

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS EXTENSION 2

2016 Assessment Task 4 (Trial Examination)
 Thursday, 4 August 2016

General instructions

- Working time -3 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer grid provided

SECTION II

- Commence each new question on a new booklet. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

BOSTES NUMBER:

\# BOOKLETS USED: \qquad

Marker's use only

QUESTION	$\mathbf{1 - 1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	Total
MARKS	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{100}$

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1 What is the value of $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{9}$?
(A) -1
(B) 0
(C) 1
(D) 2

2 A particle in a straight line so that its velocity at any particular time is given by $v=k(a-x)$, where x is its displacement from a given point O .

The particle is initially at O .

Which of the following gives an expression for x ?
(A) $x=a\left(1-e^{k t}\right)$
(B) $x=a\left(1+e^{k t}\right)$
(C) $x=a\left(1-e^{-k t}\right)$
(D) $x=a\left(1+e^{-k t}\right)$

3 Let $z=2-3 i$. What is the value of z^{-1} ?
(A) $-\frac{1}{5}(2+3 i)$
(B) $\frac{1}{13}(2+3 i)$
(C) $\frac{1}{5}(2-3 i)$
(D) $\frac{1}{13}(2-3 i)$

4 The eccentricity of the ellipse $3 x^{2}+5 y^{2}-15=0$
(A) $\sqrt{\frac{5}{2}}$
(B) $\sqrt{\frac{2}{5}}$
(C) $\sqrt{\frac{8}{5}}$
(D) $\sqrt{\frac{5}{8}}$

5 The diagram below shows the graph of the function $y=f(x)$.

Which of the following is the graph of $y=\sqrt{f(x)}$?
(A)

(C)

(B)

(D)

6 What is the value of $\int_{0}^{2} \sqrt{\frac{x}{4-x}} d x$ using the substitution $x=4 \sin ^{2} \theta$?
(A) 0.75π
(B) $\pi-2$
(C) $\pi+6$
(D) $3 \pi-8$

7 What are the values of real numbers p and q such that $1-i$ is a root of the equation $z^{3}+p z+q=0$?
(A) $p=-2$ and $q=-4$
(B) $p=-2$ and $q=4$
(C) $p=2$ and $q=-4$
(D) $p=2$ and $q=4$

8 The points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ lie on the same branch of the hyperbola

$$
x y=c^{2} \quad(p \neq q)
$$

The tangents at P and Q meet at the point T. What is the equation of the normal to the hyperbola at P ?
(A) $p^{2} x-p y+c-c p^{4}=0$
(B) $p^{3} x-p y+c-c p^{4}=0$
(C) $x+p^{2} y-2 c=0$
(D) $x+p^{2} y-2 c p=0$

9 A car of mass m is travelling at a constant velocity $V_{o} \mathrm{~m} / \mathrm{s}$. The brakes are applied, resulting in a constant deceleration until the car comes to a stop in $l \mathrm{~m}$. What is the force exerted by the brakes?
(A) $\frac{m V_{o}{ }^{2}}{2 l}$
(B) $\frac{m V_{o}{ }^{2}}{l}$
(C) $-\frac{m V_{o}{ }^{2}}{2 l}$
(D) $-\frac{m V_{o}{ }^{2}}{l}$

10 The diagram below shows the ellipse

The ellipse is rotated around the line $y=1$ to form a solid.
Which integral represents the volume of the torus?
(A) $4 \pi \int_{-1}^{1}(1-y) \sqrt{1-y^{2}} d y$
(B) $8 \pi \int_{-1}^{1}(1-y) \sqrt{1-y^{2}} d y$
(C) $4 \pi \int_{-1}^{1} y \sqrt{1-y^{2}} d y$
(D) $8 \pi \int_{-1}^{1} y \sqrt{1-y^{2}} d y$

Section II

90 marks

Attempt Questions 11 - 16
Allow about 2 hours and $\mathbf{4 5}$ minutes for this section
Answer each question in the appropriate writing booklet.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

(a) (i) Show that $(1-2 i)^{2}=-3-4 i$.
(ii) Hence solve the equation $z^{2}-5 z+(7+i)=0$.
(b) Let $z=2+2 i$
(i) What is the exact value of $|z|$ and $\arg z$?
(ii) Find z^{3} in $x+i y$ form by .using De Moivre's theorem
(c) Let two complex numbers be $z_{1}=2\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)$ and $z_{2}=2 i$.
(i) On an Argand diagram sketch the vectors $O A$ and $O B$ to represent z_{1} and z_{2} respectively.
(ii) Draw the vectors $z_{1}+z_{2}$ and $z_{1}-z_{2}$ on the same Argand diagram.
(iii) What are the exact values of $\arg \left(z_{1}+z_{2}\right)$ and $\arg \left(z_{1}-z_{2}\right)$?
(ii) Let α be a cubic root of -1 , where α is not real.

Show that $\alpha^{2}=\alpha-1$.
(iii) Hence simplify $(1-\alpha)^{6}$.
(a) If α, β, γ are the roots of the polynomial equation $3 x^{3}-5 x^{2}-4 x+3=0$,

Find the equation with roots $\alpha-1, \beta-1, \gamma-1$.
(b) The polynomial $P(x)=x^{4}+a x^{2}+b x+28$ has a double root at $x=2$.

