2}, \frac{7}{2}\right]^{3} dx$
 $= \frac{9}{11} \times \frac{3}{12} \times \frac{3}{10} = \frac{1}{220}$

Glivestion 16
) is Sin x + Sin 3x
= 2 Sin
$$(x+3x)$$
 Cos $(x-3x)$
= 2 Sin $(x+3x)$ Cos $(-2x)$
= 2 Sin $2x$ Cos $(-x)$
= 2 Sin 2x Cos $(-x)$

ii)
$$Sinx + Sin2x + Sin3x = 0$$

Sin2x + 2 Sin2x Cosx = 0
Sin2x (1+2 Cosx) = 0

$$\begin{array}{c} \therefore & \sin 2x = 0 \\ 2x = 0, \ \pi, 2\pi \\ x = 0, \ \overline{1}, 2\pi \\ x = 0, \ \overline{1}, \ \pi \\ \end{array} \begin{pmatrix} \cos x = -\frac{1}{2} \\ \cos x = -\frac{1}{2} \\ x = \pi - \overline{3}, \ \pi + \overline{1} \\ = 2\pi \\ \overline{3}, \ \overline{3} \\ \end{array}$$

b)
$$x^2y + 2x - 2xy = 0$$

 $y(x^2 - 2x) = -2x$
 $y = \frac{-2x}{x^2 - 2x}$
 $= \frac{-2}{x-2}$
 $\frac{dy}{dx} = \frac{(x-2)(0) - (-2)}{(x-2)^2}$
 $= \frac{2}{(x-2)^2}$
 $\frac{dy}{dx} = \frac{2}{1} = 2$
 $\frac{dy}{dx} = \frac{2}{1} = 2$
 $\frac{2}{1} = 2$
 $\frac{2}{x-2} = 2$
 $\frac{2}{x-2} = 2$
 $\frac{2}{x-2} = 2$

C):
$$PSQ + PKN = 180$$
 for cyclic
guadrilations
But
 $PRQ + PRT = 180^{\circ}$ (adjacent
 $Supplementary
 $argles$)
 $\therefore PSQ = PRT$
However
 $PSQ = PPQ$ (angles in
 $PSQ = PPQ$ (angles in the
 $alt \cdot segment$)
 $\therefore PPQ = Pre$ (angles in the
Same segment
 $PYX = 180 - PSX$ (opp. angles
 $PYX = 180 - PSQ$ (opp. angles
 $PYX = 180 - PRQ$ (opp. angles
 $PYX = PRQ$ (opp. angles
 $PYX = PRQ$$

$$(a-b)^{2} + (b-c)^{2} + (a-c)^{2}$$

$$= a^{2} - 2ab+b^{2} + b^{2} - 2bc+c^{2} + a^{2} - 2ac+c^{2}$$

$$= 2(a^{2}+b^{2}+c^{2}) - 2ab - 2bc - 2ac$$

$$= 2(a^{2}+b^{2}+c^{2} - ab - bc - ac)$$

$$= 0 \qquad because$$

$$= 0 \qquad because$$

$$a^{2}+b^{2}+c^{2} = ab+bc+ac$$
(given)
Possible only if
$$a-b=0 \qquad b-c=0 \qquad c-a=0$$

$$\Rightarrow a=b \qquad b=c \qquad c=a$$

	MCQ				
Q	I A	6	ß		
	2 C		B		
	3 B	8	ß		
	4 B	G	C		
	5 D	10	8		