What are the values of a and b ?
(c) The point $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $a>b>0$.
$P Q$ is a diameter of the ellipse. The tangent to the ellipse at P meets the vertical through Q at R.
(i) Prove the equation of the tangent is $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$.
(ii) Show the ratio of the area of $\triangle P Q R$ to the area of the ellipse is 2: $\pi|\tan \theta|$.

You may use the fact that the area of the an ellipse is $A=\pi a b$.
(d) The tangent at $P(a \sec \theta, b \tan \theta)$ on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the directrix at Q. The focus of the parabola is S.
(i) Find the equation of the tangent at P.
(ii) Find the coordinates of Q.
(iii) Show that $P Q$ subtends a right angle at S.

Question 13 (15 marks)

(a) When a submarine of mass m is travelling horizontally underwater at maximum power, its engine delivers a force F on this submarine. The water exerts a resistive force proportional to the square of the submarine's speed v.
(i) Explain why $\frac{d v}{d t}=\frac{1}{m}\left(F-k v^{2}\right)$, where k is a positive constant.
(ii) The submarine increases its speed from v_{1} to v_{2}. Show that the distance travelled during this period is

$$
\frac{m}{2 k} \log _{e} \frac{F-k v_{1}^{2}}{F-k v_{2}{ }^{2}}
$$

(b) A particle of mass m is dropped from rest in a medium where the resistance to motion has magnitude $\frac{1}{10} m v^{2}$ Newtons. After t seconds, the particle has fallen x metres, and has the velocity $v \mathrm{~ms}^{-1}$ and the acceleration $a \mathrm{~ms}^{-2}$.

The particle hits the ground $\log _{e}(1+\sqrt{2})$ seconds after it is dropped. Take $g=10 \mathrm{~ms}^{-2}$. Express v as a function of t.
(c) A particle of mass 1 kg is moving horizontally in a straight line. It is initially at the origin and is moving with velocity $U \mathrm{~ms}^{-1}(U>0)$.

The particle is moving against a resistance $v^{2}+v^{3}$, where v is the velocity.

After T seconds the particle is X metres from the origin and is moving with velocity $\frac{1}{2} U \mathrm{~ms}^{-1}$.
(i) Show that $X=\log _{e}\left(\frac{2+U}{1+U}\right)$.
(ii) Show that $U(T+X)=1$.
(a) The graph of $y=f(x)$ is shown below. The lines $y=1$ and the x-axis are the asymptotes.

Draw a neat one-third page sketch of the following, showing relevant features:
(i) $y=f(-x) \quad 2$
(ii) $y=|f(x)| \quad 2$
(iii) $y=\frac{1}{f(x)}$
(iv) $y=(f(x))^{2}$

Question 14 continues overleaf...

Question 14 (continued...)
(b) A solid is formed by rotating about the y-axis the region bounded by the curve $y=\sin x$ and the x-axis between $0 \leq x \leq \pi$. Find the volume of this solid using the method of cylindrical shells.
(c) A solid shape is formed as shown below. Its base is in the $x y$ plane and is in the shape of a parabola $y=x^{2}$. The vertical cross section is in the shape of a right angled isosceles triangle.

By using the method of slicing, calculate the volume of the solid between the values $y=0$ and $y=4$.

> Examination continues overleaf...

Question 15 (15 marks)
Marks
(a) Find $\int \frac{e^{x}}{\sqrt{e^{2 x}-1}} d x$.

2

4

$$
\int \frac{d x}{5+3 \sin x+4 \cos x}
$$

(c) (i) Find real numbers A, B, C and D such that:

$$
\frac{4}{1-x^{2}}=\frac{A}{1-x}+\frac{B}{1+x}+\frac{C x+D}{1+x^{2}}
$$

(ii) Hence evaluate in simplest form $\int \frac{4}{1-x^{4}} d x$

Show that $I_{n}=\frac{n r}{n r+1} I_{n-1}$.
(ii) Hence or otherwise, find the value of $I_{n}=\int_{0}^{1}\left(1-x^{\frac{3}{2}}\right)^{3} d x$.
(a) (i) Show that $\sin x+\sin 3 x=2 \sin 2 x \cos 2 x$
(ii) Hence or otherwise solve $\sin x+\sin 2 x+\sin 3 x=0$ for $0 \leq x \leq 2 \pi$.
(b) Find the equation of the tangent to the curve $x^{2} y+2 x-2 x y=0$ at $(1,2)$.
(c) In the diagram below, $T P$ is a tangent to the circle at P, and $T Q$ is a secant cutting the circle at R

$S Q$ is a chord of the circle such that $P X$ and $S Y$ are perpendicular to $S Q$ and $P Q$ respectively.
(i) Prove that $\angle T R P=\angle T P Q$.
(ii) Explain why $S P Y X$ is a cyclic quadrilateral.
(iii) Prove that $\angle P Y X=\angle P R Q$.
(d) $\triangle A B C$ has sides of length a, b and c. If $a^{2}+b^{2}+c^{2}=a b+b c+c a$ show that $\triangle A B C$ is an equilateral triangle.

End of paper

- $6 i$
a_{i}

$$
\begin{aligned}
& \left(1-2 i^{2}\right. \\
= & 1-4 i+4 i^{2} \\
= & 1-4 i-4 \\
= & -3-4 i
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
&=\frac{2}{z}-52+(7+i)=0 \\
&=\frac{5 \pm \sqrt{25-4(7+i)}}{2} \\
&=\frac{5 \pm \sqrt{25-28-4 i}}{2} \\
& 2 \\
&=\frac{5 \pm \sqrt{(1-2 i)^{2}}}{2} \\
&=\frac{5 \pm(1-2 i)}{2} \\
&=\frac{6-2 i}{2}, \frac{4+2 i}{2} \\
&=3-i, 2+i
\end{aligned}
$$

b) $z=2+2 i$
i)

$$
\begin{aligned}
|z| & =\sqrt{4+4} \\
& =2 \sqrt{2} \\
\arg z & =\frac{\pi}{4}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
z & =2 \sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \\
z^{3} & =16 \sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \\
& =16 \sqrt{2}\left(-\frac{1}{\sqrt{2}}+i \frac{1}{2}\right) \\
& =-16+16 i
\end{aligned}
$$

iii)

$$
\begin{aligned}
& \arg \left(z_{1}+z_{2}\right)=\frac{7 \pi}{24} \\
& \arg \left(z_{1}-z_{2}\right)=-\frac{5 \pi}{24}
\end{aligned}
$$

d) i)

$$
\begin{aligned}
& z^{3}+1=0 \\
& z^{3}=-1
\end{aligned}
$$

Let $z=\operatorname{cis} \theta$

$$
\begin{aligned}
\operatorname{cis} 3 \theta & =-1 \\
\operatorname{cis} 3 \theta & =\operatorname{cis}(2 n+1) \theta \\
3 \theta & =(2 n+1) \pi \\
\theta & =\frac{(2 n+1) \pi}{3}
\end{aligned}
$$

as $-\pi<\theta \leqslant \pi$

$$
\begin{aligned}
& -\pi<\frac{(2 n+1)}{3} \pi \pi \\
& -3 \pi<(2 n+1) \pi \leqslant 3 \pi \\
& -3<(2 n+1) \leqslant 3 \\
& -4<2 n \leqslant 2 \\
& -2<n \leqslant 1
\end{aligned}
$$

$$
\therefore n=-1,0,1
$$

$$
z_{i}=\operatorname{cis}\left(\frac{-2+1)}{3} \hat{H}=\operatorname{cis}\left(-\frac{4}{3}\right)=\frac{1}{2}-\frac{\sqrt{3}}{2} i\right.
$$

$$
z_{2}=\operatorname{cis}\left(\frac{\pi}{3}\right)=\frac{1}{2}+\frac{\sqrt{3}}{2} i
$$

$$
z_{2}=\operatorname{cis}\left(\frac{3}{3}\right) \pi=\cos \pi=-1
$$

)

$$
\begin{gathered}
\alpha^{3}+1=0 \\
(\alpha+1)\left(\alpha^{2}-\alpha+1\right)=0
\end{gathered}
$$

as α is net the real root

$$
\begin{gathered}
\alpha+1 \neq 0 \\
\therefore \alpha^{2}-\alpha+1=0 \\
\alpha^{2}=\alpha-1
\end{gathered}
$$

for show it to be true with one of values $b+12=0$ of α.
If $\alpha=\frac{1+\sqrt{3} i}{2}$

$$
b=-12
$$

$$
\alpha^{2}=\frac{-2+2 \sqrt{3} i}{4}
$$

$$
=\frac{-1+\sqrt{3 i}}{2}
$$

$$
\begin{aligned}
& =\frac{-2+1+\sqrt{3} i}{2} \\
& 2=-1+\alpha^{2}
\end{aligned}
$$

i)

$$
\begin{aligned}
(1-2)^{6} & =(-(\alpha-1))^{6} \\
& =\left(\alpha^{1}-1\right)^{6} \\
& =\alpha^{12} \\
& =\left(\alpha^{3}\right)^{4} \\
& =(-1)^{4}=1
\end{aligned}
$$

Guastian 12

$$
\text {) } 3 x^{3}-5 x^{2}-4 x+3=0
$$

Hence required eq.

$$
\begin{aligned}
& 3(x+1)^{3}-5(x+1)^{2}-4(x+1)+3=0 \\
& \left(x^{3}+3 x^{2}+3 x+1\right)-5\left(x^{2}+2 x+1\right)-4 x-4+3=0 \\
& x^{3}+9 x^{2}+9+3-5 x^{2}-10 x-5-4 x-4+3=0 \\
& x^{3}+4 x^{2}-5 x-3=0
\end{aligned}
$$

) Double root at 2

$$
\begin{align*}
& \Rightarrow P(2)=0 \\
& P^{\prime}(2)=0 \\
& P(x)= x^{4}+a x^{2}+b x+28 \\
& P^{\prime}(x)= 4 x^{3}+2 a x+b \\
& P(x)= 2^{4}+a(2)^{2}+b(2)+28=0 \\
&= 16+4 a+2 b+28=0 \\
& 4 a+2 b+44=0 \tag{1}\\
& P(x)= 4(2)^{3}+2 a(2)+b=0 \\
&= 32+4 a+b=0
\end{align*}
$$

c)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{-2 x}{a^{2}} \times \frac{b^{2}}{2 y} \\
&=-\frac{b^{2}}{a^{2}} \frac{x}{y}
\end{aligned}
$$

at P,

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{b^{2}}{a^{2}} \frac{a \cos \theta}{b \sin \theta} \\
& =-\frac{b \cos \theta}{a \sin \theta}
\end{aligned}
$$

Equation of the tangent at P

$$
y-b \sin \theta=\frac{-b \cos \theta}{a \sin \theta}(x-a \cos \theta)
$$

$$
\begin{gathered}
a \sin \theta \\
a \sin \theta y-a b \sin ^{2} \theta=-b \cos \theta x+a b \cos ^{2} \\
\left.2 a+\sin ^{2} \theta\right)
\end{gathered}
$$

$$
b \cos \theta x+a \sin \theta y=a b\left(\cos ^{2} \theta+\sin ^{2} \theta\right)
$$

$b \cos \theta x+a \sin \theta y=a b$
Divide by $a b$

$a \cdot(-a \cos \theta,-b \sin \theta)$
For $R: x:(-a \cos \theta)$
Sub x-coordinate of R in equation of PQ

$$
\begin{gathered}
\frac{\cos \theta}{a}(-a \cos \theta)+\frac{\sin \theta}{b} y=1 \\
-\cos ^{2} \theta+\frac{\sin \theta}{b} y=1 \\
y=\frac{b\left(1+\cos ^{2} \theta\right)}{\sin \theta}
\end{gathered}
$$

tengE RQ

$$
\begin{aligned}
& =\frac{b\left(1+\cos ^{2} \theta\right)}{\sin \theta}+b \sin \theta \\
& =\frac{b+b \cos ^{2} \theta+b \sin ^{2} \theta}{\sin \theta} \\
& =\frac{2 b}{\sin \theta}
\end{aligned}
$$

Perpendicular distance of $R Q$ from P
$=2 a \cos \theta$

$$
=2 a \cos \theta
$$

Area g A 保 R

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{2 b}{\sin \theta} \times 2 a \cos \theta \\
& =2 a b \cot \theta \\
& =\frac{2 a b}{\tan \theta}=\frac{2 a b}{|\tan \theta|} \quad \cos a r \cos >0
\end{aligned}
$$

Ratio of ar $\triangle P Q R$ to ellipse

$$
\begin{aligned}
& =\frac{2 a b}{|\tan \theta|} \div \pi a b \\
& =2: \pi|\operatorname{ban} \theta|
\end{aligned}
$$

a.
i)

$$
\begin{aligned}
& \frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \frac{a y}{d x}=0 \\
& \frac{d y}{d x}=\frac{2 x}{a^{2}} \times \frac{b^{2}}{2 y} \\
&=\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

at P,

$$
\begin{aligned}
\frac{d y^{\prime}}{d x} & =\frac{b^{2} \cdot a \sec \theta}{a^{2} \cdot b \tan \theta} \\
& =\frac{b \sec \theta}{a \tan \theta}
\end{aligned}
$$

Eq. of the tangent at P

$$
y-b \tan \theta=\frac{b \sec \theta}{a \tan \theta}(x-a \sec \theta)
$$

$$
\therefore a \tan \theta y-a b \tan ^{2} \theta=b \sec \theta x-a b \sec ^{2} t
$$

$b \sec \theta x-a \tan \theta y=a b\left(\sec ^{2} \theta-\tan ^{2} \theta\right.$
$b \sec \theta x-a \tan \theta y=a b$
Divide by ala

$$
\frac{\sec \theta}{a} x-\frac{\tan \theta}{b} y=1
$$

ii) Eq. of directrix, $x=\frac{a}{e}$ at Q, eq. of $P Q$ becomes

$$
\begin{aligned}
& \frac{\sec \theta}{a} \cdot \frac{\alpha}{a}-\frac{\tan \theta}{b} y=1 \\
& -\frac{\tan \theta}{b} y=1-\frac{\sec \theta}{e} \\
& y
\end{aligned}
$$

\therefore for $\theta:$

$$
\begin{aligned}
& x=\frac{a}{e} \\
& y=\frac{b \sec \theta}{2 \tan \theta}-\frac{b}{\tan \theta}
\end{aligned}
$$

Luevelar 13
iii) $P:(a \cot \theta, b \tan \theta)$
$0:\left(\frac{a}{e}, \frac{b \sec \theta}{a \tan \theta}-\frac{b}{\tan \theta}\right)$
$s:(a, o)$
gredient of P

$$
\begin{aligned}
m_{p s} & =\frac{b \tan \theta}{a \sec \theta-a \theta} \\
& =\frac{b \tan \theta}{a(\sec \theta-e)}
\end{aligned}
$$

gravient of $Q S$

$$
\begin{aligned}
m_{Q S} & =\frac{\frac{b \sec \theta}{e \tan \theta}-\frac{b}{\tan \theta}}{\frac{a}{e}-a e} \\
& =\frac{\frac{b \sec \theta-b e}{e \tan \theta}}{\frac{a-a e^{2}}{e}} \\
& =\frac{b(\sec \theta-e)}{e \tan \theta} \times \frac{e}{a\left(1-e^{2}\right)} \\
& =\frac{b(\sec \theta-e)}{a\left(1-e^{2}\right) \tan \theta}
\end{aligned}
$$

$\operatorname{mps} \times m a s$

$$
\begin{aligned}
& =\frac{b \operatorname{sen} \theta}{a(\sec \theta} \times \frac{b(\sec \theta-\theta)}{a\left(1-e^{2}\right) \operatorname{tac} \theta} \\
& =\frac{b^{2}}{a^{2}\left(1-e^{2}\right)} \\
& =\frac{b^{2}}{-a^{2}\left(e^{2}-b\right)} \\
& =-\frac{b^{2}}{b^{2}} \\
& =-1
\end{aligned}
$$

a)

$$
\begin{aligned}
& a=\frac{1}{m}\left(F-k v^{2}\right) \\
& \frac{d v}{d t}=\frac{1}{m}\left(F-k v^{2}\right)
\end{aligned}
$$

ii)

$$
\begin{aligned}
& a=\frac{1}{m}\left(F-k v^{2}\right) \\
& v \cdot \frac{d v}{d x}=\frac{1}{m}\left(F-k v^{2}\right) \\
& \frac{d v}{d x}=\frac{F-k v^{2}}{m v} \\
& \frac{d x}{d v}=\frac{m v}{F-k v^{2}} \\
& x=m \int \frac{v}{F-K v^{2}} d v \\
& =-\frac{m}{2 k} \int_{v_{1}}^{v_{2}} \frac{2 k v}{F-k v^{2}} d v \\
& x=-\frac{m}{2 k}\left[\ln \left(f-k v^{2}\right)\right]_{v_{1}}^{v_{2}} \\
& =-\frac{m}{2 k}\left[\ln \left(f-k v_{2}^{2}\right)-\ln \left(f-k v_{1}^{2}\right)\right] \\
& =2 \frac{m}{k}\left[\ln \left(F-k v_{1}^{2}\right)-\ln \left(F-k v_{2}^{2}\right)\right] V \\
& =\frac{m}{2 k}\left[m \frac{F-K v_{1}^{2}}{F-K v_{2}^{2}}\right]
\end{aligned}
$$

b) $\int_{i m g} \underbrace{A} R$

$$
\operatorname{ma}=m g-R
$$

$$
m g=\operatorname{mg}-\frac{1}{10} m^{2}
$$

$$
a=a-\frac{1}{10} v^{2}
$$

$$
Q=10-\frac{1}{10} v^{2}
$$

$$
\begin{aligned}
& a=\frac{100-v^{2}}{10} \\
& \frac{d v}{d t}=\frac{100-v^{2}}{10}
\end{aligned}
$$

$$
t=\int \frac{10}{100-v^{2}} d v
$$

$$
t=10 \int \frac{1}{100-v^{2}} d v
$$

$$
=\frac{1}{100-v^{2}}=\frac{1}{(10-v)(10+v)}
$$

$$
=\frac{B}{10-v}+\frac{B}{10+V}
$$

$$
y+(10+v)+8(10-v)=1
$$

$\operatorname{usin} 2 n=10$

$$
\begin{array}{r}
20 A=1 \\
A=\frac{1}{20}
\end{array}
$$

if $リ=-10$

$$
\begin{array}{r}
20 B=1 \\
B=\frac{1}{20}
\end{array}
$$

$$
t=10 \int \frac{1}{20(10-v)}+\frac{1}{20(10+v)^{2}} d v
$$

$$
=\frac{1}{2} \int\left(\frac{1}{10-v}+\frac{1}{10+y}\right)^{2} y^{2}
$$

$$
=\frac{1}{2}[0 \mathrm{E}(10-v)+\operatorname{Ln}(10+v)]+C
$$

$$
=\frac{1}{2}\left[0 \operatorname{Lit} \frac{10+V}{10-v}\right]+C
$$

unco $t=0, \quad y=0 \Rightarrow c=0$

$$
\therefore \quad t=\frac{1}{2}\left[\ln \frac{10+v}{10-v}\right]
$$

$$
\therefore \quad e^{\infty}=\frac{\cdots}{10-v}
$$

$$
\begin{aligned}
& (10-v)^{2 t}=10+v \\
& 10 e^{2 t} v e^{2 t}=10+v \\
& 10\left(e^{2 t}-1\right)=v+v e^{2 t} \\
& v\left(1+e^{2 t}\right)=10\left(e^{2-}\right) \\
& v=\frac{10\left(e^{2}-1\right)}{e^{2}+1}
\end{aligned}
$$

$c)$

$$
\begin{aligned}
& m a=-m\left(v^{2}+v^{3}\right) \\
& a=-\left(v^{2}+v^{3}\right) \\
& v \cdot d v \\
& d x=-\left(v^{2}+v^{3}\right) \\
& \frac{d v}{d x}=-\left(v+v^{2}\right) \\
& x=\int \frac{1}{v+v^{2}} d v \\
&=-\int \frac{1}{v(v+v)} d v
\end{aligned}
$$

For $\frac{1}{v(1+v)}=\frac{A}{v}+\frac{B}{1+v}$

$$
A(+v)+B V=
$$

When $v=0$
Whan $V=1$

$$
\begin{aligned}
& A=1 \quad ; \quad 2 \dot{A}+B=1 \\
& B=-1 \\
& \therefore x=-\int \frac{1}{v}-\frac{1}{1+v} d v \\
& =\int \frac{1}{1+v}-\frac{1}{v} d v \\
& =[\ln (1+v)-\operatorname{an}]+c \\
& x=\operatorname{lin}\left[\frac{1+y}{v}\right]+c
\end{aligned}
$$

whan $x=0, v=v$

$$
\begin{aligned}
& 0=\ln \left[\frac{1+U}{V}\right]+C \\
& \therefore x=\operatorname{dn}\left[\frac{1+v}{v}\right]-\operatorname{sen}\left[\frac{1+v}{v}\right] \\
& =\operatorname{dr}\left[\frac{(+5)(U)}{v(+U)}\right]
\end{aligned}
$$

- when $x=x, v=\frac{1}{2} v$
\therefore From (1)

$$
\begin{aligned}
x & =\ln \left[\frac{1+\frac{1}{2} v}{\frac{1}{2}} \cdot \frac{v}{(+u)}\right] \\
& =\ln \left[\frac{2+v}{2} \cdot \frac{x}{v} \cdot \frac{v}{(+v)}\right] \\
x & =\operatorname{m}\left[\frac{2+v}{1+v}\right]
\end{aligned}
$$

i)

$$
\begin{aligned}
& a=-\left(v^{2}+v^{3}\right) \\
& \frac{d v}{d t}=-\left(v^{2}+v^{3}\right) \\
& t=\int \frac{-1}{v^{2}+v^{3}} d v \\
& =-\int \frac{1}{v^{2}(1+v)} d v \\
& \text { For } \frac{1}{v^{2}(1+v)}=\frac{A v+B}{v^{2}}+\frac{C}{1+v} \\
& (A v+B)(+v)+c v^{2}=1
\end{aligned}
$$

when $v=0$

$$
\beta=1
$$

When $v=-1$

$$
1 c=1
$$

When $v=1$

$$
\begin{aligned}
& (A+B) 2+C=1 \\
& 2 A+2+1=1 \\
& \sqrt{2 A=-1} \\
& t=-\int \frac{-v+1}{v^{2}}+\frac{1}{1+v} d v \\
& =-\int \frac{1-v}{v^{2}}+\frac{1}{1+v^{2}} d v \\
& =-\int \frac{1}{v^{2}}-\frac{1}{v}+\frac{1}{1+v} d v \\
& =\int \frac{1}{v}-\frac{1}{v^{2}}-\frac{1}{1+v} d v
\end{aligned}
$$

$$
\begin{aligned}
& t=\operatorname{cn} v+\frac{1}{v}-\operatorname{sn}(1+\infty)+b \\
& t=\frac{1}{v}+\operatorname{tn} \frac{v}{1+v}+c
\end{aligned}
$$

when $t=0, v=U$

$$
\begin{aligned}
t & =\frac{1}{v}+\ln \frac{v}{1+v}+c \\
\therefore \quad t & =\frac{1}{v}+\ln \frac{v}{1+v}-\frac{1}{v}-\ln \frac{v}{1+v} \\
& =\frac{1}{v}-\frac{1}{v}+\frac{\ln }{\frac{v(1+v)}{(1+v)}}
\end{aligned}
$$

When $t=T, \quad v=\frac{1}{2} U$

$$
\begin{aligned}
& \text { When } t=T, \quad v=\frac{1}{2} \\
& T=\frac{1}{\frac{u}{2}}-\frac{1}{v}+\ln \frac{1+v)}{\left(1+\frac{u}{2}\right) v} \\
&=\frac{2}{v}-\frac{1}{v}+\ln \frac{v(1+u)}{2(2+u)} \cdot 2 \\
&=\frac{1}{v}+\ln \frac{1+v}{2+v} \\
&=\frac{1}{v}+\ln \left(\frac{2+v}{1+v}\right) \\
& T=\frac{1}{v}-\ln \left(\frac{2+v}{1+v}\right)
\end{aligned}
$$

Frow part (i)

$$
\begin{aligned}
& T=\frac{1}{U}-x \\
& T+X=\frac{1}{U} \\
& \therefore \quad U(T+X)=1
\end{aligned}
$$

Q 14
a)

ii) $y=|f(x)|$

iii) $y=\frac{1}{f(x)}$

iv) $(f(x))^{2}$

b)

for the shell

$$
\begin{aligned}
& \text { radius }=r=x \\
& \text { height }=h=y=\sin x
\end{aligned}
$$

height $=h x$
thicicness $=\delta x$

$$
\begin{aligned}
\delta V & =2 \pi x \cdot h \cdot \delta x \\
V & =\lim _{\delta x} \sum_{x=0}^{\pi} \delta V \\
& =2 \pi \int_{0}^{\pi} x \sin x d x
\end{aligned}
$$

For $\int_{0}^{\pi /} x \sin x d x$
let

$$
\begin{array}{rl}
u=x, & v=-\cos x \\
u^{\prime}=i & v=\sin x \\
x d x & =[-x \cos x]_{0}^{\pi}+\int_{0}^{\pi} \cos x d x \\
& =[-\pi \cos \pi]+[\sin x]_{0}^{\pi}
\end{array}
$$

$$
\therefore \int_{0}^{\pi} x \sin x d x=[-x \cos x]_{0}^{\pi}+\int_{0}^{\pi} \cos x d x
$$

$$
=T 1
$$

$$
\begin{aligned}
\therefore \quad V & =2 \pi \cdot \pi \\
& =2 \pi^{2} \text { units }^{3}
\end{aligned}
$$

C) For tricengular ere8s-section

$$
\text { base }=2 x=\text { height }
$$

\therefore area of the cross-section

$$
\begin{aligned}
A=\frac{1}{2} \times b \times h & =\frac{1}{2} \times 2 x \times 2 x \\
& =2 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =2 x^{2} \\
& \delta v=\text { Area of cross -section xthichess } \\
& \delta v=2 x^{2} \cdot \delta y \\
& V=y_{0}^{4} 2 x^{2} d y \\
& =\int 2 y_{0}^{4} d y \\
& =\left[\frac{2 y^{2}}{2}\right]_{0}^{4}=16 \text { units }^{3}
\end{aligned}
$$

weretion is

$$
\begin{aligned}
& \int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x \\
& \operatorname{let} e^{x}=u \\
& e^{x}=\frac{d u}{d x} \\
& \therefore \quad \int \frac{x^{1}}{\sqrt{1-u^{2}}} d u \\
&= \sin ^{-1} u+c \\
&= \sin ^{-1}\left(e^{x}\right)+c
\end{aligned}
$$

$$
\begin{aligned}
& =2 \int(t+3)^{--} d t \\
& =\frac{-2}{t+3}+c \\
& =\frac{-2}{\tan \frac{x}{2}+3}+c
\end{aligned}
$$

b)

$$
\begin{aligned}
t & =\tan \frac{x}{2} \\
\frac{d t}{d x} & =\frac{1}{2} \sec ^{2} \frac{x}{2} \\
\frac{d t}{d x} & =\frac{1+t^{2}}{2} \\
\therefore d x & =\frac{2}{1+t^{2}} d t
\end{aligned}
$$

$$
+\frac{1+t^{2}}{x_{1}}
$$

$$
\Rightarrow \int \frac{d x}{5+3 \sin x+4 \cos x}
$$

$$
=\int \frac{1}{5+3\left(\frac{2 t}{1+t^{2}}\right)+4\left(\frac{1-t^{2}}{1+t^{2}}\right)} \cdot \frac{2}{\left(1+t^{2}\right)} d t
$$

$$
=\int \frac{1+t^{2}}{5\left(1+t^{2}\right)+6 t+4\left(1-t^{2}\right)} \cdot \frac{2}{1+t^{2}} \cdot d t
$$

$$
=\int \frac{2}{5+5 t^{2}+6 t+4-4 t^{2}} \cdot d t
$$

$$
=\int \frac{2}{t^{2}+6 t+9} d t
$$

$$
=\int \frac{2}{(t+3)^{2}} d t
$$

d)

$$
\begin{aligned}
& \text { U) } I_{n}=\int_{0}^{1}\left(1-x^{n}\right)^{n} d x \\
& \text { Let } u=\left(1-x^{n}\right)^{n} \\
& u^{\prime}=n\left(1-x^{n-1} \cdot\left(-r x^{n-1}\right)\right. \\
& =-n r x^{r-1} \cdot\left(1-x^{n}\right)^{n-1}
\end{aligned}
$$

and $v^{\prime}=1$

$$
\begin{aligned}
& \therefore \quad v=x \\
& a s \int u v^{\prime}=u v-\int v u^{\prime} \\
& I_{n}=\left[\left(1-x^{r}\right)^{n} x\right]_{0}^{1}+\int_{0}^{1} n r x^{n-1}\left(1-x^{n-1} x d x\right. \\
& =n r \int_{0}^{1} x^{r}\left(1-x^{r}\right)^{n-1} d x \\
& =n r \int_{0}^{1}\left(1-1+x^{r}\right)\left(1-x^{r}\right)^{n-1} d x \\
& =n \int_{0}^{1}\left(1-\left(1-x^{r}\right)\right)\left(1-x^{r}\right)^{n-1} d x \\
& =n \int_{i}^{1}\left(1-x^{r}\right)^{n-1}-\left(1-x^{r}\right)^{n} d x \\
& =n r \int_{0}^{0}\left(1-x^{r}\right)^{n-1} d x-n r \int_{0}^{1}\left(+x^{r}\right)^{n} d x \\
& i=n r I_{n-1}-n r I_{n} \quad r \\
& m_{n}(1+n r)=n r I_{n-1} \\
& I_{n}=\frac{n r}{1+n r} I_{n-1}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
I_{x} & =\int_{0}^{1}\left(1-x^{\frac{3}{2}}\right)^{2} d x \\
& =\frac{3}{2}, \infty=3
\end{aligned}
$$

$$
\begin{aligned}
I_{n}=I_{3} & =\frac{3\left(\frac{3}{2}\right)}{1+\frac{9}{2}} \cdot I_{2} \\
& =\frac{9}{2} \cdot \frac{2}{11} I_{2} \\
& =\frac{9}{11} I_{2} \\
& =\frac{9}{11}\left[\frac{2 \cdot \frac{3}{2}}{1+2 \cdot \frac{3}{2}} \cdot I_{1}\right] \\
& =\frac{9}{11}\left[\frac{3}{4} I_{1}\right] \\
& =\frac{9}{11}\left(\frac{3}{4}\right)\left(\frac{3}{2} I_{0}\right) \\
& =\frac{9}{11} \times \frac{3}{4} \times \frac{3}{5} I_{0} \\
f & I_{0} \\
& =\int\left(1-x^{\frac{3}{2}}\right)^{0} d x \\
& =[x]_{0}^{1} d x \\
& =1 \\
\therefore I_{n}=I_{3} & =\frac{9}{11} \times \frac{3}{4} \times \frac{3}{5} \\
& =\frac{81}{220}
\end{aligned}
$$

- Clicitrar 16
C) $145 Q+H K w=180$
) $\sin x+\sin 3 x$

$$
=2 \sin \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)
$$

But

$$
1 P R Q+\angle P R T=180^{\circ}
$$

Bocydic quadribural

$$
\angle R Q+\angle R=80
$$

(adjacent

$$
=2 \sin \frac{4 x}{2} \cos \left(-\frac{2 x}{2}\right)
$$ Supplematery anges)

$$
=2 \sin 2 x \cos (-x)
$$

$$
\therefore \quad B S Q=B R T
$$

$$
=2 \sin 2 x \cos x
$$

Howerer
LPSS $=$ TPQ (aoges in alt. segmaty)
ii)

$$
\begin{aligned}
& \sin x+\sin 2 x+\sin 3 x=0 \\
& \sin 2 x+2 \sin 2 x \cos x=0 \\
& \sin 2 x(1+2 \cos x)=0
\end{aligned}
$$

$$
\begin{array}{ll}
\therefore \quad \sin x x=0 \\
2 x=0, \pi, 2 \pi & 1+2 \cos x=0 \\
x=0, \frac{\pi}{2}, \pi & \cos x=-\frac{1}{2} \\
x=\pi-\frac{\pi}{3}, \pi+\frac{\pi}{3} \\
=\frac{2 \pi}{3}, \frac{4 \pi}{3}
\end{array}
$$

ii) $\angle S P=\angle S Y P=90^{\circ}$ (angles in the Same segmai.
iii) $P^{P}+P S X=180^{\circ}$ (opp. angles Fa cyclic quadinates

$$
\operatorname{Pr} x=180-1 \operatorname{PS} x
$$

$=k 80^{\circ}$
But $1 P S x+1 P R Q=180^{\circ}$
(Gpe anghes of
acydic
quad. PSAR

$$
\Rightarrow \angle O S X=180^{\circ}-\angle P Q Q
$$

\therefore from (1)

$$
\begin{aligned}
& \therefore \text { from }\left(180-\left(180^{\circ}-\angle R Q\right)\right. \\
& \angle P X=180 \\
& \angle P X=\angle R Q
\end{aligned}
$$

at $(1,2)$

$$
\frac{d y}{d x}=\frac{2}{1}=2
$$

i. of rangat

$$
\begin{aligned}
& y-2=2(x-0) \\
& 2 x-4=0
\end{aligned}
$$

$$
\begin{aligned}
& (a-b)^{2}+(b-c)^{2}+(a-c)^{2} \\
= & a^{2}-2 a b+b^{2}+b^{2}-2 b c+c^{2}+a^{2}-2 a c+c^{2} \\
= & 2\left(a^{2}+b^{2}+c^{2}\right)-2 a b-2 b c-2 a c \\
= & 2\left(a^{2}+b^{2}+c^{2}-a b-b c-a c\right) \\
= & 0 \quad \text { because } a^{2}+b^{2}+c^{2}=a b+b c+a c \\
\quad & \quad(\text { given) }
\end{aligned}
$$

Possible only if

$$
\begin{array}{lll}
& a-b=0 & b-c=0, \\
\Rightarrow & a=b & b=c, \quad c=a
\end{array}
$$

$\therefore \triangle A B C$ is an equilateral triangle.

MCQ
Q $1 A$
6 B

2	C	7	B
3	B	8	B
4	B	9	C
5	D	10	B

